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ABSTRACT
Graphs are extensively used to model real-world complex
systems. An edge in a graph can model pairwise relation-
ships. However, multiway relationships (connections be-
tween three or more vertices) are common in many complex
systems such as cellular process, image segmentation, and
circuit design. A graph edge cannot model multiway rela-
tionships. A hypergraph, which can connect more than two
vertices, is thus a better option to model multiway relation-
ships. A large-scale hypergraph analysis has the potential
to find useful insights from a complex system and assist in
knowledge discovery. Currently a limited number of hyper-
graphs exists that are representative of real-world datasets.
Moreover, real-world hypergraph datasets are small in size
and inadequate to incorporate future needs. A graph gen-
erator that can produce large-scale synthetic hypergraphs
can solve the above mentioned problems. In this paper, we
present a scalable parallel hypergraph generator (HyGen)
based on the Message Passing Interface (MPI) standard. To
generate hypergraphs, HyGen takes the following param-
eter values as inputs: i) number of vertices, ii) number of
hyperedges, iii) number of clusters, iv) vertex distribution, v)
hyperedge distribution, vi) local cluster cardinality, and vii)
global cluster cardinality. We have demonstrated that HyGen
can generate hypergraphs of various sizes in a scalable fash-
ion. HyGen takes approximately four minutes to generate
a hypergraph with 4.8 million vertices, 1.6 million hyper-
edges, and 800 clusters using 1,024 processes on a leadership
class computing platform. Our strong and weak scaling ex-
periments on supercomputers demonstrate that HyGen can
quickly create large-scale hypergraphs in a parallel manner,
thus providing a useful capability for hypergraph analysis.

KEYWORDS
Hypergraph, MPI, C++, OLCF, Rhea

1 INTRODUCTION
A graph is a powerful mathematical abstraction comprising
of a set of objects called vertices and the links that connect
some pairs of objects called edges [15]. Real-world complex
systems are often represented and analyzed as graphs. This
approach has shown tremendous success across many dis-
ciplines including biology, economics, engineering, physics,

(a) Graph. (b) Hypergraph.

Figure 1: In this figure, we present regular graph and hyper-
graph examples. Figure 1(a) shows a graph example with 5
vertices and 10 edges. Figure 1(b) provides a hypergraph ex-
ample with 5 vertices and three hyperedges.

and the social sciences. The advancement of modern tech-
nologies has resulted in the explosive growth of graph data [9,
18]. However, one of the limitations is that an edge in a graph,
which connects only two vertices, can only model pairwise
relationships. Inmany applications such as cellular processes,
social networks, and circuit design, a cluster of vertices rep-
resents multilateral relationships. An example is a network
with online social communities called folksonomies, in which
trilateral interactions occur among consumers, resources,
and annotations [23]. In the same way, group interactions
between multiple genes are responsible for numerous physi-
ological phenomena in biology disciplines. It is essential to
model group interactions (or multilateral relations) of mul-
tiple genes to understand diseases and discover cures [13].
As mentioned earlier, graph edge cannot model multilateral
relationships (see Figure 1(a)). However, a high-dimensional
graph called a hypergraph (see Figure 1(b)) can model com-
plex multilateral relationships [23].
A hypergraph is a collection of vertices and hyperedges

(edges in hypergraphs) where a hyperedge can connect any
number of vertices. By generalizing regular graphs, hyper-
graphs showed prominent research benefits in numerous
analyses such as clustering, classification, and prediction [23].
Although analyzing the structural properties and dynamics
of large-scale complex systems in the form of hypergraphs
is crucial for improving our knowledge of complex systems,
only a small number of real-world hypergraph datasets is
available to aid in this type of analysis. Moreover, real-world
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hypergraph datasets are small in size and insufficient to in-
corporate future requirements. An enormous amount of data
collection and processing efforts are required to create a
large-scale real-world hypergraph, which is tedious and la-
borious work. Furthermore, it is difficult to collect real-world
datasets because of privacy reasons [17]. One possible so-
lution is hypergraph generators that can quickly produce
synthetic but realistic large-scale hypergraphs with millions
of vertices and edges. Although several hypergraph analysis
software are available, they do not support large-scale hyper-
graph generation [2, 7, 21]. Hence, we present a scalable and
parallel hypergraph generator (HyGen) in this paper. HyGen
is implemented in C++ programming language by following
object-oriented design principles. We used Message Passing
Interface (MPI) standard for our parallel implementation.
Our experimental results show that HyGen can create large-
scale hypergraphs faster in a parallel manner. We employed
the Oak Ridge Leadership Computing Facility’s (OLCF) Rhea
cluster for our study [5].

