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ABSTRACT
Many real-world datasets have an underlying dynamic graph struc-
ture, where entities and their interactions evolve over time. Machine
learning models should consider these dynamics in order to harness
their full potential in downstream tasks. Previous approaches for
graph representation learning have focused on either sampling k-
hop neighborhoods, akin to breadth-first search, or random walks,
akin to depth-first search. However, these methods are computation-
ally expensive and unsuitable for real-time, low-latency inference
on dynamic graphs. To overcome these limitations, we propose
graph-sprints a general purpose feature extraction framework for
continuous-time-dynamic-graphs (CTDGs) that has low latency
and is competitive with state-of-the-art, higher latency models.
To achieve this, a streaming, low latency approximation to the
random-walk based features is proposed. In our framework, time-
aware node embeddings summarizing multi-hop information are
computed using only single-hop operations on the incoming edges.
We evaluate our proposed approach on three open-source datasets
and two in-house datasets, and compare with three state-of-the-art
algorithms (TGN-attn, TGN-ID, Jodie). We demonstrate that our
graph-sprints features, combined with a machine learning classi-
fier, achieve competitive performance (outperforming all baselines
for the node classification tasks in five datasets). Simultaneously,
graph-sprints significantly reduce inference latencies, achieving up
to 9 times faster inference in our experimental setting.

1 INTRODUCTION
Many real-world datasets have an underlying graph structure. In
other words, they are characterized not only by their individual data
points but also by the relationships between them. Moreover, they
are typically dynamic in nature, meaning that the entities and their
interactions change over time. Examples of such systems are so-
cial networks, financial datasets, and biological systems [4, 26, 34].
Dealing with dynamic graphs is more challenging compared to
static graphs, especially if the graphs evolve in continuous time
*These authors contributed equally to this work

Figure 1: CTDGs Approaches Overview. Current approaches
either compute embeddings using real-time information but
sacrificing latency, or compute low-latency embeddings but
use outdated information in the computation. Our proposed
method, graph-sprints, computes embeddings in low latency
using real-time information.

(also known as continuous-time dynamic graphs or CTDGs). The
majority of machine learning models on graph datasets are based
on graph neural networks (GNNs), achieving state-of-the-art per-
formance [31]. A few deep neural network architectures emerged
to deal with CTDGs in the past years [8, 10, 13, 15, 20, 23, 32]. One
drawback of these approaches is that one either needs to sample
k-hop neighborhoods to compute the embeddings (e.g. [20]) or
perform random-walks (e.g. [13]). Both cases are computationally
costly, resulting in high inference latencies. One solution is to de-
couple the inference from the expensive graph computations, like
in APAN [28]. Performing the graph aggregations asynchronously
results in inference using outdated information (Figure 1). How-
ever, in large data and high-frequency use-cases, such as detecting
fraud in financial transactions, one requires low-latency solutions
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Figure 2: AUC vs. Runtime trade-off. Our proposed methods based on graph-sprints (GS or GS-Raw), allow for low latency
inference while outperforming state-of-the-art methods in terms of AUC on node classification tasks. X-axis represents time in
seconds to process 200 batches of size 200, Y-axis represents test AUC. Error bars denote the standard deviation over 10 random
seeds.

that preferably use the most up-to date information to increase
detection.

In this work, we propose a versatile graph feature extraction
framework, which computes node embeddings in the form of fea-
tures that characterize a node’s neighborhood in dynamic graphs.
Importantly, our proposed framework is designed for low-latency
settings while still using the most up-to-date information during the
embedding calculations. Since we derive our framework starting
from random-walk based methods, we term our method graph-
sprints. The learned graph-sprints features can then be used in any
downstream system, for example in a machine learning model or a
rule-based system. We show how the proposed graph-sprints fea-
tures, combined with a neural network classifier, are faster to run
while not sacrificing in predictive performance compared with the
higher-latency GNNs.

The remainder of the paper is organized as follows. We first
discuss the proposed graph-sprints framework in Section 2.2. In
Section 3, we evaluate our framework using three open-source
datasets from different domains, and two in-house datasets from
the money laundering domain. We discuss related work in Section 4
and in Section 5 we put forward our main conclusions.

