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ABSTRACT
Category: Novel research paper. Whereas in traditional partitional
clustering, each data point belongs to a cluster, there are several
applications where only some of the points form relatively homoge-
nous or “dense” groups, and points that don’t seem to belong to
any cluster need to be ignored. Moreover, different clusters may
emerge at different scales or density levels. This makes it difficult to
identify them using a single density threshold, especially if we also
want to ignore the non-clustering data. If data is represented in a
metric space, then recent extensions of a classical approach called
Hierarchical Mode Analysis (HMA) are able to identify clusters
at multiple resolutions, while ignoring “non-dense” areas. How-
ever, this approach does not apply when the relations between
pairs of data points can only be represented as a (sparse) similarity
or affinity graph. Motivated by two complex, real-life applications
where one needs to identify dense subgraphs at multiple resolutions,
while ignoring nodes that are not well connected in the similarity
graph, we introduce a novel algorithm called HIMAG (Hierarchical
Incremental Mode Analysis for Graphs) that provides capabilities
analogous to HMA based methods but applicable to graphs. We also
provide a powerful multi-resolution visualization tool customized
for the new algorithm. We present results on the two motivating
real-world applications as well as two standard benchmark social
graph datasets, to show the power of our approach and compare it
with some standard graph partitioning algorithms that were retro-
fitted to produce dense clusters by pruning non-dense data in a
non-trivial manner. We are also open-sourcing the new dense graph
datasets and tools to the community.
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1 INTRODUCTION
In classical clustering, each data point is assigned to at least one
cluster based on how close or similar that point is to that cluster,
compared to other clusters. However, in many real-world problems,
only a small subset of the data points cluster into relatively homoge-
nous groups, while the rest show little or no clustering tendencies.
This could be due to the fact that only a subset of the points actually
cluster well into highly cohesive or “dense” groupings, while the
rest can be treated as a “don’t care” set. Additionally, these clus-
ters could occur at different “resolutions” or densities. For such
problems, could we use traditional clustering algorithms to simply
cluster some fraction of the data, and then prune out the rest using
some sort of quality threshold? Or do we need do something more
sophisticated?

The famous DBSCAN [6] algorithm partially solves this problem
for Euclidean space by placing a fixed-radius spherical ball at each
data point, and then counting the number of points falling within
this spherical neighborhood, and considering that to be propor-
tional to the density at that point. It then prunes all points that
don’t have enough neighbors (passed as a parameter) before per-
forming clustering. This enables robust filtering of the small noisy
clusters. However, DBSCAN cannot discover dense clusters at mul-
tiple resolutions/densities as it uses a single threshold for density;
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while higher density clusters tend to merge into one cluster, lower
density clusters tend to be fragmented or incomplete.

This problem of simultaneously finding dense clusters at multiple
resolutions/densities was more successfully addressed by [10], and
further unified with other related algorithms by [4]. [4, 10] are
based on the concept of Hierarchical Mode Analysis (HMA), first
proposed in [25], and the methods involve three major steps: (1)
define density around each data point using a sphere, where the
radius controls density threshold; (2) produce a hierarchy of clusters
at multiple resolutions/densities by varying the radius thresholds;
(3) select the most robust clusters identified over all resolutions
by using the concept of stability proposed in [10]. However, as
with DBSCAN, all these approaches require the availability of a
meaningful embedding of the data in a metric space, and cannot
readily apply to arbitrary similarity graphs.

Approaches such as Single-LinkAgglomerative Clustering (SL) [8]
do apply to the clustering of objects specified via pairwise similar-
ity values, and give a range of clusters from N down to one. By
stopping at an intermediate stage in the agglomeration process,
and discarding singletons, one can obtain clusters over part of the
data while ignoring some objects that do not cluster well at that
stage. However, these approaches do not do so well in complex,
noisy settings that we focus on in this paper, where they tend to
find many small noisy clusters.

In this paper, the goal is to find “dense” subgraphs (perhaps
simultaneously at different resolutions) while pruning out a large
fraction of irrelevant background data that may not cluster well.
This setting was originally motivated by two real-world problems
that we encountered. To concretize the issues being addressed, we
now describe these two applications, for which we are also open-
sourcing corresponding datasets.

