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ABSTRACT
In many application settings involving networks, such as messages

between users of an on-line social network or transactions between

traders in financial markets, the observed data consist of times-

tamped relational events, which form a continuous-time network.

We propose the Community Hawkes Independent Pairs (CHIP) gen-
erative model for such networks. We show that applying spectral

clustering to adjacency matrices constructed from relational events

generated by the CHIP model provides consistent community de-
tection for a growing number of nodes. We also develop consistent

and computationally efficient estimators for the model parameters.

We demonstrate that our proposed CHIP model and estimation

procedure scales to large networks with tens of thousands of nodes

and provides superior fits than existing continuous-time network

models on several real networks.

This submission is a novel research paper.
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1 INTRODUCTION
A variety of complex systems in the computer, information, biolog-

ical, and social sciences can be represented as a network, which

consists of a set of objects (nodes) and relationships (edges) between

the nodes. In many application settings, we observe edges in the
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form of distinct events occurring between nodes over time. For

example, in on-line social networks, users interact with each other

through events that occur at specific time instances such as liking,

mentioning, or sharing another user’s content. Such interactions

form timestamped relational events, where each event is a triplet

(𝑖, 𝑗, 𝑡) denoting events from node 𝑖 (sender) to node 𝑗 (receiver) at

timestamp 𝑡 . The observation of these triplets defines a dynamic

network that continuously evolves over time.

Relational event data are usually modeled by combining a point

process model for the event times with a network model for the

sender and receiver [10, 13, 14, 33, 42, 43, 53, 57]. We refer to such

models as continuous-time network models because they provide

probabilities of observing events between two nodes during arbitrar-

ily short time intervals. For model-based exploratory analysis and

prediction of future events with relational event data, continuous-

time network models are often superior to their discrete-time coun-

terparts [41, 54–56, 58], which first aggregate events over time

windows to form discrete-time network “snapshots” and thus lose

granularity in modeling temporal dynamics. However, theoretical

analysis of estimators is significantly more advanced for discrete-

time network models [9, 19, 23, 45].

We propose the Community Hawkes Independent Pairs (CHIP)
model which is inspired by the recently proposed Block Hawkes

Model (BHM) [33] for timestamped relational event data. Both

CHIP and BHM are based on the Stochastic Block Model (SBM) for

static networks [29]. In the BHM, events between different pairs of

nodes belonging to the same pair of communities are dependent,

which makes it difficult to analyze. In contrast, for CHIP the pairs

of nodes in the same community generate events according to

independent univariate Hawkes processes with shared parameters,

so that the number of parameters remains the same as in the BHM.

The independence between node pairs enables tractable analysis of

the CHIP model and more scalable estimation than the BHM.

Our main contributions are as follows. (1) We demonstrate that

spectral clustering provides consistent community detection in

the CHIP model for a growing number of nodes. (2) We propose

consistent and computationally efficient estimators for the model

parameters for a growing number of nodes and time duration. (3)

We show that the CHIP model provides better fits to several real

datasets and scales to much larger networks than existing models,

including a Facebook network with over 40,000 nodes and over

800,000 events. Other point process network models have demon-

strated good empirical results, but to the best of our knowledge,

this work provides the first theoretical guarantee of estimation

accuracy. Our asymptotic analysis also has tremendous practical

value given the scalability of our model to large networks with tens

of thousands of nodes.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 BACKGROUND
2.1 Hawkes Processes
The Hawkes process [25] is a counting process designed to model

continuous-time arrivals of events that naturally cluster together

in time, where the arrival of an event increases the chance of the

next event arrival immediately after. They have been used to model

earthquakes [39], financial markets [8, 16], and user interactions

on social media [13, 62].

A univariate Hawkes process is a self-exciting point process

where its conditional intensity function given a sequence of event

arrival times {𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑙 } for 𝑙 events up to time duration𝑇 takes

the general form 𝜆(𝑡) = 𝜇 + ∑𝑡𝑙
𝑡𝑖<𝑡

𝛾 (𝑡 − 𝑡𝑖 ), where 𝜇 is the back-

ground intensity and 𝛾 (·) is the kernel or the excitation function.

A frequent choice of kernel is an exponential kernel, parameter-

ized by 𝛼, 𝛽 > 0 as 𝛾 (𝑡 − 𝑡𝑖 ) = 𝛼𝑒−𝛽 (𝑡−𝑡𝑖 ) , where the arrival of an
event instantaneously increases the conditional intensity by the

jump size 𝛼 , after which the intensity decays exponentially back

towards 𝜇 at rate 𝛽 . Restricting 𝛼 < 𝛽 yields a stationary process.

We use an exponential kernel for the CHIP model, since it has been

shown to provide a good fit for relational events in social media

[22, 33, 40, 60].