2 METHODS
2.1 Random-walk based features
Before describing our graph-sprints framework, we briefly sum-
marize a random-walk based feature extraction framework. Our
aim is to propose a set of general-purpose features that character-
ize a node’s neighborhood, and for which we will derive efficient
graph-sprints computations in the next section. The random-walk
based feature extraction framework requires the following steps,
to generate a node embedding for target seed node.

(1) Select the seed node. This selection depends on the use-
case, and for CTDGs typically one considers entities in-
volved in new activity, for instance if the change on the

graph is adding a new edge between two nodes, then each
of these two nodes could be a candidate for a seed node.

(2) Perform random-walks starting from the seed nodes.
During the random-walks, relevant data such as node or
edge features of the traversed path are collected. The type
of random-walks influences what neighborhood is summa-
rized in the extracted features. Walks can be (un)directed,
biased, and/or temporal.

(3) Summarize collected data. The data collected during
the random-walks is aggregated into a fixed set of features,
characterizing each seed node’s neighborhood. Examples of
such aggregations are the average of encountered numerical
node or edge features, the maximum of encountered out-
degree, counts of a category for categorical node or edge
features, etc.

The computation of these features is costly, becausemultiple random-
walks need to be generated for each seed node. For CTDGs, one
would have to compute such features each time an edge arrives.
This is infeasible for high-frequency use-cases such as fraud de-
tection in financial transactions, where a low-latency decision is
needed. In the next section, we derive an efficient approximation
to the above random-walk based features.

2.2 Graph-sprints: streaming graph features
In this section, we propose approximations to random-walk based
features described in Section 2.1. Our aim in this section is to op-
timize the computation of such features by exploiting recurrence
and abolishing the need to execute full random-walks (Figure 3).

2.2.1 Assumptions. For our approximations to be reliable, we make
the following assumptions: the input graph is a CTDGwith directed
edges, edges have timestamps and the temporal walks respect time,
in the sense that the next explored edge is older than the current
edge.With these assumptions, one can unfold any directed temporal
walk as a time-series (Figure 3A and B).
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Figure 3: From random-walks to graph-sprints. Edges have
a timestamp feature (numbers) representing the time that
a relationship was created. (A) A temporal random-walk is
traversed from themost recent interaction A-B towards older
interactions. (B) The same random-walk can be seen as a time-
series of edges. (C) Based on a full temporal random-walk,
one can compute embeddings by aggregating encountered
feature values (section 2.1). (D) One can compute similar
embeddings in a streaming setting, from only the new edge
and the existing embeddings of the involved nodes.

2.2.2 Streaming histograms as node embeddings. Given the above
assumptions, we now formalize the approximation of random-walk
based aggregations described in section 2.1.

In this framework, we do not consider random-walks with a
fixed number of hops, and instead consider infinite walks. The
importance of older information compared to newer is controlled
by a factor 𝛼 . A larger 𝛼 gives more weight to features further away
in the walk, and we can therefore consider 𝛼 the parameter that
replaces the number of hops. Formally, let ®𝑠𝑖 be a histogram with
𝐿 bins, represented as an 𝐿-dimensional vector and characterizing
the distribution of a feature 𝑓 in the neighborhood of node 𝑖 . A full
infinite walk starting at node 0 computes the histogram ®𝑠0 as:

®𝑠0 =
∞∑︁
𝑖=0

𝛼𝑖 (1 − 𝛼) ®𝛿 (𝑓𝑖 ) (1)

where 𝛼 is a discount factor between 0 and 1, controlling the
importance of distant information in the summary ®𝑠0, and 𝑖 denotes
the hops of the walk (𝑖 = 0 being the newest node, or in other
words the seed node of the infinite walk). 𝑓𝑖 is the feature value at
node 𝑖 and ®𝛿 (𝑓𝑖 ) is an 𝐿-dimensional vector with element ®𝛿 𝑗 = 1
if the feature value 𝑓𝑖 falls within bin 𝑗 and ®𝛿 𝑗 = 0 for all other
elements. Equation 1 then implements a streaming counts per bin,
where older information is gradually forgotten. If the feature 𝑓𝑖 is
a node feature, then the value is taken from the current node. If it
is an edge feature, then the feature value is taken from the edge
connecting the current node and the chosen neighbor.

