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ABSTRACT

Relational classification exploits structural information in network
data to improve predictive performance. However, the large sizes of
real-world networks cause two main scalability issues for relational
classification. First, training supervised models on large networks
is computationally expensive. Second, label acquisition for large
samples can be costly and unrealistic. The goal of active learning
is to query informative labels and reduce labeling cost. However,
state-of-the-art active learning strategies require multiple iterations
of learning, in order to pick the best labels at each iteration, which
incurs higher computational cost. In this work, we focus on a con-
strained version of the problem, named one-shot active learning

where the active learner has to decide which nodes to sample in
one shot, rather than iteratively. We consider several simple and
network-based sampling strategies as potential solutions to this
problem and propose a novel sampling method (WLS) based on
Weisfeiler-Lehman graph labeling algorithm. In our experiments,
we show a comprehensive evaluation of eleven different sampling
methods on four real world network datasets using four relational
classifiers (wvRN, ICA, SGC, GraphSage), offering the first com-
parison between collective classification and neural network ap-
proaches for one-shot active learning. Our sampling method (WLS)
shows the strongest performance on average across classifiers and
datasets. It performs particularly well with GNN-based classifiers
whereas edge-based sampling performs best with wvRN and ICA.
We also show that some of the computationally cheaper one-shot
active learning approaches can achieve comparable Micro-F1 scores
to existing active learning methods that require multiple iterations.
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1 INTRODUCTION

One of the main factors for the success of relational classification is
the ability to harness the properties of relational structure in data.
Real-world networks have millions of nodes. Often, acquiring labels
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for a large sample can be difficult and sometimes unrealistic. A stan-
dard and practical solution to this problem is active learning which
allows the learner itself to select samples to be labeled by an ora-
cle [31]. State-of-the-art active learning strategies repeatedly selects
batch of samples in multiple iterations until a prespecified budget
of labels is reached. ALFNET [7], RAL [18] and ANRMAB [12] are
some examples of such active learning approaches for relational
data. However, these strategies generally learn a model at each
iteration, in order to compute utility scores for all the unlabeled
samples over all iterations which incurs a substantial computational
cost. In order to address this issue for large networks we consider
a constrained problem setup where the active learner is allowed
only a single iteration to select samples to label. We refer to it as
one-shot active learning.

A popular approach to active learning is carefully selecting a
representative sample of the source data. Prior works have empiri-
cally evaluated the effectiveness of sampling methods for one-shot
active learning in the context of relational classification [4, 6]. How-
ever, the main difference between previous works with ours is
twofold. First, they consider only the labeled subgraph for classi-
fication whereas we use the full source graph which gives us the
opportunity to utilize the structural properties better. Second, they
primarily consider a naive relational classifier, wvRN [23] whereas
we compare performance of collective classification and modern
neural network based approaches.

In this study we consider a wide variety of sampling strategies
to compare their relative performance for one-shot active learning.
We consider both graph sampling algorithms as well as sampling
strategies specifically designed for semi-supervised node classifi-
cation [39]. We also propose a sampling approach based on the
Weisfeiler-Lehman algorithm which shows promising results in
empirical evaluation. Our proposed Weisfeiler-Lehman Sampling
(WLS) relies solely on the structural role of nodes for label acquisi-
tion decisions. One of its main advantages is that it is computation-
ally efficient and yet harnesses structural information effectively.
Our empirical evaluation shows that even though there isn’t one
samplingmethod that performs the best consistently across datasets
and classifiers, Weisfeiler-Lehman ranks the highest on average.

The main contributions of our paper are:

• We propose a novel node sampling method, WLS for one-shot
active learning and empirically show that it achieves competi-
tive Micro-F1 scores while being particularly effective on larger
graphs with lower clustering coefficient.
• We show the most comprehensive evaluation of sampling methods
for one-shot active learning, including eleven different sampling
methods on four real-world network datasets using four popular
relational classifiers: wvRN, ICA, SGC, GraphSage.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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• We empirically show that some of the computationally cheaper
one-shot active learning approaches achieve competitive Micro-
F1 scores when compared to the existing multi-shot active learn-
ing approaches.

2 RELATEDWORK

The most common scenario for active learning is the pool-based
scenario where a pool of labeled and unlabeled samples are present
and the learner can choose from the unlabeled pool to query for
labels [31]. An established pool-based active learning algorithm
for relational data is ALFNET [7] which is based on disagreement-
based active learning [32] using Iterative Classification Algorithm

(ICA) as relational classifier. Even though it performs well, it is
computationally expensive specifically for larger graphs due to the
cost of iterative training. Recently proposed neural network-based
approaches [8, 12] follow similar expensive procedure of re-training
the model over iterations without showing significant improvement
over ALFNET. One-shot active learning circumvents this cost of
re-training by allowing a single chance to decide which nodes to
label. Note that, one-shot active learning is different from one-shot
learning [11] or active one-shot learning [37]. One-shot learning
refers to learning from one or few samples and active one-shot
learning refers to active learning where one or few samples can be
labeled in each iteration. In contrast, one-shot active learning refers
to active learning with one iteration to label nodes. To the best of
our knowledge there is no prior work investigating one-shot active
learning on relational data.

