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ABSTRACT
Social interactions, such as eye contact, speaking and listening,
are ubiquitous in our life and carry important clues of human’s
social status and psychological state. With evolving dynamics fun-
damentally different from social relationships, the complex interac-
tions among a group of people are another informative resource
to analyze patterns of social behaviors and characteristics. Despite
the great importance, previous approaches on extracting patterns
from such dynamic social interactions are still underdeveloped and
overly task-specific.We fill this gap by proposing a temporal network
formulation of the problem, together with a representation learn-
ing framework, temporal network-diffusion convolution networks
(TNDCN). The framework accommodates the many downstream
tasks with a unified structure: we creatively propagate people’s fast-
changing descriptive traits among their evolving gazing networks
with specially designed (1) network diffusion scheme and (2) hier-
archical pooling to learn high-quality embeddings for downstream
tasks using a consistent structure and minimal feature engineering.
Analysis show that (1) can not only capture patterns from existed
interactions but also people’s avoidance of interactions that turn out
just as critical. (2) allows us to flexibly collect different fine-grained
critical interaction features scattered over an extremely long time
span, which is also key to success while it empirically fails almost
all the previous temporal GNNs based on recurrent structures. We
evaluate our model over three different prediction tasks, detecting
deception, dominance and nervousness. Our model not only con-
sistently outperforms previous baselines but also provides good
interpretation by implying two important pieces of social insight
derived from the learned coefficients.
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1 INTRODUCTION
Social interactions, referring to numerous and complicated actions
among two or more people, have woven themselves into every piece
of our daily life [33]. They are one of the most ubiquitous forms that
people connect with each other, and can happen whenever several
people meet physically or online with video meeting tools. Such
interactions, featured by synchronously occurred high-frequent
eye contacts, fast-changing facial expressions, voice features and
even physical proximity, have evolving dynamics fundamentally
different from acquaintance-based social networks.

With such informative signals that characterize complex human
group behaviors, psychological state and social-economic status,
social interactions become critical data resources for social sci-
entists to study patterns of human behaviors and make further
inferences [25]. For example, where, when and how people interact
with others may provide informative cues to solve various social
tasks including deception detection [4, 13], dominance identifica-
tion [5, 8], personality traits characterization [30] and friendship
inference [16].

However, we recognize that existing literature [4, 5, 8, 14, 15, 41]
on each of these tasks primarily rely on handcrafted features that
are hardly transferable to each other, This makes the modeling
process overly task-specific and high-demanding for domain ex-
pertise. In that regard, we propose a more generic framework that
formulates social interactions with such vigorous dynamics by a
temporal network for more unified representation learning. Central
to this prototype is the usage of people’s evolving eye-gazing or
speak-and-listen-to relationships for temporal network construc-
tion. With eye contacts as the key to signal information flows [36]
in a social interaction, both the explicit messages and people’s un-
derlying influence on each other can now be naturally modeled into
a graph diffusion process, which essentially instantiates a variant of
the powerful (temporal) graph neural network [23]. We term this
temporal network model dynamic social interaction network.

There are several temporal GNN frameworks proposed recently
for representation of generic temporal networks. However, they are
not well-suited to our downstream tasks. One important reason is
that they are primarily designed to fit the occurrence/attributes of
temporal edges and thus almost always place an imbalanced weight
on events towards the sequence’s end [11, 29, 39, 47]. However, our
tasks (deception detection for example) essentially need to collect
the different, sporadic and potentially overlapping traits of com-
munication throughout the interaction. Such mismatch becomes
especially noticeable with long, fine-grained interaction sequence
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(which is a must due to the event’s high-frequency nature): a 6-
minute conversation extracted on 3 FPS yields more than 1000
snapshots which fails all the previous temporal models based on
recurrent structures [20, 21, 28, 35, 37]. Some others either assume
a static underlying graph structure, such as those designed for
traffic forecasting [26, 45], or claim to be able to handle dynamic
node attributes but have never been evaluated over the case with
highly dynamic node attributes as those in social interaction net-
works [21, 28, 35, 37].

Our contribution in this paper is summarized as the following:
• We propose the formulation of social interactions into a
temporal network prototype to enable unified representation
learning for the many downstream tasks with minimal level
of knowledge-based feature engineering.

• we propose an end-to-end neural-network-based model, tem-
poral network-diffusion convolution networks (TNDCN) that
both intuitively model the information flow with enhanced
graph convolution and flexibly collect scattered fine-grained
patterns over long time with special hierarchical pooling.

• We evaluate TNDCN over three different social tasks includ-
ing deception, dominance and nervousness detection. Our
model consistently outperforms a variety of our baselines.
In-depth analysis shows that the learnt coefficients further
yield interesting insights on interaction patterns.