One could compute multiple such summaries per node, one for
each node or edge feature of interest, and together they would
summarize a neighborhood. The key idea is that we can now ap-
proximate the infinite random-walks, i.e., the infinite sum of equa-
tion 1, by performing only a finite number of 𝑘 ≥ 1 hops, followed
by choosing a random neighbor of the last encountered node and

choosing an available summary ®𝑠𝑘 of that neighbor randomly, where
®𝑠𝑘 is defined as

®𝑠𝑘 =

∞∑︁
𝑖=0

𝛼𝑖 (1 − 𝛼) ®𝛿 (𝑓𝑖+𝑘 ) (2)

With this strategy, we can approximate the summary ®𝑠0 from equa-
tion 1 recurrently using

®𝑠0 ≈
𝑘−1∑︁
𝑖=0

𝛼𝑖 (1 − 𝛼) ®𝛿 (𝑓𝑖 ) + 𝛼𝑘®𝑠𝑘 (3)

Compared with equation 1, one now truncates the sum after 𝑘
terms. Note that whenever the last histogram ®𝑠𝑘 is normalized such
that the bins sum to 1, e.g. using a uniform initialization for terminal
nodes, equation 3 guarantees that all subsequent histograms will be
normalized in the same way. Since we are interested in low-latency
methods, we take the limit of 𝑘 = 1 and Equation 3 becomes a
streaming histogram:

®𝑠0 ← (1 − 𝛼) ®𝛿 (𝑓0) + 𝛼®𝑠1 (4)
The hyperparameter 𝛼 can be chosen to depend on the number

of hops or on time. When discounting by hops, this discount factor
𝛼 is a fixed number between 0 and 1. When discounting by time, the
factor is made dependent on the difference in edge timestamps, for
example exponentially as illustrated in Equation 5 or hyperbolically
as in Equation 6.

𝛼 (𝑡𝑘 , 𝑡𝑘−1) = exp(−|𝑡𝑘 − 𝑡𝑘−1 |/𝜏) (5)

𝛼 (𝑡𝑘 , 𝑡𝑘−1) =
1

1 + |𝑡𝑘 − 𝑡𝑘−1 |/𝜏
(6)

Where 𝜏 is a chosen timescale and 𝑡𝑘 is the timestamp of edge at hop
𝑘 . Similarly, the resulting 𝛼 will be a value between 0 and 1, and the
bigger the time difference between the two edges the smaller 𝛼 will
be. Therefore, giving more importance to more recent connections.

Using equation 4, one could approximate 𝑁 (biased) random-
walks by sampling 𝑁 neighbors (non-uniformly), and subsequently
combining the resulting histograms e.g. by averaging. This would
require performing 𝑁 1-hop look-ups each time.

Instead of that, we can increase efficiency even further by re-
moving any stochasticity and updating a node’s histogram at each
edge arrival, combining the histograms of the two nodes involved
in the arriving edge, as shown in equation 7:

®𝑠0 ← 𝛽®𝑠0 + (1 − 𝛽)
(
(1 − 𝛼) ®𝛿 (𝑓0) + 𝛼®𝑠1

)
(7)

In this way we combine all neighbours’ information implicitly
using a moving average over time.

Hyperparameter 𝛽 is another discount factor between 0 and 1,
controlling how much to focus on recent neighbor information in
contrast to older information and which can take similar depen-
dencies on time as equations 5 and 6. In this way, we can update
histograms in a fully streaming setting, using only information
of each arriving edge. We term this procedure graph-sprints and
summarize it in algorithm 1.

Compared to equation 4, one can observe that the remaining
sampling over single-hop neighbors is abolished, at the cost of
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imposing a more strict dependence on time. The advantage of algo-
rithm 1 is that no list of neighbors needs to be stored. Moreover,
algorithm 1 can be applied in parallel to both the source node and
the destination node, and therefore edges are not required to be
directed. In fact, while we derived equation 7 from random-walks,
the attentive reader can notice that it can be interpreted as a special
case of message passing where all neighbor summaries are aggre-
gated using a weighted average, with weights that are biased by
recency, and where the average is computed in a streaming fashion
over time.