2 HYGEN ARCHITECTURE
Overview
We developed a hypergraph generator by leveraging the Tri-
Data hypergraph generation approach mentioned in [22],
where a hypergraph generator creates random hypergraph
incidencematrices. The TriData hypergraph generator is con-
ceptually similar to the stochastic block model for graphs [10,
14]. Our proposed hypergraph generator, HyGen, generates
non-uniform hypergraphs. In a non-uniform hypergraph,
the cardinalities of the hyperedges vary [8]. HyGen was
developed in the C++ programming language using object-
oriented design principles. In the following, we discuss the
architecture of HyGen.

Preliminaries
A hypergraph H can be formally denoted as a tuple H =
(V ,E), where V is the set of elements, called vertices, and
E represents non-empty subsets of V , called hyperedges [3,
13]. We can employ an incidence matrix to represent the
hypergraph. In the following, we present an incidence matrix
representation of the hypergraph shown in Figure 1(b).

Hi, j =

©­­­­­«
1 0 1
1 0 1
0 1 1
0 1 1
0 1 1

ª®®®®®®¬
In the incidence matrix Hi, j , vertices are represented by

matrix rows, while hyperedges are represented by matrix
columns. Also, in the incidence matrixHi, j , nonzeros (NNZs)

in i, j means vertex i belongs to hyperedge j [22]. For exam-
ple, two 1s in the first column of the incidence matrix Hi, j
represents a and b vertices of the red cluster in Figure 1(b).
The concept of cluster in HyGen is inspired by the research
presented in [16, 19].

Hypergraph Generation
Get Input Parameters: The HyGen takes the following input
parameters when generating a hypergraph: i) the number
of vertices, ii) the number of hyperedges, iii) the number
of clusters, iv) the vertex distributions, v) the hyperedge
distributions, vi) the local cluster cardinalities, and vii) the
global cluster cardinality.
The number of vertices (parameter i) and number of hy-

peredges (parameter ii) are the maximum number of vertices
and hyperedges a generated hypergraph can contain. A hy-
pergraph is a suitable model for cluster analysis. To ensure
that a HyGen incidence matrix contains clusters, HyGen
takes the number of clusters information as an input (param-
eter iii). The vertex distribution, hyperedge distribution, local
cluster cardinalities, and the global cluster cardinality are
used to create clusters in the incidence matrix. The number
of vertices in clusters are calculated using the total number
of vertices (parameter i) and vertex distributions (parameter
iv). Similarly, the hyperedge distributions (parameter v) and
the number of hyperedges (parameter ii) are used to com-
pute the number of hyperedges that the clusters contain. The
local and global cluster cardinalities determine the density
of the local and global clusters. The total number of values
available in the vertex distributions (parameter iv), the hy-
peredge distributions (parameter v), and the local cluster
cardinalities (parameter vi) is the same as the total number
of clusters (parameter iii). In Figure 2, the “Generate Hyper-
graph” portion shows an example of a hypergraph incidence
matrix, which contains 100 vertices, 100 hyperedges, and
five clusters. The first four blocks represent local clusters
and the last block depicts a global cluster (read the matrix
from left to right). The global cluster contains multiple local
clusters. For instance, the blue cluster in Figure 1(b) can be
considered as a global cluster.
HyGen requires large input files to generate scalable hy-

pergraphs. Hence, we implemented a program in the C++
language to create input files. This program uses the number
of vertices, the number of hyperedges, and the number of
clusters to produces an “input.txt” file, which contains the
vertex distributions, the hyperedge distributions, the local
cluster cardinalities, and the global cluster cardinality. In
addition, the input file also contains the number of vertices,
the number of hyperedges, and the number of clusters. The
vertex distributions, the hyperedge distributions, and the lo-
cal cluster cardinalities are created using a random number
generator in the range 0.05-0.15. We normalized the values
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Figure 2: HyGen Architecture.