2 PROBLEM FORMULATION
In this section, we first introduce notations of static graphs in
general. Then, we introduce our problem into the context by further
formulating it into the prototype of temporal graphs. We use capital
letters 𝑁,𝑀,𝑀 ′ to denote some positive integers.

2.1 General Graph Notations
A static network can be represented as a graph𝐺 = (𝑉 , 𝐸) where𝑉
denotes the set of nodes and 𝐸 the set of edges. 𝑁 = |𝑉 |. Networks
that we discuss include both directed and undirected. As an undi-
rected graph can be viewed as a special case of directed one, we
assume 𝐺 is directed hereafter unless specified.

Graph 𝐺 is associated with adjacency matrix 𝐴 ∈ R𝑁×𝑁 where
𝐴𝑢𝑣 = 1 if and only if (𝑢, 𝑣) ∈ 𝐸. Also, we define the diagonal out-
degree matrix 𝐷out ∈ R𝑁×𝑁 where its 𝑢-th diagonal component is
𝑑out,𝑢 =

∑
𝑣∈𝑉 𝐴𝑢𝑣 . The random walk matrix over 𝐺 is defined as

𝑊 = 𝐷−1
out𝐴. (1)

2.2 Dynamic Social Interaction Networks
Central to the prototype’s formulation are two things: nodes, which
represent people, and timestamped edges, which represent interac-
tions between two people and are usually mapped from people’s
evolving eye-gazing or speak-listen relationships. Dynamic per-
sonal traits are further associated with nodes and communication-
based properties like gazing probabilities are associated to edges.

To record social interactions, the most common practice is to
leverage a variety of sensors to record snapshots of interaction
scenes of high time resolution. Therefore, we define our data struc-
tures using temporal graph snapshots: {𝐺𝑡 }1≤𝑡 ≤𝑇 where𝐺𝑡 = {𝑉𝑡 , 𝐸𝑡 }.
We further denote the universal node set 𝑉 =

⋃
𝑉𝑡 , ∀𝑡 ∈ [1,𝑇 ], so

that 𝑉 is fixed across different snapshots.

As mentioned, dynamic social interaction networks can be asso-
ciated with both dynamic node and/or edge attributes. and dynamic
edge attributes. For node attributes, we have {𝑋𝑡 }1≤𝑡 ≤𝑇 , where the
row of𝑋𝑡 corresponding to node𝑢’s initial attributes. For edges, we
also allow the network edge associated with a quantified attribute,
denoted by a weighted adjacency matrix 𝐴 in generalized form. For
example, an edge can carry the likelihood of one person looking at
the other, or the wireless signal strength that one’s smart device
receives from the other’s. Generalization to multi-type edges yields
multi-view temporal network, which beyond our discussion of this
work and left for future work. Note that our definition allows both
edge and node attributes to evolve dynamically though.

Our goal is to learn representations for nodes in these networks
that capture important patterns from their social interaction behav-
iors. Once the representations are learned, prediction/inference for
certain tasks can be accomplished by feeding these representations
into inference blocks for downstream tasks. We claim our approach
can be used for general node-level prediction tasks that require
patterns to be extracted from dynamic social interaction networks.
We demonstrate this capability by considering the following three
tasks: detection lying people, dominant people, and nervous peo-
ple in a social interaction event. The specific inference blocks and
training objectives will be specified in Section 5.

3 PROPOSED MODEL
Our model temporal network-difussion convolutional network
(TNDCN) consists of two main components, Network Diffusion
of node attributes, and Set-Temporal Convolution-based hierarchi-
cal pooling over time, as shown in Figure 1. The obtained node
embeddings will be further fed into a simple task-driven output
block to either compute loss (during training) or make inference.
The loss is specified by tasks so we introduce it in Section 5.

3.1 Network Diffusion Component
Wepropose using network diffusion process tomost intuitivelymodel
the information flows carried by interactive behaviors in our dy-
namic network: given people’s personal traits in a certain snapshot
quantified by node attributes 𝑋 (0) ∈ R𝑁×𝑀 , the k-hop network
diffusion can be written as

𝑋 (𝑘) = (𝑊𝑇 )𝑘𝑋 (0) (2)

where𝑊𝑇 is the transpose of𝑊 . This process is further enhanced
by two sets of parameters:

Parameters 𝛽 for making or avoiding interactions. One spe-
ciality of social interaction networks is that the behavior to avoid
interactions could be very informative. For example, deceivers tend
to avoid gazing at others [32], and some deceivers may tend to be
abnormally quiet in front of others [41] due to their low-level self-
confidence. However, different phenomena could happen between
a follower and his leader [42]. So we consider graphs corresponding
to the original interaction networks and their complement graphs
simultaneously. Concretely, for each type of interaction network
with adjacency matrix 𝐴 1, we also consider the corresponding ad-
jacency matrix of the complement network𝐴 = 𝐼 −𝐴 where 𝐼 is the