One special type of feature are the degree features (in- and out-
degree). To avoid accumulating degrees over time, we propose to
implement a streaming count of degrees per node. Every time an
edge involving node 𝑢 arrives, we compute

𝑑𝑢 = 𝑑𝑢 exp (−Δ𝑡/𝜏𝑑 ) + 1 (8)
where 𝑑𝑢 denotes either in- or out-degree of node 𝑢, Δ𝑡 denotes the
time differences between the current edge involving node 𝑢 and
the previous one, and 𝜏𝑑 is a timescale for the streaming counts.

Algorithm 1 Graph-sprints (eq. 7)
Require: 𝐸𝑑𝑔𝑒𝑆𝑡𝑟𝑒𝑎𝑚 ⊲ Stream of arriving edges 𝑒𝑖, 𝑗
Require: F ⊲ Set of features for GS (e.g., node degree)

for 𝑒𝑣,𝑢 ∈ 𝐸𝑑𝑔𝑒𝑆𝑡𝑟𝑒𝑎𝑚 do
Get ®𝑠𝑢 , ®𝑠𝑣 ⊲ Current summaries of nodes u,v
®𝑠★𝑣 ← 𝛼®𝑠𝑣 ⊲ Multiply all bins by 𝛼
for 𝑓 ∈ F do

if value(𝑓 ) in bin j then
®𝑠★
𝑣 𝑗
← ®𝑠★

𝑣 𝑗
+ (1 − 𝛼) ⊲ Add (1-𝛼) to bin 𝑗

end if
end for
®𝑠𝑢 ← 𝛽®𝑠𝑢 + (1 − 𝛽)®𝑠★𝑣 ⊲ Updated summary of node 𝑢.

end for

2.2.3 Choosing histogram bins. Essential hyperparameters of this
method are the choices of the boundaries of the histograms bins.
We propose to use one bin per category for categorical features. If
the cardinality of a certain feature is too high, we propose to form
bins using groups of categories. For numerical features, one can
plot the distribution in the training data and choose sensible bin
edges, for example on every 10th percentile of the distribution. The
framework is not constrained by one choice of bins, as long as they
can be updated in a streaming way.

2.3 Reducing space complexity
The space complexity of the graph-sprints approach (algorithm 1)
is

𝑀 = |V|
∑︁
𝑓 ∈F

𝐿𝑓 (9)

where |V| stands for the number of nodes, 𝐿𝑓 stands for the number
of bins of the histogram for feature 𝑓 , and F stands for the set of
features chosen to collect in histograms. In case this memory is too
high, we propose the following methods to reduce memory further.

Reducing histogram size using similarity hashing Follow-
ing the similarity hashing approach proposed in Jin et al. [10], we

extend the method to the streaming setting. All histograms as de-
fined in the previous sections are normalized (in the sense that bin
values sum to 1), and we can concatenate them into one vector
®𝑠𝑡𝑜𝑡 . We can now define a hash mapping by choosing 𝑘 random
hyperplanes in R𝑀 defined by unit vectors ®ℎ 𝑗 , 𝑗 = 1, . . . , 𝑘 .

The inner product between the histograms vector and the 𝑘 unit
vectors results in a vector of 𝑘 values, each value \ can be calculated
using the dot product of the unit vector ®ℎ 𝑗 and the histogram vector
®𝑠𝑡𝑜𝑡 , as illustrated in Equation 10. We use the superscript 𝑡 to denote
the current time step.

\𝑡𝑗 =
®ℎ 𝑗 · ®𝑠𝑡𝑡𝑜𝑡 (10)

One can binarize the representation of the hashed vector using
by taking the sign of the above \𝑡

𝑗
.

Therefore, the resulting space complexity per node is 𝑘 , replacing
the number of bins in the memory𝑀 by the number of hash vectors
𝑘 .

Importantly, the hashed histograms can be updated without
storing any of the original histograms. Combining equations 4 and
equation 10 and denoting ®𝛿 ( ®𝑓 ) the concatenation of the ®𝛿 vectors
for all collected features, we get

\𝑡+1𝑗 = \𝑡𝑗 · 𝛼 + ®ℎ 𝑗 · ®𝛿 ( ®𝑓 ) · (1 − 𝛼) (11)

Therefore, we can compute the next hash \𝑡+1
𝑗

or sign(\𝑡+1
𝑗
)

directly from the previous \𝑡
𝑗
and the new incoming features ®𝛿 ( ®𝑓 ).It

is also important to note that this hashing scheme is preservedwhen
averaging.