and checked that the sum of the distribution values is less
than or equal to 1. We used 0.05 for the global cluster cardi-
nality. We chose local and global cluster cardinality values in
the range 0.05-0.15 because we do not want to make clusters
too dense. We implemented HyGen using the MPI standard
to generate hypergraph incidence matrices in parallel. The
root MPI process (MPI process 0) reads input parameters
from the input file.

Compute Cluster Parameters: HyGen generates a hypergraph
incidence matrix in a distributed or parallel fashion. One MPI
process can generate one complete cluster (the block shown
in the “Generate Hypergraph” box in Figure 2) or a portion of
a cluster, which depends on the number of High Performance
Computing (HPC) resources employed for HyGen execution.
After reading the input parameters, HyGen computes each
complete cluster’s vertices, hyperedges, and density. Next,
HyGen calculates the number of partial or complete clusters
that each MPI process will generate, the clusters vertices,

hyperedges, and density. The incidence matrix to be con-
structed is partitioned column-wise 1-D across the available
processors.

Generate Hypergraph: In the generate hypergraph step, Hy-
Gen informs each MPI process of the number of partial or
complete clusters that need to be generated, the number of
vertices and hyperedges that each cluster contains, and the
cluster density. Each MPI process generates a portion of the
hypergraph incidence matrix based on the information pro-
vided. MPI processes use a Bernoulli random variable with a
success probability equal to or less than the cluster density to
randomly determine nonzero values in the incidence matrix.
In Figure 2, the “Generate Hypergraph” box shows that five
MPI processes (processes 0-4) are generating five complete
clusters in a parallel manner. Each dot represents a nonzero
value in the incidence matrix.

Gather Hypergraph: After the hypergraph generation, the
root MPI process (MPI process 0) collects the hypergraph sub-
matrices generated by different MPI processes. Next, the root
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MPI process creates the complete hypergraph incidence ma-
trix by combining all the hypergraph submatrices collected
from different MPI processes (see “Gather Hypergraph” box
in Figure 2).

Permute Hypergraph: In Figure 2, the “Gather Hypergraph”
box shows that the hypergraph produced by HyGen nicely
contains all the clusters (or groups), which is not realistic. For
example, in a streaming scenario (e.g., a network of Twitter
followers), a stream of vertices arrives continuously so that
all the clusters are not initially available. Hence, to simulate
a real-world streaming scenario, we permute the incidence
matrix by shuffling the positions of vertices and hyperedges.
Now the incidence matrix looks like the “Permute Hyper-
graph” box in Figure 2. Although the vertices and hyperedges
of five clusters are available in the incidence matrix, they are
not available together as a group. It is possible to retrieve
the clusters from the permuted hypergraph using tensor de-
composition methods (see [8, 11]). A detailed discussion of
tensor decomposition is outside the scope of this paper.

Figure 3: This figure presents hypergraph representation
types [13]. In the figure, v1, v2, v3, v4 denotes vertices and
he1, he2, he3, and he4 represent hyperedges.

Represent Hypergraph: HyGen represents a hypergraph as
a bipartite graph and also as a hyperedge graph. The bi-
partite representation provides the data in a two-column
format. The first value is the vertex and the second is the
hyperedge. One instance of bipartite representation provides
only partial information about a hyperedge. The hyperedge
representation provides a complete hyperedge information
at a given time. In the hyperedge representation, the first
value denotes the hyperedge and the other values are all
the vertices belonging to that hyperedge. A pictorial view
of the bipartite and hyperedge representations is presented
in Figure 3, where v1, v2, v3, v4 means vertices and he1,
he2, he3, and he4 represent hyperedges. We need 11 rows in
the incidence matrix to represent Figure 3’s bipartite graph.
However, only four rows are required to represent Figure 3’s

hyperedge graph. Users can specify the output format (bi-
partite or hyperedge) before generating the hypergraph. We
developed a C++ iterator to traverse the generated hyper-
graph. The bipartite representation is commonly used, as it
allows us to use a generated hypergraph in many dense and
sparse matrix computation tools for further analysis. The
hyperedge representation helps us find clusters quickly in a
hypergraph.