1We assume the components of𝐴 are normalized within interval [0, 1].
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Figure 1: Temporal Network-Diffusion Convolution Network: an Illustration.

identity matrix. Then, we introduce another parameter 𝛽 ∈ [0, 1]
to merge these two networks to obtain a new adjacency matrix via

𝐴′ = 𝛽𝐴 + (1 − 𝛽)𝐴 = (2𝛽 − 𝐼 )𝐴 + (1 − 𝛽)𝐼 . (3)

Apparently, this parameter 𝛽 have physical implication. A greater 𝛽
suggests making interaction is more informative to the prediction
task, while a smaller 𝛽 emphasizes that avoiding interaction may be
the key clue. From now on, we will diffuse node attributes over the
random walk matrix derived from this parameterized network 𝐴′

based on (1), i.e., replace𝑊 in Eqn. 2 by𝑊 ′ = 𝐷 ′−1𝐴′. Admittedly,
using graph would lead to a densely connected network which
can lead to large computation cost in large graphs. However, this
issue would not appear here since dynamic social interactions in
our context can hardly involve people of more than hundreds in a
single interaction event.

Parameter Γ𝑘 for different-hop interactions. The model is now
to perform different-step network diffusion. By assigning a group
of learnable parameters {Γ𝑘 }𝑘≥0, where Γ𝑘 is a diagonal matrix for
the hop 𝑘 , we consider the transformation of initial node attributes
𝑋 (0) ∈ R𝑁×𝑀 based on network diffusion as

𝐻 =
∑
𝑘≥0

𝐻 (𝑘)Γ𝑘 =
∑
𝑘≥0

(𝑊 ′𝑇 )𝑘𝐻 (0)Γ𝑘 , 𝐻 (0) = 𝑓 (𝑋 (0) ) (4)

where 𝑓 (·) : R𝑁×𝑀 → R𝑁×𝑀′
could be as simple as identity

mapping (𝑀 ′ = 𝑀) or as complex as multi-layer perceptrons (MLP)
that properly transform and normalize initial node attributes. Here,
𝑀 ′ is the dimension of output channel. Γ𝑘 ∈ R𝑀′×𝑀′

provides the
weights for the 𝑘-hop diffusion. The corresponding 𝑞-th diagonal
component, denoted by 𝛾𝑘,𝑞 , is the weight for 𝑞’s output channel. In
practice, typically only the first several hops could be informative
so we may set a upper bound to the number of hops: 5 ∼ 10steps
provide good enough results in practice.

Note that the formulation (4) has many implications. Consider
the sequence {𝛾𝑘,𝑞}𝑘≥0 for any 𝑞 and suppose 𝑓 is identity map-
ping. From the perspective of graph spectral convolution, {𝛾𝑘,𝑞}𝑘≥0
corresponds to weights on different levels of the smoothness of
𝑞-th node attributes. Moreover, different fixed formulations of 𝛾𝑘,𝑞
also provide different types of ranks of nodes: 𝛾𝑘,𝑞 ∝ 𝛼𝑘 corre-
sponds to PageRank [31]; 𝛾𝑘,𝑞 ∝ ℎ𝑘

𝑘! corresponds to heat-kernel
PageRank [10]. Extensive feature engineering shows that different

formulations of ranks could be important signals to detect deceivers
or leaders among group of people [4, 5]. Our formulation based on
learnable parameters allows for more representation power to cover
multiple prediction tasks. Moreover, for model interpretation, as
𝑊 ′𝑇 is column stochastic, it will keep the ℓ1-norm of every column
of 𝐻 (𝑘) unchanged (with non-negative features) and thus naturally
hold normalizing property. Therefore, the value |𝛾𝑘,𝑞 | and the sign
of 𝛾𝑘,𝑞 are naturally interpreted as the effect of 𝑘−hop diffusion
of 𝑞-th node attribute to the final representation. Even when we
choose 𝑓 as MLP, decoupling parameters Γ𝑘 on diffusion and pa-
rameters on pure transformation of node attributes in 𝑓 (·) keeps
the effect of network diffusion distinguishable, which is useful for
model interpretation.

Note that there could be variants of (4) to further increase model
complexity and representation power. By adding nonlinear trans-
formation of each step𝐻 (𝑘) before letting it propagate, one may get
the model of graph convolution networks [23]. However, adding
non-linearity per step increases the difficulty for training, which
limits the steps of propagation to 2-3, and could simultaneously hurt
the interpretation of models. As our experiments do not show any
improvement based on non-linearity, a simpler model is preferred.
Similar gain by removing non-linearity has also been observed in
many recent literatures on graph neural networks [24, 43]. How-
ever, to the best of our knowledge, we are the first to show the
success of this manner to process dynamic networks.