Reducing embedding size using feature importance One
can reduce the needed memory by relying on feature importance
techniques. One possibility is to train a classifier on the raw node
and/or edge features and determine feature importances, after
which only the top important features are used in the graph-sprints
framework. Or similarly train on all bins and decide the bins to be
used based on their importance in the classification task.

3 EXPERIMENTS
3.1 Experimental setup
We assess the quality of the graph based features generated by the
graph-sprints framework on node classification task. We use three
publicly available datasets from the social and education domains,
and two proprietary datasets from money laundering domain . We
detail their main characteristics in Table 1 and Table 4, respectively.
All datasets are CTDGs and are labeled. Each dataset is split into
train, validation, and test sets respecting time (i.e., all events in
the train are older than the events in validation, and all events
in validation are older than the events in the test set). We use
Optuna [1] to optimize the hyperparameters of all models, training
100 models using the TPE sampler and with 40 warmup trials. Each
model trains using early stopping with a patience of 10 epochs,
where the early stopping metric computed on the validation set is
area under ROC curve.

3.1.1 Baselines. As a first baseline, we reproduce a state-of-the-art
GNN model for CTDGs, the temporal-graph network (TGN) [20],
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which leverages a combination of memory modules and graph-
based operators to obtain node representations. As an important
note, we mention that the pytorch geometric [5] implementation
of TGN was used, for which the sampling of neighbors uses a
different strategy than the original TGN implementation. Indeed,
the original paper allowed to sample from interactions within the
same batch as long as they were older, while the pytorch geometric
implementation does not allow within-batch information to be
used. As also noted in the pytorch geometric documentation, we
believe the latter to be more realistic. As a consequence, our TGN
results are not directly comparable with the originally published
TGN performances. In any case, the graph-sprints embeddings were
computed using the same batch size and therefore also do not have
access to within-batch information, allowing a fair comparison
between the algorithms.

Two variations of the TGN architecture were used. First, TGN-
attn was implemented, which was the most powerful variation in
the original paper but is expected to be slower due to the graph-
attention operations. Second, TGN-ID was implemented, which is
a variation of the TGN where no graph-embedding operators are
used, and only the embedding resulting from the memory module
is passed to the classification layers.

A third baseline we use is Jodie [15]. We use the TGN implemen-
tation of Jodie, where instead of using Graph attention embeddings
on top of the memory embedding, a time projection embedding
module is used and where the loss function is otherwise identical to
the TGN setting. For a fair comparison with TGN we use the same
memory updater module, namely, gated recurrent units (GRUs).

The TGN-ID and Jodie baselines do not require sampling of
neighbors, and were therefore chosen as lower-latency baselines
compared to TGN-attn.

3.1.2 Graph-sprints and classifier. For each arriving edge, we apply
the graph-sprints feature update (algorithm 1) to both the source
node and the destination node in parallel. All edge features are
used for the computation of the graph-sprints features, and for
each feature bin edges are chosen as the 10 quantiles computed on
the training data. Since the graph-sprints framework only creates
features, a classifier is implemented for the classification tasks. We
chose to implement a neural network consisting of dense layers
and skip-connections every two layers. Hyperparameter optimiza-
tion proceeds in two steps. First, default parameters for the classi-
fier are used to optimize the discount factors of the graph-sprints
framework, 𝛼 and 𝛽 . For this step, 50 models are trained. Subse-
quently, hyperparameter optimization of the classifier follows same
approach as TGN, training 100 models.

Table 1: Information about public data [15].

Reddit Wikipedia MOOC
#Nodes 10,984 9,227 7,047
#Edges 672,447 157,474 411,749

Label type posting ban editing ban student drop-out
Positive labels 0.05% 0.14% 0.98%
Used split 75%-15%-15% 75%-15%-15% 60%-20%-20%

In all experiments, we test the following three cases. Firstly, we
train the classifier using only raw features (Raw). We then train the
classifier using only the graph-sprint features (GS). Finally, we train
the classifier using both raw and graph-sprint features (GS+Raw).

