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ABSTRACT
Graph generation is a task that has been explored with a wide
variety of methods. Recently, several papers have applied Genera-
tive Adversarial Networks (GANs) to this task, but most of these
methods result in graphs of full or unknown rank. Many real-world
graphs have low rank, which roughly translates to the number of
communities in that graph. Furthermore, it has been shown that
taking the low rank approximation of a graph can defend against ad-
versarial attacks. This suggests that testing models against graphs
of different rank may be useful. However, current methods pro-
vide no way to control the rank of generated graphs. In this paper,
we propose BRGAN: a GAN architecture that generates synthetic
graphs, which in addition to having realistic graph features, also
have bounded (low) rank. We extensively evaluate BRGAN and
show that it is able to generate synthetic graphs competitive with
state-of-the-art models, with rank equal to or lower than the desired
rank.
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1 INTRODUCTION
Graph generation is a common task, and many models exist for this
task. Traditional statistical methods (such as the Barabási–Albert
model [1]) usually attempt to model specific attributes of the graph.
While this can lead to generated graphs being similar to the target
graph with respect to one or more attributes, it requires the user
to accurately identify characteristics of the graph they wish to
mimic. This issue has been addressed with the introduction of
neural network models (like GraphRNN [26]), which learn directly
from a set of graphs without requiring the user to explicitly declare
any graph attributes.

Recent advances in the field include the use of Generative Ad-
versarial Networks (GANs) for graph generation. The GAN was
first introduced in 2014 by Goodfellow et al.[11]. While they were
originally used for image generation, they have since been applied
to a wide variety of fields, including the field of graph generation.

A current state-of-the-art model LGGAN [7] learns to directly
generate the adjacency matrices of graphs and its corresponding
labels given a set of graphs as input. It does this by using a GANwith
a Graph Convolutional Network (GCN) [18] as its discriminator
and a Multi-layer Perceptron (MLP) network as its generator.
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There are also several other deep learning methods. GraphRNN
[26] models the graph as a sequence and uses a RNN to generate
realistic graphs. GraphVAE [21] uses a Variational Autoenconder
(VAE) to generate graphs.

However, most of these existing graph generation techniques
tend to produce a graph of full or high rank. While this is sufficient
for most use cases, generating a graph of a known rank can also be
useful. The rank of a community graph roughly corresponds to the
number of communities within the graph. Bounding the rank of the
generated graph therefore allows a user to generate graphs with
bounded number of communities, which is difficult or impossible
with existing graph generation models.

Low-rank approximations of graphs have also been shown to be
useful in defending against adversarial attacks [5], which further
suggests that the rank of a graph is a useful parameter. Being able
to control the rank allows users to generate synthetic datasets with
realistic graphs to test the effectiveness of new models on inputs
with different ranks.

Determining the full rank of amatrix is computationally tractable,
done by the Singular Value Decomposition (SVD). However, the
problem becomes difficult when we move to higher-order struc-
tures like time evolving graphs, since finding the rank of three-
dimensional tensor is NP-hard [14]. Generating realistic data where
the rank of the data is known can further promote research in de-
veloping and testing methods like AutoTen [19] or NSVD [22] for
approximating the rank of a tensor. We reserve this for future work,
however, it serves as compelling motivation for the generation of
realistic matrices and higher-order tensors of known rank.

This work focuses on generating graphs (adjacency matrices) of
fixed rank, rather than tensors, because the SVD can be used to find
the approximate rank of a matrix in polynomial time. This allows
us to evaluate the effectiveness of our bound on the rank of the
graph. We can also evaluate the quality of our generated graphs by
comparing it against other established models.

We propose a new model, BRGAN, that first generates factor
matrices of rank of at most 𝜌 and uses these factor matrices to
construct the adjacency matrix. This allows us to bound the rank
of the generated graphs.

Our contributions include:
• Novel problem formulation: we propose the problem of
adversarially generating an adjacency matrix with a desired
rank.

• Novel architecture: we propose a novel architecture for
the above problem that generates the adjacency matrix from
factor matrices.

• Experimentation: we evaluate the effectiveness of our ap-
proach along two dimensions: the rank of the generated
graphs and the realism of the generated.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 PROBLEM FORMULATION & PROPOSED
METHOD

In this work, we generate a graph of bounded rank. We define the
rank of a graph as the rank of its adjacency matrix. Recall that the
rank of a matrix is equal to the number of rank-1 matrices required
to sum up to it.