Graph sampling algorithms have been studied for a long time.
Kolaczyk [17] investigated sample properties from a social science
perspective. Other works analyzed the statistical properties of sam-
pled subgraphs and how sampling changes topological network
properties [19, 35, 41]. Several studies analyzed representative-
ness [20], correlations of graph properties [2], biases of topological
approaches [24] and impact on A/B testing [5].

A few recent works studied the effectiveness of sampling meth-
ods for relational classification [3, 4, 6, 22]. Ahmed et al. [4] pro-
vided a comprehensive analysis of a variety of graph sampling
methods and their effectiveness on relational classification. They
sampled subgraphs from a given source graph based on each of the
baseline sampling methods. They evaluated the sampling methods
based on accuracy of supervised classification models trained with
corresponding subgraphs. Their experiments on four real-world
networks show that induced edge sampling [1] produces better
accuracy than any other graph sampling methods [3]. In a more re-
cent work, Berton et al. [6] experimentally evaluated effectiveness
of centrality-based sampling methods for relational classification.
They showed that sampling based on clustering coefficient provides
greater accuracy in general. Note that, both these studies consid-
ered a supervised classification task and trained the classification
model only on the sampled graph. In contrast, our evaluation is
based on semi-supervised classification where the full source graph
is used in creating the features for training. Moreover, they only
considered network-based sampling methods whereas we consider
network-based, non-network-based and hybrid methods. We also
use state-of-the-art relational classifiers like ICA [21], GCN [16] and
GraphSage [15] whereas they used a simple classifier, wvRN [23],

which relies on label aggregates and has no learning component.
Earlier work by Macskassy [22] is closely related to ours which is
motivated to speed up active learning on graph by sampling a small
candidate set of nodes using structural properties from which an
Empirical Risk Minimization (ERM) [29] method chooses the top
candidate to be labeled. However, they also followed the standard ac-
tive learning procedure of multiple shots for active querying which
is costlier than the one-shot active learning we are considering.

One of the sampling methods we propose in our work is based
on the Weisfeiler-Lehman algorithm which is a graph labeling
algorithm widely used for graph isomorphism testing. One key
benefit it offers is the relative representation of the vertices based
on their structural roles in the graph. Because of this feature, it has
inspired several works in the network domain, especially for graph
classification [33], graph embedding [34] and link prediction [42].

3 PRELIMINARIES

3.1 Basic Notations

We consider an undirected graph𝐺 = (V, E) where V and E are the
set of vertices and edges correspondingly. Each node𝑉𝑖 is associated
with a feature vector ®𝑋𝑖 and a corresponding class label 𝑌𝑖 which
may be unknown, 𝑉𝑖 = ⟨ ®𝑋𝑖 , 𝑌𝑖 ⟩. A set of individual attributes com-
prises the vector ®𝑋𝑖 = ⟨𝑋 1

𝑖
, 𝑋 2

𝑖
, ..., 𝑋

𝑝

𝑖
⟩ where 1, 2, ..., 𝑝 are feature

dimensions. The set of node features for all nodes is denoted by
X = { ®𝑋𝑖 |𝑉𝑖 ∈ 𝑉 } and the set of class labels for all nodes is denoted
by Y = {𝑌𝑖 |𝑉𝑖 ∈ 𝑉 }. The domain of class labels 𝑌𝑖 is discrete and the
set of possible labels is denoted byY = {𝑦1, 𝑦2, ..., 𝑦𝑚}. The domain
for ®𝑋𝑖 can be either discrete or continuous. An edge 𝐸𝑖 𝑗 = ⟨𝑉𝑖 ,𝑉𝑗 ⟩
represents an explicit link between two nodes 𝑉𝑖 and 𝑉𝑗 in the
network. Let N𝑖 denote the set of neighboring nodes of 𝑉𝑖 , N𝑖 =
{𝑉𝑗 |⟨𝑉𝑖 ,𝑉𝑗 ⟩ ∈ 𝐸}.