3.2 Set-Temporal Convolution Component
To aggregate node features over time, we propose a method called
Set TCN (S-TCN) to handle the complex and long-term temporal
social interactions. As mentioned, there are two challenges in de-
signing the block: being able to handle a extremely long sequence
of snapshots because of the high time resolution, and being able to
capture local dynamics typically subtle and scattered randomly in
the whole time span. Correspondingly, our S-TCN block consists of
two components: multi-layer temporal convolution and set pooling.

Multi-layer Temporal Convolution. The input of this block is a
sequence of node features {𝐻𝑡 }1≤𝑡 ≤𝑇 where 𝐻𝑡 ∈ R𝑁×𝑀 denotes
the node features for each snapshot 𝑡 obtained via (4). The 𝑙-th



KDD MLG’20, Aug 24–27, 2020, San Diego, CA Yanbang Wang, Pan Li, Chongyang Bai, V.S. Subrahmanian, and Jure Leskovec

Figure 2: Receptive field of temporal convolution: The inter-
action happened at the two blue timestamps in layer 𝑙 is cap-
tured by the blue timestamps in layers 𝑙 + 1 and 𝑙 + 2 through
convolution operation.

temporal convolution layer is defined as the following:

𝑍
(0)
𝑡 = 𝐻𝑡

𝑍
(𝑙)
𝑡 = ReLu(𝑍 (𝑙−1)

𝑡 ∗𝐶 (𝑙)
𝑡 ) = ReLu(

∑
𝜏 ∈[1,𝑤 ]

𝑋𝑡−𝜏+1𝐶𝜏 )

𝑍
(𝑙)
𝑡 = max-pooling({𝑍 (𝑙)

2𝑡 , 𝑍
(𝑙)
2𝑡+1}), for 1 ≤ 𝑙 ≤ 𝐿

where ∗ is the convolution operator, {𝐶 (𝑙)
𝜏 }1≤𝜏≤𝑤 is the convolution

kernel,𝑤 is window size.
The number of layers 𝐿 typically depends on the time-scale of

interactions we want to extract patterns from. It is related to the
receptive field of convolution networks (See Fig. 2)). The success
of TCN in our setting may be due to its clear and flexible recep-
tive fields. If the size of max-pooling kernel is 2 as what we use
in the equation, then neurons in the last (𝐿-th) convolution layer
can perceive the signals with length 2𝐿 . The size of receptive field
can be set based on two important usage: (1) Signal Denoising. con-
volution kernels are widely known for their capability to function
as low-pass filters. By stacking different numbers of convolution
layers, we can explicitly tune the capability of the network for sig-
nal smoothing; (2) Temporal feature extraction from well-defined
"locality". By tuning the number of layers, one can actively search
for the optimal receptive field length to gather meaningful features.
Such length is also an important reference for us to understand
people’s interaction.

Given a proper depth of TCN 𝐿 ∈ [2, 4] to obtain a proper size
of receptive field, the length of the final layer could be very long
(≥ 50), because the original time series 𝑇 ≳ 1000 is long.

Set Pooling. As opposed to online social networks that often
show seasonal patterns, there are seldom periodical patterns in
offline social interaction networks. Consider eye contact in conver-
sion/meeting among a group of people. Informative patterns of in-
teractive behaviors of people are usually randomly scattered in the
long time span. Therefore, based on the local patterns captured by
TCN,we use set pooling over the obtained sequence {𝑍 (𝐿)

𝑡 }1≤𝑡 ≤𝑇 (𝐿)

to extract the message scattered within this long sequence. We ob-
serve that the following form is generally effective across different
applications: First, we impose max pooling (5) on {𝑍 (𝐿)

𝑡 }1≤𝑡 ≤𝑇 (𝐿)

to emphasize the critical local patterns; Then, we linearly merge the
output of max pooling into each𝑍 (𝐿)

𝑡 to let each𝑍 (𝐿)
𝑡 capture global

information; Finally, after a simple ReLu activation, we obtain the

output via mean pooling.

𝑍max = max-pooling1≤𝑡 ≤𝑇 (𝐿) (𝑍 ′
𝑡 ), 𝑍 ′

𝑡 = 𝑍
(𝐿)
𝑡 (5)

𝑍out = mean-pooling1≤𝑡 ≤𝑇 (𝐿) (ReLu(Θ1𝑍
′
𝑡 + Θ2𝑍max)) (6)

Note that the max pooling captures the essence of randomly scat-
tered patterns while the second step based on linear combination
and the mean pooling is found out to be useful to improve the
robustness of feature aggregation. Note that this set-pooling tech-
nique properly tailors Deep Sets [46] for our setting.

