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ABSTRACT
Since its inception, Facebook has become an integral part of the
online social community. People rely on Facebook to connect with
others and build communities. As a result, it is paramount to protect
the integrity of such a large network in a fast and scalable manner.
In this paper, we present our efforts to protect various social media
entities at Facebook from people who try to abuse our platform.
We present a novel Temporal Interaction EmbeddingS (TIES) model
that is designed to capture rogue social interactions and flag them
for further suitable actions. TIES is a supervised, deep learning,
production ready model at Facebook-scale networks. Prior works
on integrity problems are mostly focused on capturing either only
static or certain dynamic features of social entities. In contrast, TIES
can capture both these variant behaviors in a unified model owing
to the recent strides made in the domains of graph embedding and
deep sequential pattern learning. To show the real-world impact
of TIES, we present a few applications especially for preventing
spread of misinformation, fake account detection, and reducing ads
payment risks in order to enhance Facebook platform’s integrity.
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1 INTRODUCTION

People use online social media such as Facebook to connect with
family and friends, build communities, and share experiences ev-
ery day. But the rapid growth of social media in recent years has
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introduced several challenges. First is the rise of fake and inauthen-
tic accounts, which pose potential threats to the safety of online
communities. Second is the rise of threatening and/or disparaging
content such as hate-speech, misinformation, bullying, terrorist
propaganda, etc. These can occur both through authentic as well as
inauthentic accounts. In Q1-2019 Facebook acted on 4 million and
2.6 million pieces of content for violating hate-speech and bullying
policies, respectively [2, 3]. We broadly refer to these as social media
integrity challenges.

There is a volume of research on fake account detection in on-
line social media. Graph propagation techniques to detect spams
over user-following graphs have been proposed in [24, 32]. Inte-
gro [8] focuses on predicting “victims” using user-level features
and performs a random walk style algorithm on a modified graph.
There have been other works that focus on utilizing the graph
structure, by clustering and identifying cohorts of malicious actors
that share common IP addresses and other common networking
properties [29, 31, 33]. Researchers in [20] create graphs based
on user activities in order to detect fake engagements. Similarly,
hand-designed features based on activity has been used in [9].

There is also a volume of research on content-based integrity
problems [5, 6]. Natural language processing techniques have been
widely used for hate-speech and cyberbullying detection [10, 14, 23,
26, 34]. Simple token and character-level n-grams are included in
the feature set by [10, 26, 34]. Word topic distribution using Latent
Dirichlet Allocation has been used by [14] to detect cyberbullying
on Instagram. Alternatively, paragraph embedding for hate-speech
detection was proposed in [23]. Dinakar et al. [17] presented a
knowledge-based approach utilizing domain specific assertions in
detecting hate-speech. In [14, 15] authors combine image and other
media features with text, essentially incorporating context through
multimodal information. User meta-data such as the violation his-
tory, number of profane words in prior comments, gender, etc. have
also been shown predictive [22, 36]. More recently, deep-learning
has been used to fight child pornography [25], hate-speech [13, 27],
and misinformation [12, 16].

The majority of previous approaches tackling integrity chal-
lenges are static in nature. More specifically, they utilize engineered
user-level, graph, or content features that do not alter in time. How-
ever, entities on social media (accounts, posts, stories, Groups, Pages,
etc.) generate numerous interactions from other entities over time
(see Figure 1). For instance,

• posts get likes, shares, comments, etc. by users, or
• accounts send or reject friend requests, send or block mes-
sages, etc. from other accounts.

These temporal sequences can potentially reveal a lot about entities
to which they belong. The manner in which fake accounts behave
is different from normal accounts. Hateful posts generate different
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(a) user-user interactions for fake account detection. (b) post-user interactions for hate-speech detection.

Figure 1: Entities on social media interact with each other in numerous ways. Interactions generated by bad entities differ
from normal entities. We can enhance the platform integrity by capturing/encoding these interactions.

type of engagements compared to regular posts. Not only the type
but also the target of these engagements can be informative. For
instance, an account with history of spreading hate or misinforma-
tion sharing or engaging positively with a post can be indicative of
a piece of questionable content.