3.2 Relational classification

In contrast to standard classification tasks where data samples are
i.i.d, relational classification deals with interconnected samples. The
fundamental idea behind relational classification is to effectively
exploit the attribute and label correlations between linked nodes
to achieve better accuracy in predicting the labels of individual
samples. A trivial relational classifier is wvRN [23] which simply
infers class association probability based on strong homophily as-
sumption. It requires no learning, rather it classifies the entities
of a relational network based only on the relational structure [23].
Modern relational classifiers can be categorized into two families:
1) Collective classification and 2) Graph neural networks.

Collective classification refers to the combined classification of
a set of connected objects [30]. The fundamental assumption is
that the label 𝑌𝑖 of a node 𝑉𝑖 not only depends on its own node
attributes ®𝑋𝑖 , but also depends on the labels 𝑌𝑗 and attributes ®𝑋 𝑗 of
its neighboring nodes in the network. Collective classifiers use a
vector-based classifier such as logistic regression which is trained
iteratively. It learns the conditional probability 𝑃 (𝑌𝑖 |𝑋𝑖 , 𝑎𝑔𝑔𝑟 (N𝑖 ))
for estimating node labels. Here, 𝑎𝑔𝑔𝑟 (N𝑖 ) refers to the aggregate
of class labels of neighboring nodes N𝑖 . The two most common
algorithms for collective classification are Iterative classification
algorithm (ICA) [21, 25] and Gibbs Sampling (GS) [13, 30].
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Graph neural networks (GNN) emerged with the popularity of
deep learning architectures. GNN is inspired by the success of con-
volutional neural networks (CNN) in computer vision. Most of the
GNN models are primarily based on redefined notions of convolu-
tion for graph data [40]. These convolutional GNNs can be divided
into two main categories: spectral and spatial. The most impor-
tant difference between these fundamental approaches lies in their
treatment of the graph laplacian matrix. Spectral methods utilizes
eigen-decomposition of the graph laplacian to extract useful infor-
mation about the graph structure. Spatial methods treat it as spatial
connectivity of nodes [9]. The two most representative algorithms
from these two categories are GCN [16] and GraphSage [15].

3.3 Weisfeiler-Lehman Algorithm

TheWeisfeiler-Lehman algorithm [36] is a graph labeling algorithm
that generates canonical ordering of the vertices of a given graph.
The classic Weisfeiler-Lehman algorithm is presented in Algorithm
1. The algorithm starts by assigning the same initial label to all
vertices (line 1). For each node, it forms a multiset of labels from its
direct neighbors’ color labels (line 4). After sorting the elements in
the multiset and concatenating it to the node’s label, it generates
signature strings (line 5-6). These signature strings are then sorted
and compressed and used to assign new labels to the nodes (line
8-9). This process continues until the labels have stabilized.

Algorithm 1Weisfeiler-Lehman Graph Labeling
Input: Graph 𝐺 = (𝑉 , 𝐸), initial labels 𝑙0 (𝑣) = 1 for all 𝑣 ∈ 𝑉
Output: Final labels 𝑙 (𝑣) for all 𝑣 ∈ 𝑉
1: Let 𝑙 (𝑣) = 𝑙0 (𝑣) for all 𝑣 ∈ 𝑉
2: while 𝑙 (𝑣) has not converged do

3: for each 𝑣 ∈ 𝑉 do

4: Build a multiset {𝑙 (𝑣 ′) |𝑣 ′ ∈ Γ(𝑣)} concatenating
its neighbor’s labels

5: Sort elements in the multiset in ascending order
6: Concatenate the sorted multiset to 𝑙 (𝑣) to generate

a signature string 𝑠 (𝑣) = ⟨𝑙 (𝑣), {𝑙 (𝑣 ′) |𝑣 ′ ∈ Γ(𝑣)}⟩
7: end for

8: Sort all of the strings 𝑠 (𝑣) for all 𝑣 in ascending order
9: Map each string 𝑠 (𝑣) to a new compressed label,

using a function 𝑓 such that 𝑓 (𝑠 (𝑣)) = 𝑓 (𝑠 (𝑤)) if and
only if 𝑠 (𝑣) = 𝑠 (𝑤).

10: end while

The effectiveness of the Weisfeiler-Lehman algorithm has been
demonstrated for graph classification [34] and link prediction [42].
Weisfeiler-Lehman is used to encode subgraph property for a given
link for link prediction. This subgraph property is then used as
input features to a neural network model to predict existence of
links, exploiting the ability of Weisfeiler-Lehman to encode relative
structural roles of nodes in subgraph [42]. Our work is the first to
study the application ofWeisfeiler-Lehman encoding in the context
of active learning sampling.

4 ONE-SHOT ACTIVE LEARNING FOR

RELATIONAL CLASSIFICATION

In this section, we first formulate the problem and then describe
the sampling methods we consider as potential solutions.