1.1 Two motivating, real-world applications
Real-time Social Viral Marketing: The first application involves
finding clusters in a dataset of Instagram posts. The sparse graph
consists of Instagram posts pre-filtered by an upstream crawler
for a relevant product area (Wellness or Education). A post can
belong to either a potential consumer or an influencer. Each post
is a node in the graph, and the weight of the edge between two
posts depends on the degree of overlap in hashtags between the two
posts, and is thresholded by some value. The dense clusters to be
discovered either map to large groups of potential customers with
shared interests, to whom we may want to send highly targeted
messaging campaigns, or belong to active influencers to whom we
want to reach out to help with social viral marketing.

The desired clusters of posts tend to naturally form either around
single influencers with a large number of highly related marketing
posts, or over a larger number of consumers with a smaller number
of more organic posts. Influencer and consumer groups naturally
exist at varying degrees of “density” or cohesiveness depending
on the type of consumers or influencers, and influencer clusters
tend to be smaller and denser. Also, a large fraction of the posts
may not cluster at all, and some of the clusters discovered may
not be relevant for the product area and are easy to remove when
separated out automatically.

Topic Categorization: The second application relates to an Ed-
ucation product from Lighsphere AI, where there was a need for
categorizing topics discovered from an upstream topic modeling
system, for a relevant sub-area (Databases or Machine Learning)
within a discipline (Computer Science). The data consists of a set
extracted papers with associated co-authors and topics. The clus-
tering of the topics is an input to a downstream recommender
application that recommends educational topics to students and
professionals for self-learning and career advancement advice. Each
topic is a node in the graph, where two topics are connected by
a weighted similarity edge if the similarity between two topics is
above a certain threshold. The similarity depends upon the degree
of co-occurrence of the two topics with the same set of authors,
papers, and other topics.

The (sub)-topics at the highest resolution are numerous, and
tend to be noisy, with a large fraction of the topics not forming any
relevant categories or being irrelevant for the recommender appli-
cation. Also, natural topic clusters can form at multiple resolutions
based on the type of the cluster, which can either be a collection of
synonyms describing what is semantically one topic, or represent
a higher level category or a “meta-topic”. Synonym clusters tend
to be of higher “density” while the meta-topic clusters tend to be
broader. For these reasons, finding all the topic clusters at multiple
resolutions while pruning out quite a significant fraction of noisy
topics was imperative for this problem.

1.2 Outline
To begin addressing the challenging settings described above, we
start by first defining a flow-based [12] notion of density for nodes
in a graph that we call flow density (Section 3.2). The resolution
or scale of flow density can be controlled by a similarity threshold,
and is analogous to the radius of spheres used in spatial HMA that
controls resolution and can prune out less dense regions. Then,
we present a fast algorithm that can incrementally grow the most
dense regions of the graph by varying this similarity threshold to
discover sub-graphs at variable densities/resolutions. We call our
algorithm HIMAG, which is presented in Section 4.

In Section 5.1, we present an edge-based measurement formu-
lation that allows us to evaluate clusterings of dense sub-graphs,
including two new metrics: Edge ARI and Point Precision, both spe-
cially designed to work with edge-based partially labeled data. We
are also open-sourcing associated tools that allow practitioners to
set up these measurements easily for new datasets and algorithms
for benchmarking and development purposes.

Our method enables pruning of “non-dense” portions of a graph
while simultaneously selecting the most stable clusters at multiple
resolutions, and this is the source of the substantially better results
observed for HIMAG in our paper compared to othermethods, on all
seven of the datasets studied in Section 5. To help one see the results,
we also introduce a multi-resolution clustering visualization tool
that works with graphs, Gene DIVER 3.0, which is being released
with this paper. It is a software tool extended on top of the Gene
DIVER 2.0 which was originally released with [10]. It provides a
user interface to browse the cluster hierarchy from HIMAG.
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2 RELATEDWORK
2.1 Spatial HMA Methods
In Section 1, we described briefly how [4, 10] use a three step
process to identify multi-resolution dense clusters on spatial data.
[1, 4, 6, 10, 17] are all related to HMA [25] proposed in 1968, and
fall into a class of non-parametric density-based clustering algo-
rithms based on the idea that, given a set of i.i.d. data points from a
multivariate distribution in a metric space, the observed “modes”
or dense regions of the data set need not satisfy any particular
parametric shape.