2.2 The Stochastic Block Model
Statistical models for networks typically consider a static network

rather than a network of relational events. Many static network

models are discussed in the survey by Goldenberg et al. [20]. A static

network with 𝑛 nodes can be represented by an 𝑛 × 𝑛 adjacency

matrix 𝐴 where 𝐴𝑖 𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗

and 𝐴𝑖 𝑗 = 0 otherwise. We consider networks with no self-edges,

so 𝐴𝑖𝑖 = 0 for all 𝑖 . For a directed network, we let 𝐴𝑖 𝑗 = 1 if there is

an edge from node 𝑖 to node 𝑗 .

One model that has received significant attention is the stochastic
block model (SBM), formalized by Holland et al. [29]. In the SBM,

every node 𝑖 is assigned to one and only one community or block
𝑐𝑖 ∈ {1, . . . , 𝑘}, where 𝑘 denotes the total number of blocks. Given

the block membership vector c = [𝑐𝑖 ]𝑛𝑖=1
, all entries of the adja-

cency matrix 𝐴𝑖 𝑗 are independent Bernoulli random variables with

parameter 𝑝𝑐𝑖 ,𝑐 𝑗 , where 𝑝 is a 𝑘 ×𝑘 matrix of probabilities. Thus the

probability of forming an edge between nodes 𝑖 and 𝑗 depends only

on the block memberships 𝑐𝑖 and 𝑐 𝑗 . There have been significant

recent advancements in the analysis of estimators for the SBM.

Several variants of spectral clustering [51], including regularized

versions [4, 11], have been shown to be consistent estimators of

the community assignments for a growing number of nodes in the

SBM and various extensions [12, 18, 32, 35, 46–48, 52, 59]. Spec-

tral clustering scales to large networks with tens of thousands of

nodes and is generally not sensitive to initialization, so it is also a

practically useful estimator.

2.3 Related Work
One approach for modeling continuous-time networks is to treat

the edge strength of each node pair as a continuous-time function

that increases when an event occurs between the node pair and

then decays afterwards [3, 31, 63]. Another approach is to combine

a point process model for the event times, typically some type of

Hawkes process, with a network model. The conditional intensity

functions of the point processes then serve as the time-varying

edge strengths. Point process network models are used in two main

settings. The first involves estimating the structure of a latent or

unobserved network from observed events at the nodes [17, 21, 27,

37, 38, 49]. These models are often used to estimate static networks
of diffusion from information cascades.

In the second setting, whichwe consider in this paper, we directly

observe events between pairs of nodes so that events take on the form
(𝑖, 𝑗, 𝑡) denoting an event from node 𝑖 to node 𝑗 at timestamp 𝑡 . Our

objective is to model the dynamics of such event sequences. In many

applications, including messages on on-line social networks, most

pairs of nodes either never interact and thus have no events between

them. Thus, most prior work in this setting utilizes low-dimensional

latent variable representations of the networks to parameterize the

point processes.

The latent variable representations are often inspired by gener-

ative models for static networks such as continuous latent space

models [28] and stochastic block models [29], resulting in the de-

velopment of point process network models with continuous latent

space representations [57] and latent block or community repre-

sentations [10, 13, 14, 33, 42, 43, 53]. Point process network models

with latent community representations are most closely related

to the model we consider in this paper. Exact inference in such

models is intractable due to the discrete nature of the community

assignments. Approximate inference techniques including Markov

Chain Monte Carlo (MCMC) [10, 13, 43] or variational inference

[33, 42] have been used in prior work. While such techniques have

demonstrated good empirical results, to the best of our knowledge,

they come with no theoretical guarantees.

3 THE COMMUNITY HAWKES
INDEPENDENT PAIRS (CHIP) MODEL

We consider a generative model for timestamped relational event

networks that we call the Community Hawkes Independent Pairs
(CHIP) model. The CHIP model has parameters (𝝅 , 𝜇, 𝛼, 𝛽). Each
node is assigned to a community or block 𝑎 ∈ {1, . . . , 𝑘} with proba-
bility 𝜋𝑎 , where each entry of 𝝅 is non-negative and all entries sum

to 1. We represent the block assignments of all nodes either by a

length 𝑛 vector c = [𝑐𝑖 ]𝑛𝑖=1
or an 𝑛×𝑘 binary matrix𝐶 where 𝑐𝑖 = 𝑞

is equivalent to 𝐶𝑖𝑞 = 1, 𝐶𝑖𝑙 = 0 for all 𝑙 ≠ 𝑞. Each of the parame-

ters 𝜇, 𝛼, 𝛽 is a 𝑘 × 𝑘 matrix. Event times between node pairs (𝑖, 𝑗)
within a block pair (𝑎, 𝑏) follow independent exponential Hawkes

processes with shared parameters: baseline rate 𝜇𝑎𝑏 , jump size 𝛼𝑎𝑏 ,

and decay rate 𝛽𝑎𝑏 . The generative process for our proposed CHIP

model is as follows:

𝑐𝑖 ∼ Categorical(𝝅) for all nodes 𝑖

t𝑖 𝑗 ∼ Hawkes process(𝜇𝑐𝑖𝑐 𝑗 , 𝛼𝑐𝑖𝑐 𝑗 , 𝛽𝑐𝑖𝑐 𝑗 ) for all 𝑖 ≠ 𝑗

𝑌 = Row concatenate [(𝑖1, 𝑗1, t𝑖 𝑗 )] over all 𝑖 ≠ 𝑗

Let 𝑇 denote the end time of the Hawkes process, which would

correspond to the duration of the data trace. The column vector

of event times t𝑖 𝑗 has length 𝑁𝑖 𝑗 (𝑇 ), which denotes the number

of events from node 𝑖 to node 𝑗 up to time 𝑇 . Let 𝑌 denote the

event matrix and has dimensions 𝑙 × 3, where 𝑙 =
∑
𝑖, 𝑗 𝑁𝑖 𝑗 (𝑇 )

denotes the total number of observed events over all node pairs.
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Algorithm 1 Estimation procedure for Community Hawkes Inde-

pendent Pairs (CHIP) model

Input: Relational event matrix 𝑌 , number of blocks 𝑘

Result: Estimated block assignments 𝐶 and CHIP model param-

eters (�̂� , 𝜇, 𝛼, ˆ𝛽)

1: for all node pairs 𝑖 ≠ 𝑗 do
2: 𝑁𝑖 𝑗 = number of events from 𝑖 to 𝑗 in 𝑌

3: 𝐶 ← Spectral clustering(𝑁,𝑘)
4: for all block pairs (𝑎, 𝑏) do
5: Compute estimates (�̂�𝑎𝑏 , 𝜇𝑎𝑏 ) using (1)
6:

ˆ𝛽𝑎𝑏 ← maximize log-likelihood by line search

7: 𝛼𝑎𝑏 ← ˆ𝛽𝑎𝑏�̂�𝑎𝑏

8: �̂� ← proportion of nodes in each block

9: return [𝐶, �̂� , 𝜇, 𝛼, ˆ𝛽]

It is constructed by row concatenating triplets (𝑖, 𝑗, 𝑡𝑖 𝑗 (𝑞)) over all
events 𝑞 ∈ {1, . . . , 𝑁𝑖 𝑗 (𝑇 )} for all node pairs 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 ≠ 𝑗 .

3.1 Relation to Other Models
Our proposed CHIP model has a generative structure inspired by

the SBM for static networks. Other point process network models

in the literature have also utilized similar block structures, but they

have been incorporated in two different approaches.

One approach involves placing point process models at the level

of block pairs [10, 33, 42, 53]. For a network with 𝑘 blocks, 𝑘2
dif-

ferent point processes are used to generate events between the 𝑘2

block pairs. To generate events between pairs of nodes, rather than

pairs of blocks, the point processes are thinned by randomly select-

ing nodes from the respective blocks so that all nodes in a block are

stochastically equivalent, in the spirit of the SBM. Such models have

demonstrated good empirical results, but the dependency between

node pairs complicates analysis of the models.

The other approach involves modeling pairs of nodes with inde-

pendent point processes that share parameters among nodes in the

same block pair [13, 14]. By having node pairs in the same block

pair share parameters, the number of parameters is the same as

for the models with block pair-level point processes. However, by

using independent point processes for all node pairs, there is no

dependency between node pairs, which simplifies analysis of the

model. We exploit this independence to perform the theoretical

analysis of our estimator in Section 4.

3.2 Estimation Procedure
As with many other block models, the maximum-likelihood es-

timator for the discrete community assignments 𝐶 is intractable

except for extremely small networks (e.g. 10 nodes). We propose

a scalable estimation procedure for the CHIP model that has two

components as shown in Algorithm 1: a community detection com-

ponent and a parameter estimation component. For the community

detection component, we use spectral clustering on the weighted

adjacency or count matrix 𝑁 (𝑇 ) or simply 𝑁 with entries 𝑁𝑖 𝑗 (𝑇 ).
Since this is a directed adjacency matrix, we use singular vectors

rather than eigenvectors for spectral clustering.