3.1.3 Node Classification. For the node classification task on the
Wikipedia, Reddit and Mooc datasets, we concatenate the source
and destination node embeddings and feed the concatenated vector
to the classifier, as is usual for datasets where labels are on the edge
level. For the money laundering dataset labels are on the node level,
hence we use the node embedding to predict its respective label.

3.2 Public dataset experiments
3.2.1 Task performance. In Table 2 we report the average test AUC
± std resulting from retraining the best model after hyperparameter
optimization using 10 random seeds.

3.2.2 Inference runtime. We compare the latency of our framework
to baseline GNN architectures. For this purpose, we run 200 batches
of 200 events on the external datasets, Wikipedia, Mooc, and Reddit
using the node classification task. We compute the average time
over 10 runs. Both models were running on Linux PC with 24 Intel
Xeon CPU cores (3.70GHz) and a NVIDIA GeForce RTX 2080 Ti
GPU (11GB).

As depicted in Figure 2, our graph-sprints consistently outper-
forms other baselines (TGN-attn, TGN-ID, Jodie) in the node classifi-
cation task while also demonstrating a significantly lower inference
latency. Compared to TGN-attn, the GS achieves better classifica-
tion results but is up to approximately an order of magnitude faster
(Figure 2).

Furthermore, the speedups achieved by graph-sprints are ex-
pected to be significantly higher in a big-data context, where the
data is stored in a distributed manner rather than in memory as in
our current experiments. In such scenarios, graph operations used
in graph-neural networks like TGN-attn would incur even higher
computational costs.

Table 2: Results on Node classification task, we report the
average test AUC ± std achieved by retraining the best model
after hyperparameter optimization using 10 random seeds.
Ourmodels, Raw, GS, and GS+Raw, use the sameML classifier
but differ in the features employed for training. Raw uses raw
edge features, GS uses graph-sprints histograms, andGS+Raw
combines both. We identify the best model and highlight the
second best model.

Method AUC ± std
Wikipedia Mooc Reddit

Raw 58.5 ± 2.2 62.8 ± 0.9 55.3 ± 0.8
TGN-ID 88.9 ± 0.2 63.0 ± 17 61.3 ± 2.0
Jodie 87.2 ± 0.9 63.7 ± 16.7 61.9 ± 2.0

TGN-attn 86.6 ± 2.8 75.8 ± 0.4 69.0 ± 0.9
GS 91.2 ± 0.4 74.7 ± 0.1 71.3 ± 2.1

GS+Raw 89.6 ± 0.4 76.3 ± 0.1 66.1 ± 0.6
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Recently, APAN [28] has attempted to build a low-latency frame-
work for CTDGs. Their approach consisted of performing the ex-
pensive graph operations asynchronously, out of the inference loop.
In that way, they achieved inference speeds of 4.3ms per batch on
theWikipedia dataset, but we cannot directly compare those results
with ours (GS: 1.4ms, TGN-attn: 6ms) due to the different setup
and hardware. Importantly, their approach achieves low-latency
by sacrificing up-to-date information at inference time. Indeed, the
inference step is performed without access to the most recent em-
beddings, because the expensive graph operations to compute the
embeddings are performed asynchronously.

3.2.3 Memory reduction. Both the Wikipedia and Reddit datasets
consist of 172 edge features. By calculating graph-sprints with
10 quantiles per feature, along with incorporating in/out degrees
histograms and time-difference histograms, we obtain a node em-
bedding of 1742 features (one feature per histogram bin). In our
experimental setup, we concatenate the source and destination node
embeddings for source label prediction, similar to SotA approaches,
resulting in a 3484-feature vector. To reduce the size of the node em-
beddings, we propose a similarity hashing-based memory reduction
technique (Section 2.3)). Our experiments, as presented in Table 3,
demonstrate that this technique can significantly reduce storage
requirements without affecting the AUC in the node classification
task. For the Wikipedia dataset, storage usage can be reduced to
just 0.12% without any impact on AUC. In the case of the Reddit
dataset, storage can be reduced to 25% with a 1% AUC sacrifice
or to 10% with a 2% AUC sacrifice. The reduction percentage can
be fine-tuned as a hyperparameter, considering the use case and
dataset.