Store Hypergraph: HyGen stores generated hypergraphs in
a persistent storage space. Bipartite graphs are stored as a
Matrix Market (MM) exchange format whereas hyperedge
graphs are stored in text format.

3 EXPERIMENTAL EVALUATIONS
In this section, a detailed numerical evaluation of HyGen is
provided.

HPC Hardware Environment
We employed the Oak Ridge Leadership Computing Facil-
ity’s (OLCF) Rhea high performance computing cluster for
HyGen implementation and experimental evaluation. Rhea
is a Linux cluster containing 521 compute nodes and is di-
vided into two partitions. The first partition is called “Rhea
Partition,” which contains 512 Central Processing Unit (CPU)
nodes. Each node contains two 8-core 2.0 GHz Intel Xeon
processors with Intel’s Hyper-Threading (HT) Technology
and 128 GB of main memory. The second one is called “GPU
Partition,” which contains 9 Graphics Processing Unit (GPU)
nodes. Each node has 1 TB of main memory and two NVIDIA
K80 GPUs in addition to two 14-core 2.30 GHz Intel Xeon
processors with HT Technology. Atlas, a Lustre-based high
performance file system at the OLCF is connected to the
Rhea HPC resource [5].

HPC Software Environment
HyGen is implemented in the C++ programming language
with MPI standard. We used G++ 6.2.0 and Open MPI 3.1.4
for HyGen compilation and execution. Our input file cre-
ation program is also implemented in the C++ programming
language. We utilized the Slurm batch scheduler available
in the OLCF’s Rhea HPC resource. We developed a Slurm
script that configures and submits jobs to Rhea for parallel
execution [6].

Scalability Measurements
Scalability quantitatively measures the performance of a par-
allel application as the number of processes executing the
application are increased. Strong scaling and weak scaling
are the two types of scalability measurements. In strong scal-
ing, the problem size is fixed but the number of processes
are increased to achieve the speedup. Strong scaling aims
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Table 1: This table presents the strong scaling experimental setup, total NNZs generated from each experiment, and output
files information.

Experiment
Name Vertices Hyperedges Clusters Compute Node MPI

Processes Total NNZs Bipartite Output
File Size (in GB)

Hyperedge Output
File Size (in GB)

S1 800000 2400000 12000 1 16 208505627 2.80 1.40
S2 800000 2400000 12000 2 32 208481602 2.80 1.40
S3 800000 2400000 12000 3 48 208485963 2.80 1.40
S4 800000 2400000 12000 4 64 208471624 2.80 1.40
S5 800000 2400000 12000 6 96 208480729 2.80 1.40
S6 800000 2400000 12000 8 128 208497776 2.80 1.40
S7 800000 2400000 12000 16 256 208488077 2.80 1.40

Table 2: This table presents the weak scaling1 (the number of vertices < the number of hyperedges) experimental setup, total
NNZs generated from each experiment, and output files information.

Experiment
Name Vertices Hyperedges Clusters Compute Node MPI

Processes Total NNZs Bipartite Output
File Size (in GB)

Hyperedge Output
File Size (in GB)

W1 60000 200000 1000 1 16 2388362 0.03 0.02
W3 200000 600000 3000 2 32 16042887 0.20 0.10
W5 400000 1200000 6000 4 64 56189594 0.74 0.37
W7 800000 2400000 12000 16 256 208488077 2.80 1.40
W9 1600000 4800000 24000 64 1024 786869455 12 5.40

Table 3: This table presents the weak scaling2 (the number of vertices > the number of hyperedges) experimental setup, total
NNZs generated from each experiment, and output files information.