2.2 Graph Partitioning Algorithms
While the algorithms mentioned above qualitatively provide the
kinds of capabilities needed, alas none of these methods work
on sparse graphs, where only pairwise similarities between some
data points is available. However, there do exist a host of cluster-
ing approaches that are based on graph partitioning, including
hMETIS [16], KaHIP [19, 20], KaHyPar [13, 21], and PaToH [27].
hMETIS has stood the test of time and is still one of the most
popular graph partitioning methods. KaHIP (Karlsruhe Fast Flow
Partitioner) is a family of algorithms using flow-based (see Sec-
tion 3.2) partitioning and also supports parallelism [19]. KaHyPar
is also a multilevel hypergraph partitioning algorithm utilizing
an excess incremental breadth-first search (IBFS) maximum flow
algorithm [7] and Boykov–Kolmogorov max-flow algorithm [2]. Pa-
ToH uses greedy hypergraph growing [26] and Boundary Fiduccia–
Mattheyses algorithms [24]. Despite this rich literature and after
extensive literature survey, we could not find any graph cluster-
ing or partitioning methods that could simultaneously discover
clusters from graphs at multiple resolutions, while also naturally
pruning out a large fraction of less cohesive parts of the graph.
That was the motivation for the work presented herein. In order
to make experimental comparisons, we took open-source versions
of some leading graph partitioning algorithms and modified their
results in a non-trivial way so that they could also prune out low-
cohesiveness points. The results (Section 5) show that even with
these enhancements, the algorithms still do not perform as well as
the approach introduced in this paper.

3 PRELIMINARIES
3.1 Notation
Bold-faced lowercase variables, e.g. x, represent vectors/arrays
whose ith element are accessed as x(i ) (1-indexed). Arrays can
contain sets as well as numbers. Calligraphic upper-case alpha-
bets such as X represent sets, and can be notated with elements
listed (e.g. {a,b, c}), or with a predicate (e.g. {x ∈ R|x < 7}). Z+ rep-
resents the domain of positive integers. Bold-faced capital letters
such asMD represent a two-dimensional matrix, which is accessed
asMD (i, j ) (for row i , column j; both 1-indexed). A tuple is denoted
by parentheses (e.g. (a,b, c )), and can be of any length.

3.2 Flow Density of Nodes in Graph
Let Sϵ , an n × n matrix, represent a sparse, weighted, undirected
graph with n nodes. Sϵ (i, j ) = 0 if the similarity S(i, j ) is less than a
threshold, sϵ . Thus, we have sϵ < Sϵ (i, j ) ≤ 1 representing the edge

weight between any two nodes i and j. Note that Sϵ is symmetric,
and there are no self-loops. The flow between any two nodes a
and b through a node i in the graph is computed as Sϵ (a, i )Sϵ (i,b),
and the total flow between nodes a and b, which is a standard
computation for graphs [11, 12], is given by:

f lowϵ (a,b) =
n∑
i=1

Sϵ (a, i )Sϵ (i,b) (1)

We now introduce a novel notion of density for a node in a graph,
that we call flow density, as simply the total flow to the node from
every other node:

ρf lowϵ (i ) =
n∑
j=1

f lowϵ (i, j ) (2)

This can be computed efficiently for a sparse graph, and can also
be computed incrementally for varying sϵ—a property that is handy
for HIMAG described in Section 4.

3.3 Properties & Motivation for Flow Density
If the non-zero edges in Sϵ were all set to 1 (an unweighted graph),
then the flow between two nodes a and b represents the total num-
ber of shared neighbors between a and b. Though flow is the more
commonly used term for describing this relationship, other terms
such as link count [9], connectivity [11], and shared neighbor simi-
larity [5] have also been used. These flow-based methods [5, 9, 11]
provide explanations why flow is a better measure of true closeness
between two nodes than similarity, and this concept is also incor-
porated in some of the graph partitioning methods we compare
with (see Sections 2 and 5). The reason for the improvement in
performance when using flow as opposed to direct neighbors is
that noisy neighbors with strong similarity to a given node a that
are not well-connected to other neighbors of a get a small flow
with a. This results in easier discovery of true highly-connected
sub-graphs in the data.

The flow however, is still defined only on pairs of nodes and not
on nodes themselves, which is what we need to be able to define
dense regions in the graph to find dense clusters. This dilemma
is resolved by the notion of flow density (Equation 2), which is a
measure of the flow neighborhood density of the node, since it is
performing a weighted count of the flow neighbors.