In this work, we present Temporal Interaction EmbeddingS
(TIES), a supervised deep-learning model for encoding interac-
tions between social media entities for integrity purposes. As its
input, TIES takes a sequence of (source, target, action) in addition
to miscellaneous source and target features. It then learns model
parameters by minimizing a loss function over a labeled dataset.
Finally, it outputs prediction scores as well as embedding vectors.
There has also been other works on temporal interaction networks
and embeddings. Recently and simultaneously to our work, JODIE,
a novel embedding technique to learn joint user and item embed-
dings from sequential data, was proposed [18]. While these authors
apply their algorithm to the problem of detecting banned accounts
from Wikipedia and Reddit, which is similar to the problem of fake
account detection, their work is different from ours. For example,
they apply two recurrent neural networks to learn joint user-item
embeddings based on temporal interaction sequences, while we
just want to learn the embedding for the source entities. In order to
leverage the target entities’ current state, we also use pre-existing
embeddings or application specific feature sets which JODIE does
not. A notable limitation of JODIE and other existing approaches
is scalability. On Facebook, we have billions of accounts and tril-
lions of interactions per day. Therefore, scalability and reasonable
computational costs are of utmost importance.

The remainder of the paper is organized as follows. We begin in
Section 2with the problem formulation and description of themodel
architecture. In Section 3, we discuss a couple of integrity case
studies and results. Finally, we conclude the paper with discussions
in Section 4.

2 PROTECTING FACEBOOK SOCIAL MEDIA
INTEGRITY

We first start by providing a mathematical formulation for solving
various social media integrity problems encountered on Facebook’s
platform and subsequently present the TIES model in detail.

2.1 Integrity Problem Formulation
At Facebook, we are interested in verifying the integrity of vari-
ous social media entities such as accounts, posts, Pages, Groups,
etc. As mentioned earlier, in this work we exploit the interaction
information between such entities to determine their integrity. We
refer to an entity under inspection as source (denoted by u) while
other interacted entities are referred as targets (denoted by v). Sup-
pose at time t , the source entity u interacts with target entity vt
by taking an action1 at such as receiving a friend request, sending
an event invite, or liking a post. We might also have source and
target specific features ft at each timestamp (e.g. text or image
related features or time gaps between consecutive actions). As a
result, we will have a sequence of temporal interactions represented
by I = {(u,v1,a1, f1), (u,v2,a2, f2), . . . , (u,vT ,aT , fT )}. Based on
the interaction sequence I, TIES determines the integrity of u, for
instance, how likely is the entity to be a fake account or a hate-
ful post. We do so by training a supervised model using a labeled
training set {(Ik , lk )}Nk=1, where lk is the ground truth label for the
sequence Ik . Thus, in our framework solving social media integrity
is formulated as a sequential or temporal learning problem.

2.2 TIES Model
At the core of the TIES model, there are two types of embeddings:
1) graph based and 2) temporal based. These embeddings are con-
stantly trained to capture the ongoing behavior of the entities. We
first make use of a large-scale Facebook graph to capture the static
behavior of the entities. Subsequently, these graph-based embed-
dings are used to initialize the temporal model that captures the

1Actions could originate from either source or target.



Figure 2: Facebook social media entity graph. To capture the
static behavior of entities, Pytorch-BigGraph system is used
to compute graph embeddings. These vectors are treated as
pre-trained embeddings for the TIES model.

dynamic behavior of the entities. This is a distinguishing feature of
the TIES that has not been explored before in prior integrity works.
We now describe these parts in more detail.

