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ABSTRACT
We study the problem of actively learning the vertex labels of a

graph, assuming the classes form geodesically convex subgraphs,

which is related to linear separability in the Euclidean setting. The

main result of this paper is a novel query-efficient active learning

algorithm with label-independent upper bounds on the number of

queries needed to learn all labels. For that, we use shortest path

covers and provide a logarithmic approximation for the subproblem

of computing a shortest path cover of minimum size. We extend

the approach to arbitrarily labeled graphs using a convexity-based

selection criterion. Finally, we discuss whether the convexity as-

sumption holds on real-world data and give some first preliminary

results on citation and image benchmark datasets.
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1 INTRODUCTION
This work introduces a new, purely combinatorial approach for

active node classification on graphs based on the notion of geodesic
graph convexity. In classical Euclidean settings, learning becomes

easy when we assume that the labeled classes form convex regions

in the space, i.e. they are linearly separable, which allows building

efficient algorithms, giving performance guarantees, and staying

practically relevant, see e.g. the work of Dasgupta et al. [2009].

Recently, Seiffarth et al. [2019] and de Araújo et al. [2019] have

started to explore convexity assumptions in graph-based semi-

supervised settings, aiming to achieve similar benefits as in Eu-

clidean space. Analogous to the Euclidean setting, the authors as-

sume that the classes form (geodesically) convex subgraphs, instead

of convex regions in R𝑛 . Geodesic convexity is a generalization of

the regular notion of convexity in Euclidean space. A subgraph is

convex if it is closed under taking shortest paths, i.e. any shortest

path having endpoints in a convex subgraph does not leave the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MLG’20, August 2020, Virtual Event
© 2020 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

subgraph. In many practical settings, like disease spreading and

community detection tasks, it seems reasonable to suppose that

a shortest path having related endpoints will traverse through a

region of similar data points.

We use this assumption to get a provably query-efficient active

learning algorithm and turn it into a practical method.

In the following sections, we start by introducing the necessary

background in convexity theory and discuss our new active learning

algorithm. Then, we turn it into a practically efficient version based

on a greedy selection criterion. Finally, we discuss the practical

relevance of the convexity assumption and show some preliminary

first results on citation and image benchmark datasets.

Related work. The idea of using binary search for querying tasks

was often studied before [Afshani et al. 2007; Dasarathy et al. 2015;

Emamjomeh-Zadeh et al. 2016; Gärtner and Garriga 2007; Nowak

2009] and is a central part of our approach. Missura and Gärtner

[2011] studied active learning on graphs with convex classes for

the special case of directed acyclic graphs, whereas we consider

general weighted graphs. For an introduction to convexity spaces

and geodesic graph convexities, we refer the reader to the works

of Kay and Womble [1971], van De Vel [1993], and Pelayo [2013].

Auer and Cesa-Bianchi [1998] were one of the firsts using convex-

ity spaces in the learning context. Shortest path covers, our main

algorithmic tool, were studied before in a non-learning setting by

Pan and Chang [2006] and Fitzpatrick [1997].

2 QUERYING CONVEX GRAPH PARTITIONS
Let 𝐺 = (𝑉 , 𝐸) be a directed or undirected graph with labels

𝜆 : 𝑉 → {0, 1} and possibly weighted edges 𝑤 : 𝐸 → R≥0, where
the vertices𝑉 correspond to data points. The edges 𝐸 together with

the weights𝑤 encode structural relationships between the vertices.

The goal is to iteratively query as few vertices as possible, while at

the same time predicting the labels of the remaining vertices with

small error. We assume a noise-free oracle, thus querying a vertex

𝑣 always returns the correct label 𝜆(𝑣).
The weights 𝑤 induce a shortest path distance on the vertices,

corresponding to the weighted length of any shortest path between

two vertices. The diameter of a graph is the maximum number of

edges in any shortest path. To achieve a query-efficient algorithm

we will assume, similar to linear separability in Euclidean space,

that each of the classes corresponds to a non-overlapping convex

subgraph of𝐺 . This means that the labeled subgraphs form a convex
partition of the graph. Deciding whether a graph admits such a

partition is an interesting problem on its own and NP-hard [Artigas

et al. 2011]. Geodesic graph convexities and the classical Euclidean

one are indeed special cases of abstract convexity spaces on general

set systems [van De Vel 1993].
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Intuitively, due to the lack of connecting straight lines as in R𝑛 ,
connecting shortest paths are used to define convexity on graphs.