SVD can be used to find a rank-𝑘 approximation of an adjacency
matrix which, by the Eckart–Young–Mirsky theorem, is optimal
with respect to the Frobenius norm of the difference between the
rank-𝑘 approximation and original matrix. However, this approx-
imation will not necessarily preserve graph properties. Our goal
is to generate a realistic graph from input graphs that will exhibit
similar graph properties to those of the inputs.

Current graph generation models produce graphs of unbounded
rank. This is because existing methods tend to either model the
graph as a sequence or generate the adjacency matrix directly,
which makes it difficult to bound the rank of the resulting matrix.

Let the two factor matrices be denoted A and B, where A ∈
R𝑛×𝜌 and B ∈ R𝜌×𝑛 . Then, their product C = AB ∈ R𝑛×𝑛 and
rank (C) ≤ min(rank (A), rank (B)). By definition, rank (A) ≤
min(𝑛, 𝜌) and rank (B) ≤ min(𝑛, 𝜌). If we define 𝜌 such that 𝜌 ≤ 𝑛,
we know that rank (A), rank (B) ≤ 𝜌 . Then, rank (C) ≤ 𝜌 . We
exploit this property to generate a graph of bounded rank. Note
that this approach does not guarantee that C is of exactly rank 𝜌

because the vectors in A and B are not guaranteed to be linearly
independent.

Then, we simply have to generate the two factor matrices A, B
and use those two to generate the output matrix 𝐶 . We can then
calculate the loss and use that to backpropagate as usual.

2.1 Architecture
A GAN consists of two main models: the generator G and the
discriminator D. The generator maps a sample from a space (𝑧) to
an adjacencymatrixM. The discriminator takes an adjacencymatrix
M and outputs the probability 𝑝 of a sample being fake. These two
models are then trained in unison in the hope that the generator
will improve at generating realistic graphs and the discriminator
will improve in identifying fake graphs. We use the CT-GAN [25]
framework, which improves upon WGAN-GP [13], which is in turn
an improvement on WGAN [2].

G consists of a multi-layer perceptron (MLP) network followed
by twoMLP networks. The twoMLP networks take the output of the
first MLP network and use it to generate the factor matrices. This
reduces the number of parameters and results in faster convergence
and better performance when compared to a single MLP network.

D accepts an 𝑛 × 𝑛 adjacency matrix and consists of several
Graph Convolutional Network (GCN) layers followed by a single
fully-connected layer. We take advantage of the residual GCN con-
nections by performing a max pool across all of the GCN layer
outputs. As Fan and Huang [7] found, the network performs better
with these residual connections.

We apply a scaled hard tanh to the output of each network to
clip the output values to [0, 1]. While this does not cause each entry
in the final adjacency matrix 𝑀 to be bounded to [0, 1], it does
help reduce the chance of the discriminator easily detecting fakes
based on the value of the nodes, rather than on the structure of the

graph. This helps ensure that the model continues training and the
discriminator loss does not reach 0. We tested both the scaled hard
tanh and a sigmoid and found no major differences.

3 EXPERIMENTAL EVALUATION
In evaluating our model, we try to answer two different questions.
First, can our model generate graphs of a specific rank? Second, do
those graphs mimic real-world graphs?

3.1 Methodology
We evaluated our model using egonets extracted from the CORA
and Citeseer citation graph datasets [20]. We split the graph into a
small dataset, which consists of 2-egonets and 3-egonets with 30-50
nodes. This was also used to evaluate LGGAN [7], which allows us
to benchmark our results against theirs.

Note that while these are the same base datasets as in You et al.
[26], we sample the egonets differently since we wish to compare
our results with Fan and Huang [7] (who also use the same datasets).

While BRGAN’s discriminator uses a GCN and is node permu-
tation invariant, BRGAN’s generator is affected by node ordering
because it uses a MLP. As such, we use the approach used by You et
al.[26] and Fan et al.[7] and generate all possible BFS orderings of
the graph. This allows use to only have 𝑛2 permutations per graph
rather than the full 𝑛! possible permutations. We then train on this
augmented dataset.

Both the generator and discriminator were trained with the RM-
Sprop [15] optimizer because we found that it tends to be more
stable than ADAM [17] for this case. Arjovsky et al.[2] also sug-
gested using RMSprop for WGANs, although Wei et al.[25] uses
ADAM. We did not perform a hyperparameter search for the learn-
ing rate and found that our model generally works well with any
reasonable learning rate. For the CTGAN loss function, we used
𝜆1 = 10 and 𝜆2 = 2: the same values as Wei et al.[25].