2.2.1 Graph Based Embeddings. One of the novel components
of TIES model is making use of a large scale graph structure formed
by various social media entities beside the dynamic interaction
information. In social networks, entities may be connected to each
other through friend relationships or belong to the same groups.
Such prior knowledge can capture the ‘static’ nature of various
entities. It should be noted that even though these static relations
(such as friend relationships, group membership, etc.) are not truly
static, they vary at a much lower pace compared to other more
‘dynamic’ interactions (such as post reactions, commenting, etc.).
Past studies mainly focus either on static or dynamic behavior but
do not account for both in the model. Moreover, the scale of the
graph structure considered in this work is much greater than in
previous works and thus presents unique challenges.

Let G = (V ,R,E) denote a large-scale multi-relations graph
formed by social media entities (see Figure 2). Here, V denotes
a set of nodes (i.e., entities), R is a set of relations and E denotes
a set of edges. Each edge e = (s, r ,d) consists of a source s , a rela-
tion r , and a destination d , where s,d ∈ V and r ∈ R. In order to
learn graph embeddings for entities in the graph G, we utilize the
PyTorch-BigGraph (PBG) [19] distributed system due to its scala-
bility to billions of nodes and trillions of edges. This is essential for
solving our real-world needs.

Suppose θs ,θr ,θd are trainable parameter vectors (embeddings)
associated with source, relation, and destination. PBG assigns a
score function f (θs ,θr ,θd ) to each triplet, where higher values are
expected for (s, r ,d) ∈ E as opposed to (s, r ,d) < E. PBG optimizes
a margin-based ranking loss (shown below) for each edge e in the
training data. A set of judiciously constructed negative edges e ′ are
obtained by corrupting e with either a sampled source or destination

node

ℓ =
∑
e ∈G

∑
e ′∈S ′e

max{ f (e) − f (e ′) + λ, 0}

Here λ is the margin hyperparameter and S
′

e = {(s ′, r ,d)|s ′ ∈

V } ∪ {(s, r ,d ′)|d ′ ∈ V }. Finally, entity embeddings and relation pa-
rameters are learned by performing mini-batch stochastic gradient
descent. More details about these embeddings can be found in [19].
The PBG-trained embeddings on a large-scale graph with billions
of nodes and trillions of edges are fed as pre-trained source and
target embeddings to the temporal model, to which we now turn.

2.2.2 Temporal Based Embeddings. Temporal based embeddings
are designed to capture the information encoded in the sequence
of interactions I as discussed in Section 2.1. Consider all the in-
teractions of a source entity u in a given window of time period.
Suppose at t time, source entity u interacted with target entity vt
by performing an action at . This whole interaction at time t is
encoded into a single feature vector as follows (see Figure 3):

(1) Action Features: Action a, for instance commenting or lik-
ing, is represented by a fixed size vector that will be learned
during the training process and initialized as random (also
referred as trainable embedding). Depending upon the task,
the same type of action can learn different embeddings and
can have multiple meanings based on the context. As men-
tioned earlier, one can also encode the direction information
in action by splitting it into two directional events as a−send
or a−receive.

(2) Source Entity Features: Source entity u is represented
by a pre-trained embedding. More specifically, we utilize
graph-based embeddings obtained from the PBG system
as described in Section 2.2.1. One can further finetune the
pre-trained embeddings in the TIES model, but this is only
possible if the number of unique source entities is not greater
than a few million (due to computational cost).

(3) Target Entity Features: Similar to the source entity, the
target entity v is also represented by a pre-trained embed-
ding (if available) or by a trainable embedding (if problem
dimension allows i.e., limited to few millions). Multiple types
of pre-trained target embeddings can be utilized in the same
TIES model.

(4) Miscellaneous features: We can also encode useful time-
related information such as rate of interaction via∆t = ti+1−
ti (may need to normalize the range appropriately). Rate of
interaction is an important signal for detecting abusiveness.
Other features like text or images can also be plugged into
TIES in similar manner.