4.1 Problem Definition

One-shot active learning is a constrained version of active learning
problem. The main difference between them is that in case of one-
shot active learning the learner can query only once to acquire
labels from the oracle.

Problem 1 (One-shot Active Learning for Relational Classi-

fication). Given an undirected graph 𝐺 = (V, E), node features X,
a labeling budget 𝐵, a relational classifier 𝐶 and a labeling oracle,

select a set of nodes of size 𝐵 to be labeled by the oracle in one shot

such that Micro-F1 score of classifier 𝐶 on unseen data is maximized

upon training on the labeled set.

Note that, the active learning budget 𝐵 is typically much less
than the size of the available pool of unlabeled nodes. In such a
scenario the classifier can either exploit the full graph structure or
restrict itself to the subgraph induced by the labeled nodes. In this
work, we focus on the first option with the availability of the full
graph structure, making it a semi-supervised classification problem.

4.2 Sampling for one-shot active learning

Since the initial data has no labels available, smart sampling strate-
gies are key to solving the one-shot active learning problem. The
existing sampling methods for relational data can be categorised
into three groups: 1) Network sampling methods, 2) Non-network
sampling methods and 3) Hybrid sampling methods.

4.2.1 Network Sampling Methods. This category of sampling
methods is the state-of-the-art sampling for relational data. Their
effectiveness for preserving the structural properties of networks
makes them good candidates for one-shot active learning. These
methods can be grouped into four major types:
• Node Sampling: This is a standard sampling strategy where the
algorithm can sample nodes based on their structural properties
(e.g., highest or lowest degree). One of the deficiencies of this
sampling strategy is that it doesn’t preserve the connectivity
of the original graph. We consider two different node sampling
methods.NS-DC-H refers to a sampling method which prioritizes
nodes with high degree centrality [6]. We also consider sampling
proposed by Berton et al. [6] which prioritizes nodes with high
clustering coefficients (NS-CT-H).
• Edge Sampling: This is another standard sampling strategy
where one can sample edges instead of nodes. Generally, all
nodes incident to the edges are subsequently added to form the
induced subgraph. The advantage of this method is that unlike
Node Sampling, it can preserve the connectivity of original graph
better. However, due to the independent selection of edges it
fails to preserve clustering properties. We consider random edge
sampling (ES-RS) where edges are selected at random.
• Topological Sampling: Both Node Sampling and Edge Sampling

methods exhibit shortcomings in preserving the structural prop-
erties of the graph. In order to overcome these shortcomings,
several topology-based sampling algorithms have been proposed.
These algorithms mostly utilize either breadth-first search or
random walks over the graph to construct a representative sam-
ple [4]. For example, Snowball Sampling (SS) selects nodes and
edges following a breadth-first search from a randomly selected
seed node. It stops when a certain threshold is reached. Another
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example is Forest Fire Sampling (FFS) which also follows breadth-
first search, but only considers a proportion (we consider 70%)
of the neighborhood for exploration.
• Graph Clustering: Nguyen and Smeulders [27] showed that
clustering the data can help improve the performance of an ac-
tive learning strategy. Inspired by this, we consider sampling
based on graph clustering. We choose modularity-based cluster-
ing [26] since it is a standard method for community detection
in networks and has been used for active learning in the past [7].
We generate modularity-based clusters and then iteratively se-
lect random nodes from each cluster until the labeling budget is
exhausted. We refer to this sampling method as MS.

4.2.2 Non-network sampling methods. We consider sampling
methods that are not based on networks for a comprehensive com-
parison. The primary reason for choosing this is to evaluate how
much the structural information helps in prediction. The trivial
choice for this category is random sampling (RS). Moreover, we con-
sider sampling based on k-means clustering over the node features
X in order to utilize the strength of clustering in active learning [7].
We create the k-means clusters for a given 𝑘 value. Then in each
iteration we pick a random node from each cluster until the labeling
budget is exhausted. We refer to this method as KMS.

4.2.3 Hybrid sampling methods. Several recent works use an
intuitive idea of combining the power of both structural properties
and node features. Most of those works follow a standard active
learning strategy with multiple iterations. FeatProp proposed by
Wu et al. [39] can be considered a hybrid approach for one-shot
active learning. It clusters the samples using K-Means clustering
based on a distance function derived by both propagated node
features and graph structure. Then it iteratively selects the closest
nodes to the cluster centers until the active learning budget is
exhausted.

4.2.4 Weisfeiler-Lehman Sampling. We propose a new sam-
pling algorithm,Weisfeiler-Lehman Sampling (WLS) for one-shot
active learning for networks. It is adapted from the Weisfeiler-
Lehman node labeling algorithm [36].WLS considers the structural
role of a node as the main predictor for label acquisition. Since
Weisfeiler-Lehman method has been proven to be useful for encod-
ing relative structural roles of nodes in link prediction problem [42],
we investigate its effectiveness for one-shot active learning.