Table 3: Effect ofmemory reduction on the node classification
task. Average test AUC ± std resulting from retraining the
best model after optimization using 10 random seeds. We use
only the GS embeddings to train the classifier. Since MOOC
has less features we add ’-’ where number of features < 1.

Space used Wikipedia Mooc Reddit
100% 91.2 ± 0.4 72.7 ± 0.1 71.3 ± 2.1
50% 91.1 ± 0.1 73.9 ± 1.0 71.1 ± 1.5
25% 91.2 ± 0.4 72.8 ± 0.9 70.3 ± 1.8
10% 91.3 ± 0.1 72.2 ± 0.3 69.0 ± 1.5
0.5% 90.7 ± 0.3 - 65.1 ± 2.1
0.12% 91.0 ± 0.1 - 54.6 ± 3.9

3.3 Anti-money laundering (AML) experiments
In money laundering, the criminals’ objective is to hide the illegal
source of their money by moving funds between various accounts
and financial institutions. In these experiments, our objective is
to enrich an classifier with graph-based features generated by our
graph-sprints framework and evaluate whether that enhances the
model detection of suspicious activity.

3.3.1 Datasets. We evaluate the graph-sprints framework in the
AML domain using two real-world banking datasets. Due to privacy

concerns, we can not disclose the identity of the financial institu-
tions (FIs) nor provide exact details regarding the node features. We
refer to the datasets as FI-A and FI-B. The graphs in this use-case are
constructed by considering the accounts as nodes and the money
transfers between accounts as edges. Table 4 shows approximate
details of these datasets.

Table 4: Information about AML datasets.

FI-A FI-B
#Nodes ≈400000 ≈10000
#Edges ≈500000 ≈2000000

Positive labels 2-5% 20-40%
Duration ≈300 days ≈600 days

Edges/day (mean ± std) 1500 ± 750 3000 ± 5000
Used split 60%-10%-30% 60%-10%-30%

3.3.2 Results. For privacy reasons, we can not disclose the entire
models’ ROC curve; instead, we report relative improvements in
ROC curves when compared against a baseline model that does not
use graph features. In this way, the baseline models correspond to
the Δ𝐴𝑈𝐶 = 0, while any gain in Recall compared to the baselines
results in positive values of the ΔAUC.

In Table 5, we show the ΔAUC, we obtain an improvement of
around 4.4%AUC in the FI-A dataset, and an improvement of around
25.5% AUC in FI-B dataset.

Table 5: Node classification results in AML data. We report
relative gain in AUC (ΔAUC) compared to a baseline model
that does not utilize graph features. We report the average
test ΔAUC ± std achieved by retraining the best model after
hyperparameter optimization using 10 random seeds. We
identify the best model and highlight the second best model.

Method ΔAUC ± std
FI-A FI-B

TGN-ID +0.1 ± 0.1 +24.4 ± 0.2
Jodie +0.0 ± 0.1 +24.5 ± 0.2

TGN-attn +0.3 ± 0.7 +25.1 ± 0.3
GS +2.0 ± 0.2 +25.5 ± 1.4

GS+Raw +4.4 ± 0.3 +19. ± 1.4

4 RELATEDWORK
Our graph-sprints approach handles real-time information and has
low latency; other approaches typically require trade-offs between
these two dimensions (Figure 1).We discuss various relatedmethods
below, depending on whether they sample graphs using random-
walks or k-hop neighborhoods.

4.1 Random-walk based methods
DeepWalk [19] and node2vec [7] are two random-walk based meth-
ods to extract node embeddings on static graphs. DeepWalk lever-
ages random-walks to generate node representations using the
skip-Gram method [17], by treating walks as the equivalent of



From random-walks to graph-sprints: a low-latency node embedding framework on continuous-time dynamic graphs

sentences. Node2vec extends DeepWalk to perform biased random-
walks. The main limiting factors of these methods are that they
disregard node and edge features as well as temporal information,
since they are designed for static graphs. Sajjad et al. [21]. extend
these random-walk based methods to discrete-time dynamic graphs.
For every new time step, the authors propose to identify which
random-walks from the previous graph snapshot are affected by
changes in the current graph snapshot. Then, these random-walks
are either fully or partially re-generated. While some efficiency
is gained with the proposed method, it is far from applicable to
CTDGs and in low-latency settings.