All these features are packaged into a single feature vector by
performing an aggregation operation.We obtain a single embedding
capturing the full interaction information in

xt = e(u) ⊙ e(vt ) ⊙ · · · ⊙ ∆t ,

where ⊙ is a aggregation operator, e(·) represents the entity em-
bedding and xt is the resultant embedding obatined at time t . In
our case, we simply choose concatenation as the aggregation oper-
ation. Next, we pass the sequence of these temporal embeddings



Figure 3: TIES Model Architecture: At each time step, the (source, target, action) triplet is converted into a feature vector that
consists of trainable action embeddings, pre-trained source and target embeddings, and other miscellaneous features. The
feature vectors are then fed into a deep sequential learning model to capture the dynamic behavior of entities.

i.e., X = [x1, x2, ..., xT ] ∈ RT×d where T is sequence length and
d is the input dimension, into a sequence encoder to yield TIES
embedding z ∈ Rh as follows

z = T IESEncoder (X).

TIES Encoder: It yields our final TIES embedding by capturing
the temporal aspect present in the sequence of interaction embed-
dings. Our general purpose sequence encoder has the following
components:

(1) Sequence Encoding Layer: This encoding layer transforms
the input into a hidden state that is now aware of the inter-
action context in the sequence

H = SeqEnocder (X).

Here, H ∈ RT×h is the hidden-state matrix with h as the
dimension. We consider three types of sequence encoding
layer in our TIES framework with varying training and in-
ference costs and benefits:

(a) Recurrent neural networks: RNNs such as long short
term memory networks (LSTM) are quite capable of cap-
turing dependencies in a sequence [35]. But they are in-
herently slow to train.

(b) Convolutional neural networks: 1D sequence CNNs
can also capture sequential information but are limited to
local context and need to have higher depth for capturing
global context, depending on the task in hand [7].

(c) DeepSet: When inputs are treated as sets and their or-
der does not matter, we can use Deepsets as sequence
encoders [21]. Here, we first pass each input in a sequence
through an MLP (small neural network) and then perform
a sum operation followed by another MLP layer, yielding
a single embedding layer.

Besides the application in-hand and deployment challenges,
the choice among RNN, CNN and DeepSet depends on the
tradeoff between performance and inference time. Due to its
recurrent nature, RNN is expensive while DeepSet has the
lowest inference time in production.

(2) Attention Layer: Attention Layer [30] can be used to weigh
the embeddings differently according to their contribution
towards specific tasks. Attention values can also be used
to visualize which part of the interaction sequence is being
focused more than the others and that can provide more
interpretable outcome. The output is given by

Z = Attention(H),

where Z ∈ RT×h is the attention layer output.
(3) Pooling Layer: A final pooling layer such as mean, max, or

sum operation is used to yield a single embedding for the
whole interaction sequence. Here, we have

z = Poolinд(Z)

where z ∈ Rh is the output of the pooling layer and serves
as the final TIES embeddings.



2.2.3 Loss Function. Parameters of TIES are learned based on
the task labels associated with each training sequence Ik , k =
1, 2, ...,N . For instance, in case of abusive account detection we
have a training set of sequences labeled as either abusive or benign
and binary cross-entropy can be considered as the loss function. In
general, TIES embedding z is fed to the feed-forward neural network
for learning the parameters in end-to-end fashion as follows,

ℓ =

N∑
i=1

L(Xi , f (zi ))

where ℓ is the overall task loss, L is the loss function, f (·) is the
feed-forward neural network, Xi ∈ R

T×d is the ith input training
sequence, zi ∈ Rh is the corresponding learned TIES embedding
and N is the total number of training samples. Depending upon
the task, different metrics are taken into consideration and class-
imbalance issue is handled by weighting the classes properly. This
completes the overall description of the TIES model architecture.

3 FACEBOOK INTEGRITY APPLICATIONS
AND RESULTS

In this section, we briefly describe our implementation of TIES,
introduce some of its integrity applications, and use cases. These
applications cover a wide range of issues from content-based to
account-based.