The basic idea behind WLS is to explore different local neigh-
borhoods of the graph and pick the nodes based on their relative
structural roles. In order to achieve this,WLS utilizes the final color
labels produced by Weisfeiler-Lehman algorithm. The color labels
encode relative neighborhood properties of nodes which plays an
important role in isomorphism testing. For any two isomorphic
graphs the first nodes exhibit similar structural properties in the
corresponding orderings. The key benefit of this process is that
the algorithm is able to pick the structural roles specific to each
network, so they do not have to be defined apriori. Note that, in
our case, a neighborhood is formed around a given seed node. An
exploration budget 𝐵𝑒 is introduced to limit the number of hops of
neighborhood the algorithm can explore from the given seed node.

The WLS algorithm is presented in Algorithm 2. It starts with
an empty set of labeled nodes (L) and a set of all nodesU (line 1).

Algorithm 2 Weisfeiler-Lehman Sampling

Input: A network 𝐺 = (V, E)
Parameter: Batch size 𝑘 , labeling budget 𝐵, exploration budget 𝐵𝑒
Output: Set of labeled nodes L
1: L = ∅,U = V
2: while |L| < 𝐵 do

3: L𝑘 = ∅
4: Pick 𝑘 random seed nodes, S𝑘 fromU
5: for each 𝑉𝑖 ∈ S𝑘 do

6: N𝑖 ← Up to 𝐵𝑒 hop neighborhood subgraph of 𝑉𝑖
7: 𝑅𝑖 ←Weisfeiler-Lehman(N𝑖 )
8: 𝑣𝑖 ← top ranked 𝑣 ∈ (N𝑖 ∩U) in 𝑅𝑖

9: L𝑘 = L𝑘 ∪ 𝑣𝑖
10: end for

11: L = L ∪ L𝑘

12: U = U \ L𝑘

13: end while

14: return L

Then the algorithm keeps selecting 𝑘 informative nodes until the
labeling budget 𝐵 is exhausted (lines 3-10). Note that, the number
𝑘 here is batch size forWLS. The true labels for this selected nodes
are acquired from the oracle. Then the labeled set L and unlabeled
set U are updated accordingly (lines 11-12). At the end of the
iterations, the labeled set L is ready to be used as training samples
for classification. The core functionality of the algorithm lies in
lines 3-10. Here, it first chooses 𝑘 distinct random seed nodes from
the unlabeled poolU (line 4). Then, for each of the seed node, it
constructs a subgraph with up to 𝐵𝑒 hop neighbors of the seed
node 𝑉𝑖 (line 6). This subgraph is sent to the Weisfeiler-Lehman
method (line 7) to produce the labels which we will consider as
canonical ordering of nodes based on structural properties. The
algorithm always picks the first node in the produced ordering of
the subgraph (line 8). It breaks ties arbitrarily. The selected node is
added to the current set L𝑘 (line 9). The algorithm selects 𝑘 nodes
for label acquisition for corresponding 𝑘 seed nodes. These nodes
may or may not have overlap with the seed nodes. In order to avoid
duplication, once a node is picked it is no longer considered in
the neighborhood of any other nodes. At the end of the iterations,
the algorithm returns the set of 𝑘 selected nodes (line 14). We use
exploration budget 𝐵𝑒 = 2, 3 for our evaluation and WLS-2, WLS-3
represents the corresponding versions of our algorithm.

The computational complexity ofWLS directly depends on the
complexity of Weisfeiler-Lehman algorithm. Let’s denote the
complexity of Weisfeiler-Lehman algorithm as𝑊 (𝑛) where 𝑛
is number of nodes to label. Also, let 𝑁𝑖 (ℎ) refer to the average
number of nodes in the ℎ-hop neighborhood of any node 𝑉𝑖 . The
time complexity of WLS becomes O(𝐵 ∗𝑊 (𝑁𝑖 (ℎ))).

5 EXPERIMENTAL EVALUATION

5.1 Data

We conduct experiments on four real world datasets, three of which
are based on citation networks: Cora, Citeseer, and Pubmed 1. The

1All datasets available at https://linqs.soe.ucsc.edu/data.

https://linqs.soe.ucsc.edu/data
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Dataset |𝑽 | |𝑬 | Number of

Features

Number of

Classes

Class

Entropy

Average

Degree

Clustering

Coefficient

Homophily Class Label

Citeseer 3312 4660 3703 6 1.71 2.81 0.1711 0.74 Topic
Cora 2708 5278 1433 7 1.83 3.90 0.2376 0.80 Topic
Hateful 3218 9620 1036 2 0.47 5.98 0.0785 0.72 Hateful/normal
PubMed 19717 44327 500 3 1.06 4.50 0.0602 0.80 Topic

Table 1: Properties of the datasets used in experimental evaluation.

first two corresponds to publications in computer science and the
third one is based on publications on Diabetes diseases. The fourth
dataset is sampled from the Hateful Users on Twitter dataset [28].
The original network contains around 100𝑘 users where around
5𝑘 users are annotated as either "hateful" or "normal". Our sample
consists of the annotated nodes and the edges between them.