Experiment
Name Vertices Hyperedges Clusters Compute Node MPI

Processes Total NNZs Bipartite Output
File Size (in GB)

Hyperedge Output
File Size (in GB)

W2 200000 60000 300 1 16 5437372 0.06 0.03
W4 600000 200000 1000 2 32 23855054 0.30 0.16
W6 1200000 400000 2000 4 64 71276112 0.94 0.48
W8 2400000 800000 4000 16 256 239667974 3.30 1.70
W10 4800000 1600000 8000 64 1024 859300720 13 6.30

to solve a fixed problem faster. In weak scaling, the prob-
lem size increases proportionally as the number of processes
increase [4]. Weak scaling tries to solve increasingly larger
problems. Suppose we have a problem size x , which is exe-
cuting in the main memory with p processes. In the above
scenario, the strong scaling takes x

p memory per process [20].
However, weak scaling takes x memory per process. Strong
scaling addresses the question, “How much does parallel exe-
cution decrease the run time of a problem?” [1]. Weak scaling
addresses the question, “While problem size increases, does
the application solve the problem in a feasible time with
additional processes” [1, 12].

Experimental Setup
We conducted strong and weak scaling experimentations
with our HyGen hypergraph generator. For strong scaling,
we generated hypergraphs with 800,000 vertices, 2,400,000
hyperedges, and 12,000 clusters. We used MPI processes 16,
32, 48, 64, 96, 128, and 256 for parallel execution. Our strong

scaling input parameters (experiment names, vertices, hy-
peredges, clusters, compute nodes, and MPI processes) are
available in Table 1. We divided weak scaling experimen-
tations into two groups. In the first group, the number of
vertices are smaller than the number of hyperedges. We
called it “Weak Scaling1.” In the second group, the number of
vertices are higher than the number of hyperedges, named
“Weak Scaling2.” Table 2 and 3 present input parameters for
“Weak Scaling1” and “Weak Scaling2.” We generated five hy-
pergraphs each for “Weak Scaling1” and “Weak Scaling2.”
In “Weak Scaling 1,” the first hypergraph (experiment

name W1) was generated with 60,000 vertices, 200,000 hy-
peredges, and 1,000 clusters. Sixteen MPI processes were
used to conduct the experiment. We used 200,000 vertices,
600,000 hyperedges, 3,000 clusters, and 32 MPI processes for
the second experiment (named W3). The third hypergraph
(experiment name W5) was created with 400,000 vertices,
1,200,000 hyperedges, and 6,000 clusters, with 64 MPI pro-
cesses used. We created a hypergraph with 800,000 vertices,
2,400,000 hyperedges, and 2,000 clusters, and used 256 MPI
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processes in experiment W7. Finally, the hypergraph gen-
erated in experiment W9 includes 24,000 clusters, 4,800,000
hyperedges, and 1,600,000 vertices, with 1,024 MPI processes
employed.
In “Weak Scaling 2,” the first hypergraph (experiment

name W2) contained 200,000 vertices, 60,000 hyperedges,
and 300 clusters, with 16 MPI processes executed. The sec-
ond hypergraph (experiment name W4) contains 600,000
vertices, 200,000 hyperedges, and 1,000 clusters, and was
executed with 32 MPI processes. The third hypergraph (ex-
periment name W6) comprised of 1,200,000 vertices, 400,000
hyperedges, and 2,000 clusters. The third hypergraph ex-
periment was conducted with 64 MPI processes. The fourth
hypergraph experiment was executed with 256 MPI pro-
cesses, which generated a hypergraph with 2,400,000 ver-
tices, 800,000 hyperedges, and 4,000 clusters. The fifth hyper-
graph (experiment name W10) contains 4,800,000 vertices,
1,600,000 hyperedges, and 8000 clusters. We employed 1,024
MPI processes to generate the fifth hypergraph.