3.1 Production Implementation
Our framework is built on PyTorch, more specifically TorchScript to
streamline productionization [4]. Training is generally performed
on GPUs and when needed we use DistributedDataParallel pro-
vided by PyTorch for multi-GPU training. Inference on the other
hand is performed in parallel on up to 200 machines (CPUs suffice
during inference). To maintain relative consistency in embedding
vectors overtime, we use warm-start—that is, initializing the model
with a previously trained one. For our experiments, we use Adam
optimizer with learning rate 0.0005 and clip gradients at 1. To mit-
igate overfitting we use dropout with probability 0.1. Finally, we
weight positive samples such that the datasets are balanced.

3.2 Preventing Spread of Misinformation
False news can spread rapidly, either intentionally or unintention-
ally, by various actors. Therefore, proactive identification of mis-
information posts is a particularly important issue. It is also very
challenging as some of such posts contain material that are not
demonstrably false but rather are designed to be misleading and/or
reflecting only one side of a story.

Some of the existing techniques train classifiers on carefully
crafted features [28]. There are also approaches that detects “ru-
mors" based on users’ reactions to microblogs overtime [12, 16].
To the best of our knowledge, users’ histories (captured via graph-
embeddings described in 2.2) and their interactions with posts
have not been used to detect misinformation systematically. More
recently, researchers at Facebook have devised a multimodal tech-
nique for identifying misinformation, inspired by the work of Kiela
et al. [11]. In the multimodal model, separate encoders are learned

Figure 4: 2-dimensional TSNE projection of the TIES em-
beddings for misinformation. Clearly, the misinformation
posts (yellow) have a different distribution than the regular
posts (purple).

for various content modalities such as image, post-text, image-
embedded-text, comments, etc. The encoded features are then col-
lected into a set and pooled in an order-invariant way. Finally, the
pooled vector is passed through a fully connected layer to generate
predictions.

Model PR-AUC Median Gap ±MAD
TIES-CNN -0.1130 ± 0.0110
TIES-RNN -0.0987 ± 0.0143

TIES-Deepset -0.1152 ± 0.0124
Content+TIES-CNN 0.0386 ± 0.0087
Content+TIES-RNN 0.0474 ± 0.0102

Content+TIES-Deepset 0.0436 ± 0.0087
Table 1: Median Precision-Recall area under the curve dif-
ference with respect to the content-only model and median
absolute deviation on the test dataset formisinformation de-
tection. Combining TIES with content improves the perfor-
mance significantly.

In the context of TIES, we have posts (sources) interacting with
users (targets). Here, we consider a small set of interactions: like,
love, sad, wow, anger, haha, comment, and share. Moreover, we use
embeddings described in Section 2.2 for source and target entities.
For this experiment, we split our training dataset, consisting of 130K
posts (roughly 10% of which are labeled as misinformation), into
train-1, train-2, and test sets2. It should be noted that this dataset
is sampled differently for positive and negative cases and does not
reflect the accurate distribution of the posts on our platform. We
then use the set train-1 to train a few TIES models (CNN, RNN, and
Deepset). For all models, we set the interaction embeddings as well
as hidden dimensions to 64. We consider sequences of length 512,
where longer sequences are cropped from the beginning and shorter

2We use two disjoint training sets to prevent overfitting.
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Figure 5: Samplemisinformation posts, as identified by inde-
pendent human reviewers, with low content-only but high
hybrid score.

sequences are padded accordingly. The CNN model consists of 2
convolution layers of width 5 and stride 1. The RNN model consists
of a 1-layer bidirectional LSTM. And finally, the Deepset model
consists of pre and post aggregation MLPs with one hidden layer
of size 64. In addition to TIES, we train a multimodal model using
post images and texts. Finally, we use the train-2 dataset to train a
hybrid model, a simple logistic-regression with two features, TIES-
score andmultimodal-score. In order to specify confidence intervals,
we run the aforementioned experiment on several train/test data
split. Table 1 illustrates the difference/delta performance for various
models with respect to the content-only model on the test dataset.