4 RELATEDWORK
The research related to our problem spans two broad areas:

Methods to Analyze Social Interactions. Lots of research has
been conducted to identify human behaviors and relationship dur-
ing social interactions such as leadership [8], dominance [5, 22],
friendship [9], and deception [4, 14]. These works focus on de-
signing task-specific features in short periods and aggregate them
to long-term feature vectors via statistical methods. The obtained
features are then fed into standard classifiers (e.g. SVM, Random
Forest). These engineered features, although shown to be powerful
in their corresponding tasks, are less general and often requires
specific domain knowledge in social science and psychology theo-
ries (e.g. visual dominance ratio [15], emotions and deception [41]).
Moreover, the hand-crafted features becomemore noisy when build-
ing upon raw features. To effectively aggregate features over the
long temporal domain, extensive statistical methods are employed
such as summation, median and variance [8, 14], histograms and
bag-of-words [4, 5]. These indifferentiable aggregations make po-
tential models untrainable. In contrast, due to our neural-network-
based module, we obtain a differentiable model that connects raw
networks directly to the social tasks and allows for an end-to-end
training. By taking advantage of this training procedure, the model
naturally learns the effect of interacting networks for various social
tasks without using extensive statistical analysis.

Representation Learning for Dynamic Networks. The success
of representation learning for dynamic social interaction networks
strongly depends on processing the interweaving high-dynamic
node attributes and interactions. So we first partition previous ap-
proaches to learn representation of dynamic networks into two
categories regarding whether dynamic node attributes can be pro-
cessed. We do not provide a detailed review of works unable to
take dynamic node attributes including [1, 11, 20, 29, 38, 39, 47, 48].
Works that were claimed to digest dynamic node attributes all work
on networks snapshots [21, 28, 35, 37]. They generally follow the
pipeline by first propagating node attributes of each network snap-
shot and then aggregating them over time. Works [21, 28, 37] use
graph convolution networks [23] for the first step while Sankar
et al. [35] leverages graph attention networks [40]. For the sec-
ond step, works [21, 28, 37] use RNN and its variants to aggregate
node representations, while Sankar et al. [35] uses self-attention
mechanism. However, all these approaches share the issue of lim-
ited memory capacity when #snapshots > 100. Moreover, despite
proposed to process dynamic node attributes, they have not been
evaluated in the setting with highly dynamic node attributes as
those in dynaminc social interaction networks.
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5 EMPIRICAL STUDY
5.1 Experiment Settings
Overview. Our proposed model is evaluated on three different
node-level prediction social tasks over 4 datasets:

(1) Dominance Detection: RESISTANCE-1 [6], ELEA [34];
(2) Deception Detection: RESISTANCE-2 [6];
(3) Nervousness Detection: RESISTANCE-3 [6];

Task (1) and (3) aims to identify the most dominant/nervous person
in a social interaction event happening between 3-8 people. Task
(2) aims to detect all the hidden liars in a social interaction event
happening between 5-8 people. Therefore, we consider Task (1), (3)
as a one-vs-rest classification problem, and consider Task (2) as a
binary classification problem.

In its original format, each dataset is a collection of videos. Each
video records a conversation whose duration ranges from around
5 to 30 minutes, with different conversation contexts, which we
will introduce slightly afterwards. We preprocess each video using
vision-based and audio-based techniques of various sources, which
for each conversation generates around 800-4500 dynamic network
snapshots (on 3 FPS, as described in Section 2.2). In the rest of this
section, we will explain the dataset background, ground-truth label
collection, feature preprocessing, as well as other implementation
details including baselines and model tuning.

Dataset: RESISTANCE-1, 2, 3.All three dataset are a collection of
videos and surveys recording people’s performance in a role-playing
party game called the Resistance: Avalon. Each game has 5 to 8
players secretly split into two rivaling teams before the game starts:
the resistance team ("good" people, Team A, accounting for about
70%) and the spy team ("bad" people, Team B, the rest 30%). Team B
know everyone’s real identity but Team A do not. Both teams’ goal
is to beat each other in the “missions” conducted by discussion and
election, which involves frequent deception behavior(presumably
only from Team B) and argument, query and persuasion (from all
parties). In order to persuade, very often people tend to be dominant
and avoid appearing nervous, Please see supplementary material2
for more background. The three dataset share about 50% videos in
common while for the rest they each differ slightly due to several
practical reasons such as label missing or mismatch.