The output of G is an adjacency matrix𝑀 with values in [0, 𝑟 ],
although values tend to be in the range [0, 1] due to the input values
also being in this range. The graphs are then thresholded by some
threshold 𝜏 . That is:

M𝑖, 𝑗 =

{
0, if M𝑖, 𝑗 ≤ 𝜏

1, otherwise
(1)

𝜏 controls the sparsity of the final graph. As 𝜏 → 0, |𝑉 | → 0 and
as 𝜏 → 𝑟 , |𝑉 | →𝑚 · 𝑛. For our tests, we chose 𝜏 = 0.5 because the
majority of the values are in the range [0, 1] and 𝜏 = 0.5 provides a
mid-way bound.

We found that some of the graphs generated by G sometimes had
disconnected vertices. Disconnected vertices are a problem because
the clustering coefficient of a disconnected graph is infinity.

The disconnected vertices were likely caused by the fact that we
used different graph sizes for our input dataset. This means that
we had to zero-pad the adjacency matrix of the dataset’s graphs to
feed it into the network. We chose to zero-pad rather than to pad
it with the identity matrix because this results in more sparsity in
the input graph and encourages a sparser output representation. To
solve the issue with disconnected vertices, we remove any vertices
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Figure 1: Architecture of the discriminator D.
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Figure 2: Architecture of the generator G.

that had no edges on both the input and generated graphs before
calculating any statistics.

Singular Value Decomposition (SVD) can be used to find the
approximate rank of a matrix. The SVD of a matrix M is as follows:

M = UΣV𝑇 (2)

where M is a 𝑚 ×𝑚 orthogonal matrix, Σ is a diagonal non-
negative 𝑚 × 𝑛 matrix, and V is a 𝑛 × 𝑛 orthogonal matrix. By
convention, the singular values 𝜎1, 𝜎2, . . . 𝜎𝑚 are sorted in descend-
ing order by value. Then, the approximate rank of a matrix can be
found by finding the smallest index 𝑘 where 𝜎𝑘+1 < 𝜖 , where 𝜖 is
some small constant. In our experiments, we found that 𝜖 = 10−6 is
sufficient.

3.2 Experiental Results
We evaluated the realism of the generated graphs. To do so, we
compared several graph statistics of the input graphs with those of

the output graphs. We did this by calculating the Mean Maximum
Discrepancy (MMD) [12] between the degree distribution, cluster-
ing coefficient, and orbits of the two sets of graphs. We compared
this to the results of various other graph generation methods in the
tables below. The source code for LGGAN was not available at the
time of writing, so we used the results reported in their paper [7].

While the results vary with the value of 𝜌 , we can see that BR-
GAN generally has similar degree and orbit MMDs when compared
to LGGAN. However, it tends to have a higher clustering MMD.
This is likely because lowering rank has the largest effect (out of
the three tested graph statistics) on the clustering coefficient of a
graph. This is because of the fact that we are imposing low-rank
structure on the adjacency matrix of the graph. Then, all of the
nodes live in a much lower dimension, which increases the density
of connections and therefore would also increase the clustering
coefficient.
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We also evaluated the bound on the rank of the generated graphs
and, as theoretically expected, we found that our bound was effec-
tive and the rank of generated matrices were equal to or less than 𝜌 .
We also found that as 𝜌 increases, the median rank of the generated
graphs generally also increases. However, the median rank of the
generated matrices is closer to 𝜌 when 𝜌 is small. This means that 𝜌
becomes a tighter bound on the true rank of the generated graphs
as 𝜌 → 1.

This is because it is difficult to create a realistic approximation
of a high-rank matrix while maintaining low rank. However, as
the rank bound is increased, the median generated rank does not
increase linearly. This is because some of the input graphs are
already of low rank and therefore some of the generated graphs
will not be of higher rank, leading to a lower median generated
graph rank.

We also noticed that the MMD of our graph attributes do not
always uniformly improve as 𝜌 increases. This is likely because that,
as the number of parameters increases as 𝜌 increases. However, the
clustering MMD does improve in almost all cases as 𝜌 increases.

Figure 3: Barplot of the true rank of generated graphs from the
small Citeseer dataset with 𝜌 = 10, 15, 20, 30. The rightmost bar rep-
resents the distribution of the original dataset. We can observe that
the bound on the rank is effective.

Figure 4: Distribution of the true rank of generated graphs from
the small CORA dataset with 𝜌 = 10, 15, 20, 30. The rightmost bar
represents the distribution of the original dataset. We can observe
that the bound on the rank is effective.