At this point a few observations are worth highlighting: First,
TIES-RNN seems to be the best performing TIES model. Second,
Deepset appears to be the least performing TIES model, perhaps
highlighting the importance of the ordered sequences (as opposed
to sets) in identifying questionable posts. Third, the content-only
model seems to outperform interaction-only models. Finally, com-
bining the interactions signal with content (hybrid models) im-
proves the performance significantly.

Figure 4 illustrates the TSNE projection of the post embeddings.
It should be noted that the final hidden state of the TIES model
is considered the source-entity and in this case post embeddings.
Interestingly, the distribution of the misinformation posts (yellow
dots), in the latent space, is clearly different from the regular posts
(purple dots). Figure 5 illustrates a couple of positive posts that
were not identified by the content-only model but registered high
scores in the hybrid (content+TIES) model.

3.3 Detecting Fake Accounts and Engagements
It is understood that fake-accounts are a potential security and
integrity risk to the online community. Therefore, identifying and
removing them proactively is of utmost importance. Most exist-
ing approaches in detecting fake accounts revolve around graph
propagation [24, 32] or clustering of malicious actors and/or ac-
tivities [20, 29, 31, 33]. Fakebuster [9] trained a model on activity

related features. To the best of our knowledge, sequence of ac-
counts and associated activities have not been used in fake account
detection.

One of the fake engagement baseline models at Facebook is a
multilayer classifier trained on over one thousand carefully en-
gineered features. These features cover a range of signals from
metadata, activity statistics, among others. In this experiment, we
train a few TIES models and combine them with the output of
the baseline classifier in order to evaluate the effectiveness of the
sequence data. Here, sources are accounts engaging with various
targets. Targets on the other hand could be other accounts, posts,
or pages. As engagements, we consider a set of 44 sentry-level ac-
tions that includes liking a post, following a page, messaging a user,
friending, etc. As source and target features, we use graph-based
embeddings described in Section 2.2 for accounts, as well as posts
and pages creators, where applicable.

Our dataset consists of 2.5M accounts with 80/20 good/bad (fake)
split. It should be emphasized that this dataset is sampled differently
for positive and negative cases and does not reflect the accurate
distribution of fake accounts on our platform. We randomly divide
this dataset into train-1, train-2, and test sets consisting of 2M,
250K, and 250K accounts, respectively. We then use the set train-
1 to train a few TIES models similar to the previous experiment
described in Section 3.2. The main difference is that here the CNN
model has 3 convolution layers of width 5 and stride 1, and the
RNN model consists of a 2-layer bidirectional LSTM. Subsequently,
we use the train-2 dataset to train a logistic-regression with two
features, TIES-score and baseline-score. This experiment is repeated
on several train/test splits in order to calculate confidence intervals.
The performance gap between various models and the baseline on
the test dataset are illustrated in Table 2.

Model PR-AUC Median Gap ±MAD
TIES-CNN -0.0566 ± 0.0022
TIES-RNN -0.0521 ± 0.0011

TIES-Deepset -0.0857 ± 0.0017
Baseline+TIES-CNN 0.0090 ± 0.0014
Baseline+TIES-RNN 0.0110 ± 0.0014

Baseline+TIES-Deepset 0.0055 ± 0.0012
Table 2: Median Precision-Recall area under the curve dif-
ference with respect to the baseline model and median ab-
solute deviation on the test dataset for fake engagement de-
tection. Combining TIESwith the baseline improves the per-
formance.

Our observations are largely consistent with the ones made in
Section 3.2. Namely, TIES-RNN appears to be the best performing
TIES model, baseline outperforms TIES, and as an additional fea-
ture, TIES can provide a boost to the baseline model. The fact that
baseline outperforms TIES is not surprising, as it includes a lot more
information through over 1000 carefully engineered features. More-
over, gains from TIES appear to be small but they are statistically
significant and outside the confidence interval. It should also be
noted that, at the scale of Facebook, even a couple of percentage points
improvement in recall for the same precision translates into significant



Figure 6: 2-dimensional TSNE projection of the TIES embed-
dings for fake engagements. Clearly, the fake accounts (yel-
low) have a different distribution than the regular accounts
(purple).

number of additional fake accounts being caught. Figure 6 illustrates
the 2-d projection of the TIES embeddings and as expected the
distribution of the fake accounts (yellow) is quite different from nor
mal accounts (purple).