To formalize this, let us define the convex interval 𝐼 (𝑥,𝑦) of two
vertices 𝑥 and 𝑦 using the set of all shortest paths P in 𝐺 :

𝐼 (𝑥,𝑦) =
⋃
𝑃 ∈P

{𝑉 (𝑃) | 𝑃 has 𝑥 and 𝑦 as its endpoints} ∪ {𝑥,𝑦},

where𝑉 (𝑃) denotes the vertex set of the path 𝑃 . For a subset of ver-
tices 𝑋 ⊆ 𝑉 , we use the shorthand notation 𝐼 (𝑋 ) = ⋃

𝑥,𝑦∈𝑋 𝐼 (𝑥,𝑦).
We say a subgraph 𝐺 ′ = (𝑉 ′, 𝐸 ′) of 𝐺 is (geodesically) convex, if
𝐼 (𝑉 ′) = 𝑉 ′

.

The main benefit of assuming the classes to be convex is that it

greatly reduces the number of possible labelings of a single short-

est path. Either both endpoints of the path have the same label,

implying the whole path must have exactly this label, or they are

different and the label changes at exactly one edge.

This leads to our main algorithmic result. For that, let us define

shortest path covers. A set S ⊆ P of shortest paths, whose vertices

jointly cover all vertices 𝑉 of the graph,

⋃
𝑃 ∈S 𝑉 (𝑃) = 𝑉 , is a

shortest path cover. Having such a cover reduces the problem of

inferring the graph’s labels to binary search on each path to find

the edge where the labels change. This yields an upper bound on

the number of needed queries to infer all the labels of the graph.

This simple idea can be generalized to the multi-class setting and

results in the following theorem.

Theorem 1. For any weighted graph𝐺 = (𝑉 , 𝐸) labeled according
to a convex 𝑟 -partition with a shortest path cover S and diameter 𝑑 ,
O(|S|𝑟 log𝑑) queries are needed to correctly infer all vertex labels of
𝐺 .

Proof. We go through each path in S one by one. We spend

2 queries to get the labels of the endpoints of the path. If they

are equal, we predict all the labels of the path with this label and

proceed with the next path.

Otherwise, for 𝑟 = 2, there is exactly one edge where the labels

change. We find it with binary search using O(log𝑑) queries, which
yields the correct labels for the whole path.

For 𝑟 > 2, we fix one endpoint and its corresponding class. Due

to the convexity assumption, there is one edge partitioning the

path into the fixed class and all other classes. Thus, we can treat

all remaining classes as a single convex class on the path by itself.

We perform the same binary search as in the 𝑟 = 2 case to find the

edge where the fixed class ends. We iterate this until all edges with

label changes are found with at most 𝑟 − 1 binary searches.

Overall, summing up the queries made on all paths in S gives

us the bound. □

Given the bound of Theorem 1, we are naturally interested in

a shortest path cover of minimum size tightening the bound. The

hardness of computing such a cover is an open problem [Manuel

2018] and previously there were no known approximation algo-

rithms. We achieved an O(log𝑑)-approximation using the classical

greedy algorithm for the set-cover problem [Chvatal 1979]. The

main idea is to iteratively select a shortest path covering the max-

imum number of not yet covered vertices. The details are in the

appendix.

The strength of this bound is that it does not depend on the labels,

but solely on the unlabeled graph structure. This is different from

most previous bounds, which for example depend on the size of

the number of edges between the classes [Afshani et al. 2007; Blum

and Chawla 2001]. Thus, given the convexity assumption holds,

this allows to upper bound the number of needed queries before

even starting the active learning scheme. Moreover, the approach

described in Theorem 1 does not need to know the number 𝑟 of

classes in advance, as the binary search dynamically continues, as

long as there could be a new class left.

2.1 Greedy budgeted approach
One drawback of the described theoretical querying scheme is that

it queries one path with binary search until the end before switching

to the next path. In practical situations a more adaptive and global

scheme is preferable.

Indeed, always bisecting the path with the largest region of

yet unlabeled vertices and stopping early after 𝑚 queries gives

us an exponentially decreasing upper bound on the prediction

error of O
(
𝑒
− 𝑚

|S|𝑟
)
. This behavior is typical for active learning-

based bounds and is one of the main theoretical benefits of active

approaches compared to regular passive bounds, usually decreasing

with Ω
(
1

𝑚

)
, see for example the work of Dasgupta [2006].