We pre-process all datasets by removing all nodes that are not
connected to the largest connected component. Table 1 summarizes
the properties of the datasets after pre-processing. The column
titled Class Entropy represents the entropy of distribution of classes
in a dataset. The higher the entropy means more balanced class
distribution and vice versa. Cora and Hateful seems to be the best
and worst datasets in terms of class balance.

The next three columns of Table 1 shows several important net-
work properties. We can see all the datasets exhibit reasonably good
amount of homophily where homophily is measured by the pro-
portion of edges that connect two nodes from the same class. One
interesting property to notice here is the distinction of clustering
coefficient among the datasets. Based on these properties we can
categorize the datasets into two groups. Citeseer and Cora fall into
Group I with smaller number of nodes and edges, relatively high
clustering coefficient and low average degree. They also consist
of higher number of classes with reasonable class balance. On the
other hand, Hateful and Pubmed forms Group II with higher num-
ber of nodes and edges, high average degree and low clustering
coefficient. They exhibit strong class imbalance, especially Hateful.

5.2 Experimental Setup

5.2.1 Hash function for WLS. We use a specific hashing function,
Pallette-WL [42], compatiblewith the standardWeisfeiler-Lehman
algorithm (1) for implementingWLS. Pallette-WL not only avoids
higher computational cost by using refined normalized hash func-
tion, it also preserves vertex orders across iterations. This technique
has been shown to be effective in link prediction for utilizing sub-
graph features [42]. In our work, we use the Pallette-WL method
for the implementation of the Weisfeiler-Lehman algorithm. Note
that, the complexity for Pallette-WL is O(𝑛2) where 𝑛 is the num-
ber of nodes to label [42]. So, according to the description in Section
4.2.4, the overall complexity ofWLS becomes O(𝑘 ∗𝑊 (𝑁𝑖 (ℎ)2)).

5.2.2 Relational Classifiers. We consider Logistic Regression as the
local classifier for ICA and Count function as the aggregator. We
choose Simplified GCN (SGC) [38] and GraphSage [15] classifiers
as representatives of GNN. SGC is a faster approximation of the
popular relational classifier GCN.

5.2.3 Evaluation Methodology. We randomly split 80% of the nodes
for training and keep the other 20% for testing. We run all our
experiments 5 times and take the average.

Most of the datasets in this study contain multiple classes and
there is a considerable class imbalance present in the data as shown
in Table 1. To reduce the impact of class imbalance in evaluation,
we used stratification while splitting the train and test samples.
We also considered class weighted loss functions for the classifiers.
We considered Micro-F1 score as the evaluation metric. This is a
popular metric used to evaluate multi-class classification.

We varied active learning budget𝐵 from 32 up to 224.We used the
same budget for all datasets for consistency. The maximum budget,
224 represents 10% of the training nodes for all datasets except
PubMed. We consider batch size 𝑘 = 8 for some sampling methods
in our experiments. It represents the number of nodes selected
per iteration for WLS whereas for MS and KMS it represents the
number of clusters.

5.2.4 Packages and Hardware. We use NetworkX 2.3 [14] for rep-
resenting and processing graphs. Scikit-Learn library is used for
implementation of Logistic Regression and K-means clustering. We
use StellarGraph [10] package for implementing SGC and Graph-
Sage 2. For running all our experiments and recording execution
time we use Ubuntu 18.04 OS running on a 96 core Intel(R) Xeon(R)
Platinum 8275CL @ 3.00GHz processor with 185GB memory.