3.4 Reducing Ads Payment Risks
With more than two billion monthly active users, Facebook enables
small- and medium-sized businesses to connect with a large audi-
ence. It allows them to reach out to their target audiences in an
efficient way and grow their businesses as a result [1].

Some of the integrity issues facing this advertising platform in-
clude fraudulent requests and unpaid service fees or substantial
reversals. Researchers at Facebook have devised various models to
prevent such abuses. These models generally include thousands of
carefully crafted features that cover a wide range of information
sources, such as user metadata, activity history, etc. In order to test
TIES’ viability for identifying bad accounts that have failed to pay
fees, we train a few models using interaction signals that generally
include details about the account and associated payment trends.
Here, sources are ads accounts, source features are graph-based
embeddings, and targets are generally nulls. We follow the settings
in the previous two experiments: we split our dataset into train-1,
train-2, and test sets consisting of roughly 200K, 10K, and 10K ac-
counts, respectively. The datasets are sampled such that we have
roughly the same number of bad and good accounts. We then train
TIES-CNN (2 layers of width 5), TIES-RNN (1 layer biLSTM), and
TIES-Deepset (pre and post aggregation MLPs with 1 hidden-layer
of size 64) as well as the baseline model on the set train-1. We then
use train-2 dataset to combine baseline and TIES scores via a simple
logistic regression and finally test the outcome on the test dataset.
In order to calculate the confidence intervals, we repeat this ex-
periment on several random train/test splits. Precision-recall area
under the curve gaps with respect to the baseline model are illus-
trated in Table 3. Figure 7, on the other hand, demonstrates the 2-d

Figure 7: 2-dimensional TSNE projection of the TIES embed-
dings for ads payment risk. Clearly, accounts with unpaid
fees (yellow) have a different distribution than the regular
accounts (purple).

projection of embedding vectors and as expected the distribution
of bad accounts is quite different from normal accounts.

Model PR-AUC Median Gap ±MAD
TIES-CNN -0.0705 ± 0.0051
TIES-RNN -0.0672 ± 0.0045

TIES-Deepset -0.1135 ± 0.0062
Baseline+TIES-CNN 0.0088 ± 0.0034
Baseline+TIES-RNN 0.0071 ± 0.0043

Baseline+TIES-Deepset 0.0060 ± 0.0043
Table 3: Median Precision-Recall area under the curve gap
with respect to the baseline model as well as the median ab-
solute deviation on the test dataset for ads payment risks.
Combining TIES with the baseline improves the perfor-
mance.

TIES models do a decent job in identifying bad accounts al-
though they are not as predictive as the baseline model. Moreover,
similar to the previous two experiments, RNN and CNN perform
roughly the same and both outperform Deepset by a wide margin.
Finally, combining TIES with the baseline provides about 1% gain
in precision-recall area under the curve which is statistically sig-
nificant. It is worth noting that even a small improvement in recall
for the same precision would translate to a large monetary value
in savings.

4 CONCLUSION

In this paper, we provided an overview of the temporal interac-
tion embeddings (TIES) framework and demonstrated its effective-
ness in fighting abuse at Facebook. Social media entities such as
accounts, posts, Pages, and Groups interact with each other over-
time. The type of interactions generated by bad entities such as
fake accounts and hateful posts are different from normal entities.



TIES, a supervised deeplearning framework, embeds these interac-
tions. The embedding vectors in turn can be used to identify bad
entities (or improve existing classifiers). The TIES framework is
quite general and can be used by various forms of account, post,
Page, or Group integrity applications. Moving forward, we plan to
continue exploring other applications of this methodology within
Facebook. Moreover, we can add additional features such as model
interpretability, hyperparameter optimization, unsupervised learn-
ing, etc. to the framework in order to create a more complete tool.
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