Results
We conducted seven strong scaling experiments (experiment
names: S1-S7). Each experiment generated more than 208
million NNZs. The total number of NNZs generated by each
experiment is provided in Table 1 (see “Total NNZs” column).
We present strong scaling experimental results in Figure 4.
Figure 4(a) shows strong scaling communication times. The
first experiment (S1) with 16 MPI processes took 0.44 second
as a communication time. The second experiment (S2) took
a little less time (0.40 second) than the first experiment. The
third (S3), fourth (S4), fifth (S5), and sixth (S6) experiments
took more communication times compared to the second
experiment. The third experiment took ≈ 0.41 second, the
fourth experiment took 0.41 second, the fifth experiment
took 0.43 second, and the sixth experiment took 0.44 sec-
ond. The last experiment (S7) with 256 MPI processes had
the highest communication time of 0.55 second. Although
communication time available in Figure 4(a) vary somewhat,
the differences are not statistically significant.

We report strong scaling computation times in Figure 4(b),
which shows that computation times decreases as more re-
sources (MPI processes) are used for execution. The first
experiment (S1) with 16 MPI processes had the highest com-
putation time (123.47 seconds). The sixth experiment (S6),
with 128 MPI processes, took the lowest computation time
(122.99 seconds). The second experiment, with 32 MPI pro-
cesses took, 123.24 seconds. The third experiment, with 48
MPI processes, took 123.21 seconds. The fourth experiment,
with 64 MPI processes, needed 123.17 seconds. The fifth ex-
periment, including 96 MPI processes, had 123.12 seconds.
Finally, the seventh experiment, with 256 MPI processes,
took 123.04 seconds.

We present strong scaling IO time in Figure 4(c) and 4(d).
Here, IO time means hypergraph file writing time. Figure 4(c)
displays the bipartite IO time. The figure shows that the sec-
ond experiment (S2), with 32 MPI processes, took the highest
bipartite IO time of 1,268.82 seconds. The sixth experiment
(S6), with 128 MPI processes, took the lowest bipartite IO
time of 1,197.81 seconds. Figure 4(c) shows that the difference
between the first (S1) and second (S2) experiments’ bipartite
IO times is large. Next, for the third (S3), fourth (S4), fifth
(S5), and sixth (S6) experiments, the bipartite IO time de-
creases compared to the second experiment. We observe a
slight bipartite IO time increase in the seventh (S7) exper-
iment. Figure 4(d) shows that all the experiments’ (S1-S7)
hyperedge IO times are significantly lower than the bipartite
IO time mentioned in Figure 4(c). This is because hyperedge
representation contains a lower number of rows in the inci-
dence matrix compared to the bipartite representation. As
in Figure 4(c), Figure 4(d) also shows that the second experi-
ment (S2), with 32MPI processes, took the highest hyperedge
IO time (106.06 seconds) and that the sixth experiment (S6),
with 128 MPI processes, took the lowest hyperedge IO time
(103.41 seconds). Both Figure 4(c) and Figure 4(d) show the
disparities among the experiments’ (S1-S7) runtime. Cur-
rently, we are investigating this time discrepancy issue. We
believe by applying load balancing techniques, we will be
able to improve the strong scaling results in the future. All
the strong scaling experiments’ (S1-S7) bipartite output files
are ≈ 2.80 GB in size (see Table 1, the “Bipartite Output File
Size (in GB)” column) and hyperedge output files are ≈ 1.40
GB in size (see Table 1, the “Hyperedge Output File Size (in
GB)” column).
We report the weak scaling1 experimentation results in

Figure 5, which shows that the communication 5(a), com-
putation 5(b), bipartite IO 5(c), and hyperedge IO 5(d) times
increased across the experiments (W1,W3,W5,W7, andW9).
Figure 5(a) shows that the first experiment (W1), with 16
MPI processes, took the lowest communication time of 0.012
second and that the fifth experiment (W9), with 256 MPI
processes, took the highest time of 2.76 seconds. Although
we observed an increase across all the experiments’ commu-
nication times, most of the experiments’ (W1, W3, and W5)
communication times were less than 1

2 second, the fourth
experiment’s (W7) communication time was a little over 1

2
second, and the last experiment’s (W9) communication time
was less than 3 seconds. Figure 5(b) illustrates that the first
experiment (W1), with 16 MPI processes, took the minimal
computation time of 0.78 second and that the last experiment
(W9), with 1,024 MPI processes, took the maximal computa-
tion time of 240.78 seconds. The first three experiments’ (W1,
W3, and W5) computation times were less than a minute.
The fourth (W7) experiment’s computation time was slightly
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(a) Strong scaling: Communication
time.