To make the approach more efficient we adapt classical tech-

niques from probabilistic active learning, like selecting the most in-
formative point [Settles 2012], to our setting. Thus, we query the ver-
tex 𝑣 whose label would maximally increase the number of known

labels, for example by applying the convex interval 𝐼 (·). We do not

only gain the label 𝜆(𝑣) but also all labels in 𝐼 (𝐶∪{𝑣}) \𝐼 (𝐶), where
𝐶 ⊆ 𝑉 are the already queried vertices belonging to the same class

as 𝑣 . More generally, having queried the vertices 𝐶1, . . . ,𝐶𝑟 ⊆ 𝑉 ,

belonging to the classes 1 to 𝑟 respectively, the criterion becomes:

max

𝑣∈𝑉
1

𝑟

𝑟∑︁
𝑖=1

|𝐼 (𝐶𝑖 ∪ {𝑣}) \ 𝐼 (𝐶𝑖 ) |, (1)

where ties are resolved uniformly at random.

The problem with such a pure greedy approach is that we would

lose our upper bound of Theorem 1. To combine the strengths, of

querying in a global and exploitative manner while still keeping

the performance guarantee, we perform the maximization in Equa-

tion (1) of the greedy criterion not over all vertices in the graph,

but only over a certain subset of candidates. In particular, we let

each path of a computed shortest path cover iteratively provide a

candidate vertex. The candidates are simply mimicking the query-

ing based on the theoretical scheme with binary search: First, select

the endpoints of the path as candidates and if their labels differ

also the vertices yielded by binary search, i.e. the one bisecting the

region of unknown labels.

We propose to use this combined querying scheme also for ar-

bitrarily labeled graphs and justify it empirically in the following

section.

3 EXPERIMENTS
We first discuss whether the convexity assumption holds in practi-

cal situations. As in the Euclidean setting, real-world data is noisy
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Citeseer Cora MNIST Coil

properties citation, unweighted citation, unweighted image, 5-NN image, 10-NN

|𝑉 | 2110 2458 1957 1089

|𝐸 | 3757 5209 3981 4913

classes 6 7 10 2

|S| 667 646 269 245

convex labeled paths in S 535/667 (80%) 540/646 (84%) 223/269 (83%) 205/245 (84%)

Table 1: Overview of the used benchmark citation and image
nearest neighbor (NN) datasets. For each dataset, this table
contains the number of vertices, edges, classes, and the size
of the shortest path cover computed with the discussed ap-
proximationmethod. In the last row, the number of shortest
paths labeled according to a convex partition in the shortest
path cover is given.

and typically does not follow the convexity assumption completely,

which is the equivalent of assuming linearly separable classes. How-

ever, it seems reasonable to assume that not all but most of the

shortest paths that have endpoints in one class do not leave the

subgraph representing the class.

Indeed, our algorithm does not depend on the whole graph to

be labeled according to a convex partition. As long as the currently

queried path is by itself partitioned into convex subpaths by the

classes, the algorithm will not make an error on this particular path.

3.1 Testing the convexity assumption
We evaluate the convexity assumption on four benchmark datasets

and report some promising findings in Table 1. We use the citation

datasets Citeseer and Cora as described byMa et al. [2013], a random

sample of MNIST [LeCun 1998] with 200 images of each digit and

the binary version of the Coil image dataset by Chapelle et al. [2006].

Both citation datasets are unweighted. For the image datasets, we

construct the 𝑘-nearest-neighbor similarity graph with 𝑘 = 5 for

MNIST and 𝑘 = 10 for Coil and assign the Euclidean distance to

the edges. Finally, we take the largest connected component of

each of these graphs. Further information about the test graphs is

summarized in Table 1.

For each graph, we compute a shortest path cover S with the

discussed greedy method. The covers were constructed without

knowledge of the labels and not fine-tuned. To evaluate the con-

vexity assumption we check for each path in the covers, whether

the classes form convex subpaths of the path. On all datasets, more

than 80% of the paths fulfill this property. Consequently, our simple

algorithm described in Theorem 1 will make perfect predictions on

at least 80% of the paths, even though the convexity assumption is

not fulfilled on the whole graph.

3.2 Query evaluation
Having discussed the practical relevance of the convexity assump-

tion, we present some first preliminary results regarding query

performance.
1

We compare our budgeted greedy approach to passive random

sampling. Both approaches query 1 to 50 vertices in the graphs

and afterwards use the multi-class extension [Bengio et al. 2006]

1
A Python implementation can be found at https://github.com/mthiessen/convex-

active-graph-learning

Figure 1: Accuracy vs. number of queries for shortest-path-
cover-based querying (spc) and random sampling. The aver-
age accuracy over ten runs is shown with error bars repre-
senting the standard deviation.

of label propagation [Zhu and Ghahramani 2002] to predict the

remaining labels. The accuracy is computed over the whole graph.