5.3 Results

Figures 1 shows results for all the candidate samplingmethods using
four classifiers (wvRN, ICA, SGC, GraphSage) on four different
datasets. In the figure, the rows represent different datasets and
the columns represent different classifiers used. Moreover, the y-
axis represents Micro-F1 score and the x-axis shows the number
of training nodes considered as active learning budget 𝐵. We can
observe a great deal of variance in terms of performance of different
sampling methods. To better understand the relative performance,
we list down all the Micro-F1 scores for the highest budget (224)
in Table 2. Each row in this table corresponds to a specific dataset
and a specific relational classifier. The bold cell represents the best
Micro-F1 score in the corresponding row. For example, in the first
row, for Citeseer dataset and wvRN classifier, NS-DC-H performs
the best. We rank the algorithms based on this table and present
the final ranking in Table 3. We used the following process to
generate the final ranking: first, rank all sampling algorithms for
each row of Table 2 separately and then calculate the average rank
of each sampling algorithm over all 16 rows. First column of Table
3 represents the sampling methods sorted by their average ranks
over all 16 combinations. The next three columns show the average
rank along with standard deviation of the corresponding sampling
methods based on different categories of relational classifiers. The
column All shows the average ranks for all classifiers whereas the

2The code is available online at https://github.com/edgeslab/sampling-osal
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Figure 1: Comparison of Macro-F1 scores by different sampling methods using different relational classifiers.

column GNN shows average ranks for only GNN-based classifiers
(over 8 rows). The last column shows average ranks for wvRN and
ICA classifiers (over 8 rows). Both versions of our proposed method
(WLS-3, WLS-2) top the overall ranking and show relatively low
standard deviation. This establishes its robustness across multiple

datasets and classifiers. Next, we present the main takeaways by
analyzing the performance of the sampling methods from several
different perspectives:

Group I vs Group II datasetsWe can observe from the results
that our proposed methodWLS performs relatively better in Group
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Table 2: Micro-F1 scores of 11 sampling methods across 4 datasets and 4 classifiers for active learning budget of 224 nodes.

Dataset Classifier RS NS-DC-H NS-CT-H ES-RS FeatProp WLS-2 WLS-3 SS FFS KMS MS

Citeseer wvRN 0.378199 0.424171 0.332701 0.419431 0.388132 0.405213 0.400474 0.298803 0.278156 0.354976 0.361611
Citeseer ICA 0.712322 0.581991 0.716588 0.702844 0.648728 0.733745 0.737602 0.361347 0.425220 0.718483 0.727962
Citeseer SGC 0.758588 0.700552 0.742451 0.715568 0.670169 0.737108 0.748460 0.457079 0.441471 0.758101 0.749000
Citeseer GSAGE 0.682464 0.656398 0.688152 0.661611 0.663981 0.676303 0.697630 0.356634 0.403149 0.677725 0.669668
Cora wvRN 0.418511 0.627767 0.361617 0.499396 0.558551 0.495372 0.449497 0.308099 0.276676 0.449253 0.443461
Cora ICA 0.765392 0.721932 0.753320 0.741247 0.786318 0.742455 0.760161 0.536877 0.493188 0.754930 0.771429
Cora SGC 0.762181 0.812475 0.752918 0.756856 0.800000 0.775742 0.785630 0.412851 0.397802 0.756111 0.765896
Cora GSAGE 0.783501 0.803219 0.764185 0.776660 0.793159 0.773843 0.785111 0.562559 0.467780 0.774245 0.788330
Hateful wvRN 0.813704 0.333333 0.817037 0.848519 0.837407 0.812593 0.810741 0.695926 0.456296 0.813704 0.814444
Hateful ICA 0.888519 0.896296 0.888519 0.905556 0.900741 0.890000 0.889259 0.872593 0.888889 0.884444 0.879259
Hateful SGC 0.899083 0.545549 0.899083 0.545549 0.899083 0.899083 0.899083 0.781238 0.427704 0.899083 0.899083

Hateful GSAGE 0.867598 0.340110 0.884077 0.856113 0.888896 0.899083 0.857594 0.720681 0.514434 0.899083 0.899083

Pubmed wvRN 0.409381 0.479817 0.401217 0.435446 0.409381 0.427840 0.430680 0.424074 0.420188 0.409432 0.408773
Pubmed ICA 0.715112 0.503296 0.734888 0.695538 0.550963 0.690974 0.709533 0.537221 0.472110 0.730781 0.727890
Pubmed SGC 0.523560 0.669704 0.525552 0.592995 0.496082 0.626141 0.610570 0.608615 0.549057 0.518602 0.594904
Pubmed GSAGE 0.775913 0.767546 0.776318 0.773986 0.744371 0.775355 0.779513 0.672577 0.605269 0.756542 0.769320

Table 3: Average ranks of sampling methods for different

categories of relational classifiers over all datasets.