(b) Strong scaling: Computation
time.

(c) Strong scaling: Bipartite IO time. (d) Strong scaling: Hyperedge IO
time.

Figure 4: Strong scaling experimentation results.

(a) Weak scaling1: Communication
time

(b) Weak scaling1: Computation
time

(c) Weak scaling1: Bipartite IO time (d) Weak scaling1: Hyperedge IO
time

Figure 5: Weak scaling1 experimentation results.

(a) Weak scaling2: Communication
time

(b) Weak scaling2: Computation
time

(c) Weak scaling2: Bipartite IO time (d) Weak scaling2: Hyperedge IO
time

Figure 6: Weak scaling2 experimentation results.

more than 2 minutes, and the final experiment’s computation
time was a little over 4 minutes. Figure 5(c) demonstrates
that 16 MPI processes (W1) took the lowest bipartite IO time
of 14.42 seconds and that 1,024 MPI processes (W9) took
highest bipartite IO time of 4,559.14 seconds. We observed
that weak scaling1’s hyperedge IO times are significantly
lower than the bipartite IO times. Figure 5(d) shows that the
first experiment (W1), with 16 MPI processes, took the low-
est hyperedge IO time (1.62 seconds) and fifth experiment
(W9) with 1,024 MPI processes took highest hyperedge IO
time (388.49 seconds). All the experiments’ hyperedge IO
times were less than 7 minutes. We provide the weak scal-
ing1 experiments’ (W1, W3, W5, W7, and W9) NNZs as well
as bipartite output file size and hyperedge output file size
information in Table 2. The largest hypergraph generated
from weak scaling1 experiments contains 786,869,455 NNZs.

Similar to the weak scaling1 experiments, the weak scal-
ing2 experiments’ communication 6(a), computation 6(b),
bipartite IO 6(c), and hyperedge IO 6(d) times are increased
across the experiments (W2, W4, W6, W8, and W10). The
experiment W10 took the maximal communication time of
2.17 seconds. Most of the experiments’ (W2, W4, W6, and
W8) communication times were less than 1 second (see Fig-
ure 6(a)). Also, the experiment W10 took the highest com-
putation time of 241.12 seconds. Most of the experiments’
(W2, W4, W6, and W8) computation times were less than
3 minutes (see Figure 6(b)). Figure 6(c) shows that the first
experiment (W2), with 16 MPI processes, took the lowest bi-
partite IO time (32.24 seconds) and that the fifth experiment
(W10), with 256 MPI processes, took the highest bipartite
IO time (4,963.60 seconds). The experiment with 1,024 MPI
processes (W10) had the highest hyperedge IO time, which
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was 421.70 seconds. Most of the weak scaling2 experiments’
(W2, W4, W6, and W8) hyperedge IO times were less than 2
minutes.

4 CONCLUSION AND FUTUREWORK
In this paper, we discussed a scalable parallel hypergraph
generation framework called HyGen. First, we provided a
brief hypergraph background in the “Introduction” section.
Next, we presented a detailed HyGen architecture discussion
in the “HyGen Architecture” section, which explains HyGen
parameters as well as hypergraph generation, permutation,
and representations. Finally, we presented our experimental
results in the “Experimental Evaluation” section. Only a lim-
ited number of parallel hypergraph generators are available
to this date and none can match the scalability features of Hy-
Gen. We believe HyGen will be useful for understanding the
interesting properties of very large-scale hypergraphs. In the
future, we will implement a machine learning-based hyper-
graph generator, that will learn the structures of real-world
hypergraphs to generate realistic massive-scale hypergraphs.
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