A crucial property of the flow density of nodes, which we exploit
in HIMAG, is the ability of the flow density to capture local flow
density at a node when it is computed on a graph pre-thresholded
with sϵ . When sϵ is small, the total flow through nodes that are not
tightly connected to a dominates, creating a smoothing effect on
the measure of node density. In contrast, when sϵ is large, only a
few of the nodes are connected to each other and the flow density of
a is only contributed to by nodes that have a large sϵ to a, resulting
in flow density at a node only being affected by “nearby” points in
the similarity graph. Thus sϵ , when used with flow density, controls
the resolution and smoothness of density variations in the graph
visible to the clustering algorithm, and is exploited by our HIMAG
algorithm to find clusters at multiple resolutions. This is akin to the
radius rϵ used to compute local density in the Spatial HMA-style
algorithms.
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Table 1: Benchmark Graph datasets, their application do-
main, and the sizes of graphs constructed from them.

Dataset Application No. of nodes No. of edges
Sim-2 Graph Simulated 1,304 848,253
Databases Topic 5,699 14,115,993
Machine Learning Topic 7,833 11,361,558
Wellness Marketing 35,308 7,127,456
Education Marketing 54,836 1,859,732
Pokec Social 758,054 10 billion+
LiveJournal Social 612,577 10 billion+

3.4 Benchmark Graphs & Datasets
We now discuss in brief the construction of graphs from various
datasets used in this paper. These graphs are the input to our algo-
rithm and to the other graph methods we compare with.

Sim-2 Graph for deep analysis: [10] uses a synthetic 2-D
dataset sampled from 5 spherical Gaussians, and an additional back-
ground distribution as their synthetic / development dataset. Such
a dataset can be very helpful when developing and analyzing com-
plex dense cluster discovery algorithms, since the true clusters
and background noise points are perfectly known and visually
comprehensible. It turns out that there is a simple transform that
can be applied to the Sim-2 data to produce a graph that we call
Sim-2 Graph, which we use for further analysis into our method.
The transformation computes similarity between points i and j as
S(i, j ) = 1 − DS (i, j )

maxDS
, where DS is the euclidean distance matrix

calculated from the original data. This graph S can then also be
pre-thresholded, before being passed to the algorithms.

NewApplications: Topic&MarketingGraphs: Graphs stem-
ming from the two applications mentioned in the introduction were
constructed by using the Jaccard metric [18], which is ideally suited
for constructing similarity graphs that are in a non-metric space, es-
pecially when the terms are sparse [22]. For the marketing datasets,
the similarity is measured by shared hashtags between posts, which
are the nodes of the graphs. For topic graphs, the similarity between
two topics is measured by shared co-occurrence of the two topics
within the same paper, or being used by the same author in their
papers, or both co-occurring in a paper with the same third topic. If
we treat the shared authors or papers or topics as the shared terms,
and for the marketing graph posts nodes if we treat the shared
hashtags as shared terms, then the Jaccard is computed simply as
the count of shared or intersecting terms between two nodes di-
vided by the union of all the terms occurring in either node, and is
a value between 0 and 1.

Standard social network benchmarks: We also present re-
sults on two standard social network datasets: Pokec [23], which is
Slovakia’s largest social network, and the LiveJournal social net-
work [15]. These two datasets are valuable as they are large, fairly
well-known, and open-sourced social graph datasets. We were able
to utilize them to set up a social network prediction problem by
showing only a small part of the graph to the graph algorithms to
predict the dense sub-graphs, and then use the remaining graph
as “labels” for predicting “new” connections/friendships between
people not present in the training graph. The accuracy of the pre-
dictions was then used to compare the different methods. This is a

valuable benchmark setup as it allows us to compare our method
against a broad set of algorithms and parameters, without the need
for expensive human labeling for each result. This is in contrast
with our new real-world applications for Topic and Marketing
datasets where the clustering results from various methods had to
be evaluated manually by independent human labels, which were
tedious and expensive to collect.

Table 1 summarizes the graphs generated from these datasets,
and some more details on parameters for the graph construction
are discussed further in Section 5.2.