Labels for RESISTANCE-1, 3 are generated by referencing sur-
veys taken by all participants after each game. The surveys take
the form of questionnaires, asking each participant to rate the dom-
inance and nervous level of the other people. We treat the median
score of each person (rated by others) as its ground truth score, ties
broken by further comparing the mean. Labels for RESISTANCE-2,
which are Team A & B’s identity of each game, are given by the
dataset. Considering the gaming rules, it is presumable that Team
B (spies) are essentially lying throughout the game.

Dataset: ELEA The dataset [34] is a widely used benchmark for
modeling and detecting personal traits such as dominance [5]. The
dataset can be accessed here3. In each video, 3-4 participants col-
laboratively performed a "winter survival task" by having peaceful
discussions. We perform dominance detection task on the dataset
as other labels are unavailable

2Supplementary material:https://bit.ly/36ipjoO
3ElEA dataset: https://www.idiap.ch/dataset/elea

Labels are generated in a slightly different way following the
protocols of [2, 5]: we are detecting more dominant people instead
of the most. This also provides a new angle of evaluation. There
are two categories of dominance scores: (1) perceived dominance
(PDom), which is scores rated by the game organizers who hosted
and monitored the game; (2) ranked dominance (RDom), which is
scores rated by game participants to each other. we assign binary
dominance labels to people by thresholding their dominance scores
by the median values of people in each video.

Feature Extraction. We extract the following social interaction
features from videos on frequency of 3 FPS using a combination of
toolkit:

(1) Emotion: intensity of eight emotions + two facial traits (smile,
open eyes) by Amazon Recognition;

(2) FAU: intensity of 17 facial action units using OpenFace [7];
(3) MFCC: voice features widely used in audio analysis [12];
(4) Speak Prob.: Probability a person is speaking estimated from

lip movement [17];
(5) Gazing Prob.: probability that each person looks at each

other players estimated from eye movement [3]. For each
person his Gazing Prob. towards other people sums up to 1.

Our dynamic social interaction network is constructed from the
last feature.

Output Layer & Loss.Asmentioned, we consider Task (2) a binary
classification problem, so the output block for processing each
person’s representation is a simple logistic regression instantiated
by a densely connected neural network layer plus the Sigmoid
nonlinearity.

For task (1) and (3) to select one out of a set 3-8 representations
we further use the following transformation: Let 𝑍𝑜𝑢𝑡 ∈ R𝑁×𝑒

taken from Eqn. 6 be the learned representation of all the people
in one interaction event, where 𝑁 ∈ [3, 8] is the number of people
ad 𝑒 is the representation length). The 𝑖-th people’s output logit is
given by:

𝑍𝑖 = 𝑍𝑖𝑊1 +Mean-pooling({𝑍𝑖 }1≤𝑖≤𝑁 )𝑊2, for 1 ≤ 𝑖 ≤ 𝑁 (7)

𝑌 = softmax(𝑍𝑊3) (8)

where𝑊1,𝑊2 ∈ R𝑒×𝑒 and𝑊3 ∈ R𝑒×1 are projection matrices whose
parameters are to be learned. We use cross entropy loss for all
tasks and back-propagate the errors to all aforementioned learnable
parameters for optimization.

Baselines. Our framework is compared with two sets of baselines.
The first set is task-specific baselines proposed uniquely for each
task:

• Dominance Detection: MKL [8], which is based on hand-
crafted features like voice pitch and speaking rate; two ver-
sions of the GDP [5] which primarily relies on their hand-
crafted feature called DomRank: GDP with random forest
classifier (GDP-RF), and GDP with multi-layer perceptron
classifier (GDP-MLP); DELF [5] also uses DomRank.

• Deception Detection: ADD [44] based on handcrafted mi-
cro facial expression and NLP features; TGCN-L [27] based
on gazing probabilities, and LiarRank [4] based on all the
features we used but aggregating them in a special manner;

https://bit.ly/36ipjoO
https://www.idiap.ch/dataset/elea
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Task No. and Task Dataset Dynamic Network Sequences Time Steps (Avg.) Nodes Interactions†

(1) Dominance Identification RESISTANCE-1 956 2, 514 4780 4.007 × 106

(1) Dominance Identification ELEA 21 1, 350 84 6.474 × 103

(2) Deception Detection RESISTANCE-2 2, 157 1, 800 10, 785 2.439 × 107

(3) Nervousness Detection RESISTANCE-3 1, 097 1, 800 5, 485 4.910 × 107

* †We count all the interactions with gazing probability ≥ 0.5.
Table 1: General statistics of the dynamic networks used for representation learning.