Node2bits [10] leverages temporal random-walks as a backbone
to compute node embeddings in CTDGs, similarly to our random-
walk based approach. It considers the temporal information by
defining several time windows over the sampled random-walks, and
aggregates node attributes in these time windows into histograms.
Finally, the authors propose to compresses and binarizes the node
embeddings using similarity hashing. Node2bits is tailored for the
user stitching problem, does not include edge-features and performs
costly computations which cannot be performed with low latency.

Continuous-time Dynamic Node Embeddings (CTDNE) [16, 18]
were proposed to generate time-aware embeddings, generalizing
the node2vec framework to CTDGs. The authors consider the graph
as a stream of edges, and propose to perform temporal walks
starting from seed nodes chosen from a temporally biased dis-
tribution. The authors propose to include the extracted temporal
walks in a downstream framework such as skip-Gram or a GNN,
in order to learn time-aware node embeddings. Similarly, temporal
random-walks have been used to extract embeddings into hyper-
bolic spaces [27]. Causal anonymous walks [29] propose to use
anonymized walks in order to encode motif information. Similarly,
NeurTWs [13] explicitly model time in the anonymous walks using
Neural Ordinary Differantial Equations (NeuralODEs). Unlike our
graph-sprints framework, full random-walks need to be performed.
For a deeper analysis of the trade-offs between accuracy and run-
time complexity in random-walk based approaches, we refer the
reader to the study by Talati et al. [24].

4.2 K-hop neighborhood based methods
Most GNN-based methods require a K-hop neighborhood on which
message-passing operations lead to node embeddings [2, 9, 14, 25].
To deal with CTDGs, a simple approach is to consider a series of
discrete snapshots of the graph over time, on which static methods
are applied. Such approaches however do not take time properly
into account and several works propose techniques to alleviate this
issue[6, 12, 22] .

To better deal with CTDGs, other works focus on including
time-aware features or inductive biases into the architecture. Deep-
Coevolve [3] and Jodie [15] train two RNNs for bipartite graphs,
one for each node type. Importantly, the previous hidden state of
one RNN is also added as an input to the other RNN. In this way,
the two RNNs interact, in essence performing single-hop graph ag-
gregations. TGAT [32] proposes to include temporal information in
the form of time encodings, while TGN [20] extends this framework
and also includes a memory module taking the form of a recurrent

neural network. In [11], the authors replace the discrete-time recur-
rent network of TGN with a NeuralODE modeling the continuous
dynamics of node embeddings.

APAN [28] proposes to reduce the latency at inference time by
decoupling the more costly graph operations from the inference
module. The authors propose a more light-weight inference mod-
ule that computes the predictions based on a node’s embedding
as well as a node’s mailbox, where the mailbox contains messages
constructed from the embeddings of recently interacting nodes.
The mailbox is updated asynchronously, i.e. separated from the
inference module, and involves the more expensive k-hop message
passing. While APAN improves the latency at inference time, it
sacrifices some memory since each node’s state is now expanded
with a mailbox and it potentially uses outdated information at in-
ference time due to asynchronous update of this mailbox. Also
towards reducing computational costs of GNNs, HashGNN [30]
leverages MinHash to generate node embeddings suitable for the
link prediction task, where nodes that results in the same hashed
embedding are considered similar. SGSketch [33] is a streaming
node embedding framework that similarly to our strategy uses
gradual forgetting mechanism to gradually forget outdated edges,
achieving significant speedups. Differently than our approach SGS-
ketch uses the gradual forgetting strategy to update the adjacency
matrix and therefore only considers the graph structure and does
not consider node attributes.

5 CONCLUSIONS
We described graph-sprints, a framework to compute time-aware
embeddings for CTDGs with low latency. We showed how the
graph-sprints features, combined with a neural network classifier,
obtain better predictive performance compared to state-of-the-art
methods, while being at least 4 times faster at inference. Inter-
estingly, our method is not based on graph neural networks, but
instead proposes to characterize feature distributions of neighbor-
hoods in streaming histograms. Topological information is included
by summarizing degree distributions. In future work, it would be in-
teresting to extend the graph-sprints framework to heterogeneous
graphs, and explore how GNNs could inherit some of the strengths
of graph-sprints.
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