4 HIMAG
Our new Hierarchical Incremental Mode Analysis for Graphs algo-
rithm outputs an HMA matrix like the one described in [10]. We
then identify clusters across resolutions and relabel them, and the
rows (nodes) are then sorted using a dictionary sort for better vi-
sualization. Clusters are then each assigned a stability using the
algorithm presented in [10], which has been reproduced in Equa-
tion 3.

For experimental evaluation of our algorithm, we removed spe-
cific clusters based on the stability values to get a non-overlapping
clustering, but if one desires a hierarchical clustering this step can
be omitted.

4.1 Graph HMA
HIMAG works by redefining the key notions of spatial radius (rϵ ),
spatial density (ρϵ ), and density threshold (nϵ ) used in the Spa-
tial HMA algorithms [4, 10, 17]. As described in Section 3.2, and
illustrated in Figure 1, given aweighted, normalized, undirected sim-
ilarity graph S with n nodes, we first compute the total flow ρf lowϵ
to each node in a thresholded similarity graph Sϵ using the similar-
ity threshold sϵ . Then, we take all nodes i with ρf lowϵ (i ) > nf lowϵ ,
and cluster them using the well-known flood fill method, where
nodes i and j cluster together if Sϵ (i, j ) > 0. Thus, each connected
component of Sϵ becomes a cluster.

We compute clusterings at multiple resolutions by varying sϵ .
This gives us ann×l HMAmatrix LHMA, where each row represents
a node, and each column corresponds to one clustering level, which
is associated with a specific threshold sϵ . The values in the matrix
represent cluster IDs, which are generated independently for each
level.

The list of values to use for sϵ are generated based on the input
similarity matrix S. [10] calculates the values of rϵ so that the
ratio of points clustered between two successive levels remains a
constant rshave . For a graph this would be difficult to compute, so
we instead calculate the values of sϵ so that the ratio of the number
of nonzero edges in the thresholded similarity matrix Sϵ (given by
��
{
Sϵ (i, j )��i, j ∈ Z+ ∧ i < n ∧ j < n

}��) between two successive levels
remains a constant rshave .

4.2 HIMAG Algorithm
The HIMAG algorithm provides a computationally efficient way to
compute the Graph HMA matrix described in Section 4.1.

We store the graphs not as matrices, but as sets of edge tuples
(i, j, s ), each of which represents an edge between nodes i and j
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(1) (2) (3) (4)

Figure 1: A simplified illustration of one level of HIMAG Graph clustering showing (1) a sparse undirected weighted graph, (2)
kept all edges for sϵ > 0.2, compute edge flow, (3) compute node density ρf low and prune non-dense points with ρf low < nf lowϵ ,
(4) cluster all connected dense components and prune non-dense points.

.

with weight s . This sparse representation saves memory and allows
us to perform some optimizations.

First, we sort all the edges in the input graph S, and store that in
a list ls. This allows us to easily compute the list of values of sϵ to
be used, st, such that the fraction of edges with weights between
any two successive values in st is a constant rshave . We can also
ensure st contains no duplicates. Next, we partition ls into buckets
of edges with similarities between successive thresholds in st. Thus,
as we lower the similarity threshold sϵ , we have stored in memory
the set of new edges introduced to Sϵ at each level.

We then compute the total flow to each node (ρf lowϵ (i )) incre-
mentally, as we lower sϵ and add new edges to Sϵ . We also keep
track of the neighbors of each node i in Sϵ , as a data structure enbr
where enbr (i ) =

{
j ∈ Z+��j < n ∧ Sϵ (i, j ) > 0

}
, and we keep track of

the nodes that are clustered (i.e. their flow density is above the
threshold nf lowϵ ) in a set of clusters C.

Let’s look at the addition of a single new edge (a,b, s ), and how
it affects the values of ρf lowϵ and enbr. This edge connects nodes a
and b with a weight of s . All of a’s current neighbors now gain flow
with nodeb througha, and vice versa. So∀i ∈ enbr (a), we increment
ρf lowϵ (i ) and ρf lowϵ (b) by Sϵ (i,a) ∗ Sϵ (a,b), where Sϵ (a,b) is
given by s . Similarly, ∀i ∈ enbr (b), we increment ρf lowϵ (i ) and
ρf lowϵ (a) by Sϵ (i,b) ∗ s . And finally we add node a to enbr (b) and
node b to enbr (a).