• Nervousness Detection: Facial Cues [19] based on facial ac-
tion units, Random Forest and Logistic Regression4;

In addition, to ensure fair comparison, we further pick for each
task the best reported baseline to further evaluate them on other
tasks. Furthermore, We add one more generic temporal GNN-based
model was SOTA on sequence modeling: GCN-LSTM [37]. It com-
bines graph convolutional network with LSTM. For more details
on features and aggregation schemes used by each baseline, please
see our supplementary material.

Model training. Following protocols of most baselines, we ran-
domly partition the total number of dynamic social interaction
networks in each dataset into 10 folds. Each time, a different 10% is
reserved for testing, and the rest for training. We use cross-entropy
loss and Adam optimizer to train our TNDCN model. Hyperparam-
eters are determined using grid search and their detailed values are
provided in supplementary material. The whole pipeline is imple-
mented in PyTorch. Following protocols of most previous work, we
report the average accuracy on test set by running the pipeline for
10 times using different random seed to initialize parameters.

5.2 Performance Comparison
Table 2 compares performance of our model and other baselines on
the three tasks. It shows that our model significantly outperforms
the strongest baselines in Task 2,3 and also achieves comparable
result with the strongest baseline on Task 1. Notice that our best
model achieves this with less than one-fifth parameters of DELF
and GDP. We also notice that our model has more significant gain
in the challenging tasks 2 and 3. The two tasks are challenging
essentially because they are both probing for something that the
interaction participants are purposely concealing. For such cases
we explain that effectively capturing the temporal cues is the key
to success. While almost all the baselines come with proper graph
convolution or careful feature engineering work, their process-
ing of temporal information falls insufficient, either mean pooling
(TGCN, Logistic., Random F.), Fisher Vector encoding (FacialCues),
histogram encoding (DELF), or many-to-one LSTM (GCN-LSTM).
Also notice the GCN-LSTM’s failure on most tasks, which shows
the insufficiency of temporal sequence modeling techniques based
on recurrent structures.

4Since very little previous literature exists on this task, we further implement two
baselines that use a simple classifier to process all our input features independently,
i.e. without any network-level operation

5.3 Model Interpretation
The linearity of parameters in network diffusion provides model
interpretation. Next, we investigate these parameters and explain
the induced social insights.

Interpretation I: Balancing Weight 𝛽 . Recall from Section 3.1
that 𝛽 is the learnable parameter that directly controls the relative
importance of proactive interaction versus avoidance of interac-
tion. Figure 3 displays how the 𝛽 converges during the training
(initialized to 0.5, i.e. neutral). For each task we ran multiple times

Avoiding
Interaction

Seeking
Interaction

Figure 3: Different convergence behaviors of 𝛽 during
training, 95% confidence intervals shaded. Trained on
RESISTANCE-1,2,3 respectively.
by introducing small perturbation to 𝛽’s initialization. The figure
shows that the parameter exhibits very different convergence be-
havior across different tasks. In particular, the deception detection
task 𝛽 significantly drops to around 0.2, which indicates that avoid-
ance of interaction may be much more important than contacts
in detecting deception. Interestingly, this phenomenon coincides
with findings from a psychological study [32] on eye movement of
people in various contexts. It is also quite understandable that dom-
inant people are more easily identified with their aggressive way of
reaching out to people (rather than escape to do so). Nervous people,
on the other hand, seem to be identified with a mixture of the two
extremes. The analysis on 𝛽 shows its prediction power and high
value to understanding human’s avoidance of social interactions.

Interpretation II: Diffusion Weights {Γ𝑘 }. Recall from Equa-
tion 4 that {Γ𝑘 }0≤𝑘≤𝐾 is a sequence of diagonal matrices where
Γ𝑘 ∈ R𝑀′×𝑀′

contains the weights corresponding to𝑀 ′ features’ 𝑘-
hop diffusion. Therefore, when we finish training we would obtain
𝐾 + 1 diffusion weights for each of the𝑀 ′ features. Analyzing these
diffusion weights provides us with important insights of how the in-
teraction network actually helps shape the original features during
the diffusion. Fig. 4 displays such weights for four of the features’
(here diffusion steps 𝐾 = 10) after being trained on the nervousness

https://bit.ly/36ipjoO
https://bit.ly/36ipjoO
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Group
Task Dominance-R* Dominance-E* Deception Nervousness

Task-specific
Baselines

MKL 0.879 Aran et al. 0.657/0.598 FAU 0.608 R. Forest 0.678
GDP-MLP 0.917 Okada et al. 0.677/0.686 TGCN-L 0.550 Logistic 0.493
GDP-RF 0.878 Humans 0.686/- ADD 0.632 - -

"Universal"
Baselines†

DELF 0.889 DELF 0.765/0.677 DELF 0.641 DELF 0.721
LiarRank 0.827 LiarRank 0.674/0.612 LiarRank 0.665 LiarRank 0.731
FacialCues 0.746 FacialCues 0.702/0.665 FacialCues 0.591 FacialCues 0.733
GCN-LSTM 0.821 GCN-LSTM 0.732/0.585 GCN-LSTM 0.562 GCN-LSTM 0.629