We repeated each run 10 times. The results are shown in Figure 1.

On the Citeseer dataset, active querying does not improve the

accuracy on average compared to random sampling. The variance

is however quite high. This suggests that a more carefully chosen

selection criterion than Equation (1) could stabilize and improve

this behavior. The performance on MNIST is even worse, as random

sampling outperforms our approach on average by roughly 5% for

the larger number of queries.

We achieve the most promising results on the Cora graph. Our

approach outperforms random sampling on average by roughly

25% in the beginning and still by 10% for 30-50 queries. On Coil,

our approach also performs about 10% better. Additionally, our

approach does not only perform on average better on the latter

two but also produces significantly more stable results especially

towards the end.

4 CONCLUSION
In this paper, we discussed the theoretical and practical advantages

of the geodesic convexity assumption for graphs. We designed a

novel query-efficient active learning algorithm and achieved a label-

independent query upper bound. Building on this, we developed a

practical greedy selection criterion.

We have shown that a local version of the assumption, looking at

single shortest paths, is often true on various benchmark datasets.

This is the reason for the promising first results, even though the

convexity assumption regarding the whole graph, which was used

to design our algorithms, is typically not fulfilled in practice.

Still, there are multiple drawbacks to our method. The main one

is scalability, as computing convex intervals takes up to O
(
|𝑉 |3

)

https://github.com/mthiessen/convex-active-graph-learning
https://github.com/mthiessen/convex-active-graph-learning
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and shortest path covers O
(
|𝑉 |4

)
time. To apply our methods on

larger graphs, we will consider fast approximations, for example,

based on landmarks [Potamias et al. 2009]. Additionally, our current

assumption is too restrictive for real-world datasets. Generalizations

to noisy labels and allowing each class to form multiple convex

regions in the graph instead of just one will be considered as future

work.

A O(log𝑑)-APPROXIMATION FOR THE
MINIMUM SHORTEST PATH COVER
PROBLEM

The general set-cover problem asks for a minimum number of sets

𝐵1, 𝐵2, · · · ∈ B to cover a ground set 𝐴, i.e.
⋃

𝑖 𝐵𝑖 = 𝐴. Let 𝑘 be the

size of the largest set in B. The greedy strategy iteratively selects

the set in B covering the largest number of yet uncovered elements

in 𝐴. It achieves a (1 + ln𝑘)-approximation for the minimum set

cover problem [Chvatal 1979].

To apply it to our setting, where the ground set 𝐴 is the set of

vertices 𝑉 , the family of subsets B is the set of shortest paths P,

and 𝑘 is one larger than the diameter 𝑑 of the graph, 𝑘 = 𝑑 + 1, we

need to compute a shortest path covering the largest number of

not yet covered vertices.

We have to assume that the weights𝑤 are strictly positive, be-

cause otherwise in the case of all weights𝑤 being zero, computing

such a shortest path covering a maximum number of vertices is

equivalent to computing a Hamiltonian path and thus NP-hard

[Garey and Johnson 1979].

It is not possible to simply enumerate all shortest paths and select

the one covering the largest number of vertices, as there might be

exponentially many shortest paths in the graph.

Still, this can be achieved by modifying the weights𝑤 (𝑎, 𝑏) for
each directed edge (𝑎, 𝑏) in the graph to 𝑤∗ (𝑒) = (𝑤 (𝑒), 0) if 𝑏 is

already covered and (𝑤 (𝑒),−1) otherwise.We can assume the graph

to be directed, because an undirected graph can be transformed

into an equivalent directed graph by duplicating each edge {𝑥,𝑦}
to (𝑥,𝑦) and (𝑦, 𝑥) of the same weight. Sorting the weights 𝑤∗

lexicographically results in the following behavior. Two paths of

the same𝑤-weight, but with one path covering a larger number of

not yet covered vertices, have different weights according to 𝑤∗
,

where the one covering more vertices is shorter. We can apply the

generalized Dijkstra’s algorithm of Sobrinho [2001] to compute a

𝑤∗
-shortest path, which thus gives us a𝑤-shortest path that covers

the largest number of not yet covered vertices.

Iteratively computing such𝑤∗
-shortest paths results in a shortest

path coverS being atmost logarithmically larger than theminimum

shortest path cover S∗
: |S| ≤ (1 + ln(𝑑 + 1)) |S∗ |.
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