As we add edges, we also keep track of which nodes’ flow density
increased that were not already clustered. After adding all the edges
in one bucket (i.e. all the edges above one of the thresholds sϵ have
been accounted for), we check if any of these nodes i now have a
flow density ρf lowϵ (i ) above the flow density threshold nf lowϵ . If
they do, we add them to a cluster in C according to the connected
components rules, merging clusters when they get connected, or
creating new ones as necessary.

After this, the clustering C at the current level k is saved into the
HMA matrix LHMA. Each of the clusters in C is assigned a positive
integer ID, and then each node i has LHMA (i,k ) set to this ID. Nodes
i that are not clustered at level k therefore have LHMA (i,k ) = 0.

Since this process grows the HMA hierarchy by growing and
merging clusters, as opposed to shaving and splitting them, the
process can be stopped early and still yield meaningful results.
LHMA can then have its leading columns pruned, and this further

saves computation time. This is quite useful for many practical
applications where the denser subset of the topology discovered is
more important.

4.3 HMA Visualization & Cluster Selection
Since the HMAmatrix from HIMAG has an identical form to spatial
Auto-HDS, we follow the same process as [10] for visualization.
Cluster stability is defined slightly differently. It measures the sta-
bility of a cluster as proportional to the fraction of data (nodes)
shaving a cluster survives. If fC (starti ) and fC (endi ) represent the
fraction of nodes clustered in total when the cluster Ci first comes
into existence and when it disappears, in the order from left to right
(shrinking clusters) in the LHMA matrix, then we define stability as:

Stab (Ci ) =
log( fC (starti )) − log( fC (endi ))

log(0.99)
(3)

This notion of stability above has one improvement over [10] in
that the denominator in Equation 3 is set to log(0.99), corresponding
to rshave = 1% (arbitrary normalization) instead of the variable
log(1 − rshave ). As noted in [3], this makes the notion of stability
independent of the shaving rate, thus making it possible to get
the log-scale stability irrespective of the whether the algorithm
computes the full HMA hierarchy or a logarithmic pruned one.
Note that it is trivial to modify HIMAG to simply compute all
the levels; because of the incremental nature of the algorithm, the
computational overhead is not significant. However, the storage
of the HMA matrix becomes O (n) instead of O (log(n)), for only a
small gain in cluster resolution.

5 EXPERIMENTAL EVALUATION
In this section, we first define two new evaluation metrics suitable
for sparse graphs. Then, we describe the experimental setup for
the seven datasets summarized in Table 1, and present results in
Table 2, Table 3, and Figure 2.

5.1 Evaluation Metrics
We present results using two metrics: Edge ARI and Point Precision.
The Edge ARI used in this paper is a modification of the standard Ad-
justed Rand Index [14] that was designed for partitional clustering
with edge-based labels.
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Table 2: Point Precision performance comparison for Topic and Marketing Segments comparing HIMAG with FLOW (F) vari-
ation of hMETIS for the Top 100 or 50 (by stability) and All judged clusters. The Runtimes (RT) of the algorithms are shown
in seconds on an 8-core Lenovo ThinkServer machine with 32 GB RAM. HIMAG recall for All clusters for Machine Learning
(ML) was 0.140 with k = 221 clusters, while for Database (DB) the recall was 0.163 with k = 178 clusters. HIMAG recall for
All clusters for Wellness was 0.201 with k = 162 clusters, while for Education the recall was 0.218 with k = 424 clusters. For
hMETIS, the number of clusters was double with the same recall. Also shown is the number of points in the smallest cluster
(S) and the largest cluster (B).

Algorithm ML DB Wellness Education
Top 100 All S B Top 100 All S B Top 50 All S B Top 50 All S B

HIMAG .9088 .9107 2 22 .8227 .8479 2 46 .9394 .9438 7 1388 .9973 .9748 2 248
hMETIS 2k, F .8735 .4886 2 6 .4530 .2543 2 24 .7665 .718 7 159 .8953 .7336 2 87

Given a clustering C containing clusters Ci which each contain
all pairs (a,b) representing an edge between two nodes a and b
where a and b are clustered together in cluster i , and an exhaustive
edge-based label set LS containing all pairs (a,b) that are linked
(“must-link”), we define Cp = {(a,b) |∃Ci ∈ C; (a,b) ∈ Ci } as the
set of all edges predicted as linked in a clustering C. We then define
the Edge Precision metric as:

PE (C,LS ) =

���Cp ∩ LS
���

���Cp
���

(4)