Ours TNDCN 0.923±0.009 TNDCN 0.774±0.038/
0.726±0.022 TNDCN 0.689±0.021 TNDCN 0.769±0.023

* Dominance-R and Dominance-E were done on RESISTANCE-1 and ELEA respectively.For Dominance-E, results on both PDom and RDom labels are reported.
Table 2: Performace comparison on three tasks: detecting dominance, deception and nervousness.

detection task. The diffusion weights have been normalized such

Figure 4: Diffusion step weights of different features for the
task of identifying the most nervous person in an interac-
tion setting, 95% confidence interval shaded.

that the 0-hop weight is 1. First, we observe that the 0-hop weight
is significantly the largest, meaning that the original node features
are very important to prediction. Therefore, the role of graph diffu-
sion in this task can be roughly regarded as a fine-tuning process
over the original features. Second, a clear contrast between the
bottom two features is observed. While both of them can propagate
quite long via the interactions, the way diffusion modifies the orig-
inal features are quite different. We attribute such distinction to
the two features’ different real-world implications: node in-degree
feature in a gazing network snapshot can be interpreted as the
attention one received from other people at the corresponding mo-
ment, and thus indicates the interaction engagement level of that
person. In contrast, the node self-loop feature can be interpreted
as the probability that the person looked at his/her own screen at
the corresponding moment, making the person look introverted
and preservative. The different practical meanings entailed by the
feature determines they are propagated via the interaction network
in distinctive manners. Finally, the "smile" and "happy" emotion
seem to be able to diffuse two steps while not beyond.

5.4 Ablation study
Ablation study on Task 1 is further conducted on RESISTANCE-1 to
evaluate the usefulness of TNDCN building blocks independently.

No. Replacement Dominance

1 Original 0.923
2 S-TCN → LSTM 0.758
3 S-TCN →Mean Pooling 0.842
4 Diffusion → None 0.829
5 Diffusion → GCN-1* 0.844
6 Diffusion → GCN-2 0.889
7 Diffusion → GCN-4 0.784
8 Diffusion → GCN-6 0.701
9 Set 𝛽 = 1 0.889

* GCN for 1 layer, similar hereafter.
Table 3: Ablation and comparison study
with deception detection task (metric:
Mean Accuracy).

As shown by table 3, Eval. 2-3 further verify RNN’s insufficiency on
handling both extremely long time sequence and weak local dynam-
ics. Interestingly, the very simple mean pooling can significantly
outperform RNN and achieve close result even when compared
with our set pooling technique. Eval. 4-8 focus on the graph-level
techniques. Eval. 4 shows the importance of using network for
prediction. Eval. 5-8 indicates the usability of GCN despite its seri-
ous decay because of over-smoothing and too many nonlinearities
when going deep. In contrast, our network diffusion can propagate
as long as 10 hops without significant decay in performance.

5.5 Further Scope Study
While we claim that TNDCN is especially helpful to deal with in-
teraction sequences that are extremely long and high-frequent, one
interesting question to ask is how it will perform if the sequence is
relatively short and the dynamics are less frequent? We investigate
this problem by further running TNGCN on CIAW [18], a dataset
recording more than 92 people’s timestamped proximities (of up
to 1.2 meters) in a workplace over 20 days. The goal is to infer
each person’s department based solely on their interaction data.
Notice that there is only one dynamic network, which we partition
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into only 20 snapshots. Since no previous works were done on we
focus on comparing with generic temporal GNN models. Please see
supplementary material for more details of the settings and results.
Our conclusion is that our model is still able to perform quite well
even in this special scenario. We attribute this to the high flexibility
of our S-TCN module to deal with sequences of various lengths.

6 CONCLUSION
In this work, we introduced a new neural-network-based represen-
tation learning model, TNDCN, which is particularly designed for
dynamic social interaction networks. Dynamic social interaction
networks contain highly dynamic node attributes with interactions
with duration, which makes previous dynamic network embedding
approaches not applicable. Our TNDCN model contains a network
diffusion block that is capable of extracting patterns from complex
interweaving of highly dynamic node attributes and interaction.
It also leverages combination of TCN and set pooling that may
learn the subtle and local patterns of social interations randomly
scattered in a long time span. TNDCN has been evaluated on three
node-level prediction social tasks outperformed all previous base-
lines. The learned coefficients of TNDCN also give interesting social
insights. Overall, TNDCN provides social scientists a powerful tool
to automatically analyze social interactions to solve social tasks
and extract knowledge for social science.
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