Model Name Deg. Clust. Orbit
Erdos-Renyi 0.68 0.94 0.48
Barabási–Albert 0.31 0.53 0.11
MMSB 0.21 0.68 0.07
DeepGMG 0.34 0.44 0.27
GraphRNN 0.26 0.38 0.39
LGGAN 0.13 0.08 0.03
BRGAN (𝜌 = 10) 0.02 0.64 0.07
BRGAN (𝜌 = 15) 0.02 0.56 0.04
BRGAN (𝜌 = 20) 0.03 0.47 0.07
BRGAN (𝜌 = 30) 0.09 0.39 0.11
BRGAN (𝜌 = 50) 0.07 0.34 0.11

Table 1: Evaluation results for the small CORA dataset. The degree
and orbit MMD values are largely competitive with the other gener-
ative models, but LGGAN has a significantly lower clustering MMD
value. Note that the numbers for othermodels are the ones reported
by Fan and Huang [7]

Model Name Deg. Clust. Orbit
Erdos-Renyi 0.63 0.86 0.12
Barabási–Albert 0.37 0.18 0.11
MMSB 0.17 0.5 0.11
DeepGMG 0.27 0.36 0.2
GraphRNN 0.19 0.2 0.39
LGGAN 0.17 0.13 0.04
BRGAN (𝜌 = 10) 0.08 0.18 0.12
BRGAN (𝜌 = 15) 0.11 0.22 0.08
BRGAN (𝜌 = 20) 0.07 0.23 0.08
BRGAN (𝜌 = 30) 0.09 0.28 0.07
BRGAN (𝜌 = 50) 0.03 0.27 0.05

Table 2: Evaluation results for the small Citeseer dataset. The degree
MMDvalues aremuch better than that of othermodels, but the clus-
tering coefficient MMD are generally higher than that of LGGAN.
Note that the numbers for other models are the ones reported by
Fan and Huang [7]

4 RELATEDWORK
Graph generation has been widely studied, and many different
models exist for this task. Traditional statisical models such as
the Barabási–Albert [1] and exponential random graph models are
created to model specific graph properties and tend to work well
for only specific use cases.

One such example is the Erdös-Rényi-Gilbert random graph
model [6] [9]. The model is often referred to in the form𝐺 (𝑁, 𝑝) or
𝐺 (𝑁, 𝐸), where 𝑁 is the number of nodes, 𝐸 is the number of edges,
and 𝑝 is the probability of an edge existing between two nodes.
One of the key properties of this model is that expected number of
neighbors for each node is the same [10]. However, this property is
often not true of real-world graphs.

Several models attempt to address this limitation by attempting
to vary node degree and mimic more realistic node distributions.
Notably, the Barabási–Albert model attempts to address this issue
by using preferential attachment, which mimics the evolution of a
scale-free graph over time and results in the creation of “hubs" in
the graph.
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Another common family of statistical graph generation models
are the exponential random graph models (ERGMs). An example of
this are Markov graphs, for which Frank and Strauss [8] proved the
probability distributions. This was later generalized by Wasserman
and Pattison [24] in the form of 𝑝∗ models. With Markov chain
Monte Carlo (MCMC) proposed by Hunter and Handcock [16], it is
possible to estimate the parameters of ERGMs and generate similar
graphs.

However, these statistical models all share theweakness that they
attempt to model specific graph properties. Recently, advances in
neural networks and deep learning have led the creation of several
new models that learn directly from an input distribution of one or
more graph(s). Unlike traditional models, these methods attempt
to learn the structure of a graph rather than simply attempting to
match specific attributes. Some notable methods include GraphRNN
[26], NetGAN [3], MolGAN [4].

NetGAN [3] takes in a graph and learns the distribution of biased
random walks using a LSTM, which allows it to easily scale to large
graphs. MolGAN [4] uses a reinforcement learning objective with
a reward network (in addition to the standard discriminator and
generator) to generate realistic molecular graphs. GraphGAN [23]
proposes a novel graph softmax function and learns the connectivity
distribution over the vertices, but does not directly generate similar
graphs.

However, none of these models provide a method to bound the
rank of the generated graph. BRGAN allows a user to easily bound
the rank of the generated graphs while maintaining competitve
performance.

5 CONCLUSION
In this work, we propose the Bounded Rank GAN (BRGAN), which
generates graphs or rank equal to or lower than a hyperparameter
𝜌 . We discuss the merits and limitations of this approach. Finally,
we thoroughly evaluate the performance of BRGAN and show that
it has competitive performance with existing models and that it
provides an effective bound on the rank of generated graphs.
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