If all the must-link edges found within a cluster Ci are assumed
to be coming from a single label cluster of size c , then the number
of must-link edges would be given by

(c
2
)
=

c (c−1)
2 . Conversely,

given the set of must-link edges within a cluster (Ci ∩ LS ), this
hypothetical c can be calculated with c = 1

2
(
1 +
√
8 ��Ci ∩ LS �� + 1

)
,

the inverse of the quadratic equation for c . Point Precision can then
be calculated as the weighted sum of the precision of the clusters,
as follows:

Pp (C,LS ) =
∑
Ci ∈C

1
2
(
1 +
√
8 ��Ci ∩ LS �� + 1

)
|Ci |

(5)

For computing Edge ARI, an exhaustive label set is also required.
Any edge not in LS is assumed to be “cannot-link” (should not
link). The formula takes the form Index−E (Index )

Max (Index )−E (Index ) , like the
Adjusted Rand Index [14]. The index is simply the number of edges
that are “must-link” and are predicted in the clustering C.

The expected index is the number of edges predicted multiplied
by the proportion of total edges that are “must-link”. The max
index is whichever is smallest between the number of edges that
are “must-link”, and the number of edges predicted in the clustering
C, as both of these would have to be true for the edge to count
towards the index. This gives us the following formula, where n is
the total number of nodes in the labeled graph:

ARIE (C,LS ) =

���Cp ∩ LS
��� −

���Cp
���
��LS ��(n
2
)

min
(���Cp ��� , ��LS ��) − ���Cp ��� ��LS ��(n

2
) (6)

5.2 Experimental Setup for Comparison
Section 2.2 describes the graph algorithms that we adapt and com-
pare with our method. The following enumerates some of details
for the experimental setup used to benchmark our methods against
those algorithms on various datasets:

Parameters Setup for Comparisons

(1) Exhaustive cannot-link labels are needed to compute Edge
ARI correctly. Since our Topic and Marketing datasets were
judged manually, Edge ARI was not possible to compute, so
only Point Precision results are presented on them.

(2) To plot the performance by fraction of data clustered, we
took the most stable non-overlapping clusters from HIMAG.
This gives us not only the total fraction of data clustered, but
also allows us to plot increasing fraction of data clustered
by including progressively less stable clusters.

(3) The number of clusters to predict (k) and the fraction of
data clustered are passed to other methods based on the
output of HIMAG to make the comparison fair. We also ran
other methods with double the clusters (2k) to improve their
performance in some cases where they performed poorly
compared to HIMAG when the k was the same.

(4) The results of all of the methods we compete against were
much worse on the Topic and Marketing data for k than
for 2k, and the labeling was expensive, so we only present
results for 2k on those datasets.

(5) Since HIMAG clusters only a fraction of data, two different
methods were used to shave the clusters obtained from the
partitional algorithms to produce smaller clusters and to
have the same fraction of data clustered as HIMAG. RAND
represents randomly selecting a fraction of the points from
each cluster, while FLOW represents shaving each cluster
by removing the least dense nodes until the desired number
of nodes remain.

All methods received exactly the same input graph for each
dataset. More details, along with the source code for all algorithms
and measurements will be provided with a supplement link to
ensure these experiments are fully reproducible, but here are some
important details for the construction of graphs:

Other parameters for graph construction:

(1) A regularization term was added to the denominator of the
Jaccard before computing the ratio, as otherwise, nodes with
a small number of terms generate noisy high similarity edges.
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This substantially improves results on these datasets for all
algorithms.

(2) We also pre-thresholded most graphs for speed, as the low
similarity edges don’t capture any additional information
for finding high quality dense sub-graphs. A threshold of
0.25 was used to prune edges on Marketing data, and 0.01
for Topic.

(3) For topic data the Jaccard similarity was weighted using the
formula described in [11].

(4) For the standard social graphs, the “interests” were the terms
used for computing the Jaccard similarities between two
people.We use the community profile that these two datasets
provide, namely “hobbies” for Pokec and “communities” for
LiveJournal, to compute this interests graph. Only 2% of the
edges were used for building the graphs, while the remaining
98% of the graph edges were held back and used as “labels”.