Sampling

Avg. Rank

All GNN wvRN, ICA

WLS-3 4.19 ± 1.81 3.38 ± 1.80 5.00 ± 1.41
WLS-2 4.56 ± 1.87 4.38 ± 1.87 4.75 ± 1.85
MS 4.88 ± 2.60 4.25 ± 1.39 5.50 ± 3.28
FeatProp 5.28 ± 3.20 6.00 ± 3.24 4.56 ± 2.99
RS 5.31 ± 2.21 4.62 ± 2.29 6.00 ± 1.89
ES-RS 5.44 ± 2.71 7.12 ± 1.45 3.75 ± 2.63
KMS 5.66 ± 2.54 5.62 ± 2.83 5.69 ± 2.22
NS-DC-H 5.75 ± 4.07 5.88 ± 3.92 5.62 ± 4.21
NS-CT-H 5.88 ± 2.98 5.50 ± 2.69 6.25 ± 3.19
SS 9.19 ± 1.94 9.00 ± 2.06 9.38 ± 1.80
FFS 9.88 ± 1.76 10.25 ± 1.30 9.50 ± 2.06

II where the network is larger and exhibits higher average degree.
On the other hand random sampling (RS) and Degree Centrality
(NS-DC-H) work better in Group I. This indicates that, in smaller
networks with high clustering coefficient, simple node sampling or
even random sampling is good enough for one-shot active learning.
On the other hand, for larger graphs with low clustering coefficient
it requires more sophisticated methods like WLS.

Network Sampling vs others. Next, we observe how different
categories of sampling methods perform across all setups. Figure 1
shows that graph sampling methods like Snowball Sampling (SS) or
Forest Fire Sampling (FFS) exhibit poor performance for relational
classification. This is intuitive provided that these methods are
heavily biased in spatial exploration. They fail to explore diverse
local regions of the graph. Another expected observation is that the
non-network sampling approach KMS suffers in almost all the cases
since it can not exploit any of the relational information. Note that
even though it shows high Micro-F1 score for the Hateful dataset,
that could be due to the high class imbalance in that dataset. Node
sampling approaches seem to do best in Cora and Pubmed where
higher homophily is observed. In general graph-based clustering
method (MS) shows a consistently good performance across all

setups. Surprisingly, the hybrid approach FeatProp only performs
great in Cora but produce relatively poor results for other cases.

GNN vs others.Most of the sampling methods produces higher
Micro-F1 score when used with GNN approaches compared to
wvRN and ICA. GNN approaches show consistently better perfor-
mance across all datasets except for Hateful. Surprisingly, FeatProp
works best with ICA even though it was primarily designed for SGC.
It is interesting to note that certain sampling methods show signifi-
cant variation in performance based on the classifier. For example,
degree centrality (NS-DC-H) shows good result using SGC (3rd row)
but quite poor using ICA (2nd row) on Citeseer dataset. In contrast,
WLS-2 and WLS-3 show less variance across different classifiers
and datasets. The last two columns of Table 3 show the difference in
performance for GNN-based classifiers versus previous relational
classifiers. The cells marked bold represent the top three average
ranks in each category and the top three overall sampling methods
also perform the best for GNN-based classifiers. However, ES-RS
takes the top spot in the last column which supports the findings
by Ahmed et al. [3].
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Figure 2: Comparison of top three sampling methods vs

ALFNET using ICA classifier on Citeseer dataset.

One-shot vs Multi-shot. In order to show the effectiveness of
one-shot active learning, we compare the sampling methods with
ALFNET, a state-of-the-art active learning algorithm for relational
data which requires iterative training over the acquired samples.
Figure 2 shows both Micro-F1 score (2a) and execution times (2b)
for the sampling methods and ALFNET on the Citeseer dataset. We
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choose only the top 3 (second row of Table 2) sampling methods
(WLS-3, WLS-2, MS) for convenience of comparison. In Figure 2a,
we can see the sampling methods show competitive results com-
pared toALFNET. However, in Figure 2b the difference in execution
time is significant. Note that, the execution times presented here
is in minutes and lines for WLS-2, WLS-3 overlap with each other.
This big difference in execution time and competitive Micro-F1
score justifies the motivation behind one-shot active learning.

6 CONCLUSIONS

We address a constrained classification problem, one-shot active
learning for relational data. The objective is to reduce both labeling
and computation cost of relational classification in large real world
network datasets. We explore a wide variety of sampling meth-
ods as solutions and proposed a node sampling method based on
Weisfeiler-Lehman algorithm. We experimentally evaluate all these
sampling methods on four real world network datasets and four
popular relational classifiers. The main takeaways are as follows:
• WLS performs best with GNN-based classifiers whereas ES-RS
shows best results for wvRN and ICA classifier. WLS also shows
overall best performance across all setups.
• Network-based node sampling methods work well for smaller
networks with high clustering coefficient.
• One-shot active learning methods produce competitive results
compared to state-of-the-art multi-shot active learning methods
with much smaller computational cost.
This work shows a comprehensive analysis of the effectiveness

of sampling methods for one-shot active learning on relational data.
A promising next step could be developing a cost-effective multi-
shot active learning method that can effectively solve the scaling
issue of relational classifiers.
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