6 GENE DIVER VISUALIZATION & TOOLS
We developed Gene DIVER 3.0 for our experimental evaluation, as
an extension to Gene DIVER 2.0 released in [10]. It now visualizes
the cluster hierarchy produced by HIMAG, in addition to the spatial
Auto-HDS already supported by Gene DIVER 2.0. It also comes with
some other new capabilities. The source code for Gene DIVER 3.0
along with all our tools for the experimental setup, more detailed
discussion of the results, and the four new datasets are available
on GitHub1.

7 CONCLUSION
When we started this research, we had to find a way to discover
dense clusters at multiple resolutions in an unsupervised manner,
especially for the marketing real-world application, as new clusters
arise in such data every week. The clusters had to be reasonably
complete (high recall) and accurate (high precision). As can be
seen clearly, our method’s performance far exceeds those of other
methods, even after adapting them to prune out non-dense regions
in a principled way. With HIMAG, we find a large and diverse set
of clusters of varying sizes and cohesiveness.

We believe that what we have discovered with flow density
is a deceptively simple concept, but one which is a fundamental
breakthrough in several ways—how we should think about dense
regions in graphs to elucidate dense clusters at multiple resolutions,
why such a notion is not just the dominion of spatial density based
methods derived from HMA, and why we don’t have to think about
flow on graphs only in terms of edges and pairwise nodes as graph
partitioning methods have done until now.
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Table 3: Results on Pokec, LiveJournal, & Sim-2 Graph by Point Precision (PP) and Edge ARI (E-ARI). The Runtimes (RT) of
the algorithms are shown in seconds on an 8-core Lenovo ThinkServer machine with 32 GB RAM. Also shown is the number
of points in the smallest cluster (S) and the largest cluster (B), and the number of clusters (C). F is short for FLOW and R is
short for RAND in the algorithm names.

Algorithm Pokec LiveJournal Sim-2
PP E-ARI RT S B C PP E-ARI RT S B C PP E-ARI RT S B C

HIMAG .121 .0214 147.88 3 74 8769 .201 .2541 343.18 3 488 6002 .770 .5919 68.4 20 223 6
hMETIS 2k, F .031 .0102 58.34 2 13 17538 .055 .0229 77.168 2 71 11994 .479 .3107 52.9 36 76 10
KaHIP 2k, F .026 .0089 28.09 2 5 17538 .048 .0187 92.58 2 6 12004 .482 .2395 45.71 43 44 10
hMETIS k, F .035 .0057 58.34 2 25 8769 .059 .0167 77.16 2 108 6002 .493 .3307 52.9 46 211 5
KaHIP k, F .034 .0055 28.09 3 9 8769 .057 .0141 92.58 3 10 6002 .500 .2695 45.71 95 109 5
hMETIS k, R .032 .0052 58.34 2 24 8769 .055 .0157 77.16 2 108 6002 .380 .1660 52.9 45 212 5
KaHIP k, R .031 .0050 28.09 4 9 8769 .056 .0142 92.58 3 10 6002 .449 .2024 45.71 96 109 5

KaHyPar 2k, F .027 .0097 161.58 2 4 17538 .049 .0198 177.38 2 5 12004 .497 .2477 199.02 51 54 10
PaTOH 2k, F .026 .0091 15.40 2 4 17538 .044 .0178 13.02 2 5 12004 .508 .2662 2.54 51 54 10
KaHyPar k, F .035 .0057 161.58 4 8 8769 .057 .0142 177.38 4 9 6002 .509 .2136 199.02 104 107 5
PaTOH k, F .033 .0054 15.40 4 8 8769 .056 .0137 13.02 4 9 6002 .464 .2176 2.54 104 107 5

KaHyPar k, R .031 .0051 161.58 4 8 8769 .053 .0133 177.38 4 9 6002 .439 .1537 199.02 104 107 5
PaTOH k, R .030 .0048 15.40 4 8 8769 .052 .0134 13.02 4 9 6002 .464 .2207 2.54 103 107 5

(Sim-2 Point Precision) (Sim-2 Edge ARI) (Wellness Point Precision)

(Education Point Precision) (ML Point Precision) (DB Point Precision)

(Pokec Point Precision) (LiveJournal Point Precision)

Figure 2: Edge ARI and Point Precision plots for Sim-2, Marketing, Topic, Pokec, & LiveJournal datasets. x-axis is recall when
sorting and selecting most stable clusters using flowmethod for all algorithms, except for HIMAGwhich has its own stability.
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