For the parameter estimation component, we first consider es-

timating the Hawkes process parameters (𝜇𝑎𝑏 , 𝛼𝑎𝑏 , 𝛽𝑎𝑏 ) for each

block pair (𝑎, 𝑏) using only the count matrix 𝑁 , which discards

event timestamps. Even without access to the event timestamps,

we are able to estimate 𝜇𝑎𝑏 and the ratio𝑚𝑎𝑏 = 𝛼𝑎𝑏/𝛽𝑎𝑏 , but not
the parameters 𝛼𝑎𝑏 and 𝛽𝑎𝑏 separately. Let 𝑛𝑎𝑏 denote the number

of node pairs in block pair (𝑎, 𝑏), where 𝑛𝑎𝑏 = |𝑎 | |𝑏 | for 𝑎 ≠ 𝑏 and

𝑛𝑎𝑏 = |𝑎 | |𝑎 − 1| for 𝑎 = 𝑏, with |𝑎 | denoting the number of nodes in

block 𝑎. Let 𝑁𝑎𝑏 and 𝑆2

𝑎𝑏
denote the sample mean and (unbiased)

sample variance, respectively, of the counts of the number of events

between all node pairs (𝑖, 𝑗) in block pair (𝑎, 𝑏). Using 𝑁𝑎𝑏 and 𝑆2

𝑎𝑏
,

we propose the following method of moments estimators (condi-

tioned on the estimated blocks) for𝑚𝑎𝑏 and 𝜇𝑎𝑏 from the count

matrix 𝑁 :

�̂�𝑎𝑏 = 1 −
√

𝑁𝑎𝑏

𝑆2

𝑎𝑏

, 𝜇𝑎𝑏 =
1

𝑇

√
(𝑁𝑎𝑏 )3
𝑆2

𝑎𝑏

. (1)

Finally, the vector of block assignment probabilities 𝝅 can be easily

estimated using the proportion of nodes in each block, i.e. 𝜋𝑎 =
1

𝑛

∑𝑛
𝑖=1

𝐶𝑖𝑎 for all 𝑎 = 1, . . . , 𝑘 .

In some prior work, exponential Hawkes processes are param-

eterized only in terms of𝑚 and 𝜇, with 𝛽 treated as a known pa-

rameter that is not estimated [6, 7, 61]. In this case, the estimation

procedure is complete. On the other hand, if we want to estimate

the values of both 𝛼 and 𝛽 rather than just their ratio, we have to use

the actual event matrix 𝑌 with the event timestamps. To separately

estimate the 𝛼𝑎𝑏 and 𝛽𝑎𝑏 parameters, we replace 𝛼𝑎𝑏 = 𝛽𝑎𝑏𝑚𝑎𝑏 in

the exponential Hawkes log-likelihood for block pair (𝑎, 𝑏) then
plug in our estimate �̂�𝑎𝑏 for𝑚𝑎𝑏 . Then the log-likelihood is purely

a function of 𝛽𝑎𝑏 and can be maximized using a standard scalar

optimization or line search method.

4 THEORETICAL ANALYSIS OF ESTIMATORS
We first derive non-asymptotic upper bounds on the misclustering

error in a simplified setting typically employed in the literature.

We then derive consistency and asymptotic normality properties

of the estimators for the Hawkes process parameters. In an ex-

tended version of the paper on arXiv [5], we provide an analogous

theorem for the general CHIP model, theorems for spectral cluster-

ing on an unweighted adjacency matrix, comparisons between the

weighted (count) and unweighted adjacency matrices, and proofs

of all theorems.

4.1 Analysis of Estimated Community
Assignments

We define the error of community detection as the misclustering

error rate 𝑟 = infΠ
1

𝑛

∑𝑛
𝑖=1

1(𝑐𝑖 ≠ Π(𝑐𝑖 )), where Π(·) denotes the
set of all permutations of the community labels. Our proposed CHIP

model considers directed events; however, we analyze community

detection on undirected networks to better match up with the

literature on analysis of spectral clustering for the SBM. The bounds

and consistency properties we derive still apply to the directed case

with only a change in the constants. We assume that𝑇 →∞, which
can be achieved by rescaling the time unit for event times. Under

this assumption, the mean and variance of the number of events

between nodes (𝑖, 𝑗) are [24, 26, 36]

𝜈𝑎𝑏 =
𝜇𝑎𝑏𝑇

1 − 𝛼𝑎𝑏/𝛽𝑎𝑏
, 𝜎2

𝑎𝑏
=

𝜇𝑎𝑏𝑇

(1 − 𝛼𝑎𝑏/𝛽𝑎𝑏 )3
. (2)
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We analyze community detection error in a simplified special

case of our CHIP model which is in similar spirit to a commonly-

employed case in the stochastic block models literature [12, 18, 35,

44, 47]. In this special case, all communities have roughly equal

number of elements |𝑎 | ≍ 𝑛/𝑘 , all intra-community processes

(diagonal block pairs) have the same set of parameters 𝜇1, 𝛼1, 𝛽1

and all inter-community processes (off-diagonal block pairs) have

the same set of parameters 𝜇2, 𝛼2, 𝛽2. We use the notation 𝑌 ∼
CHIP(𝐶,𝑛, 𝑘, 𝜇1, 𝛼1, 𝛽1, 𝜇2, 𝛼2, 𝛽2) to denote a relational event ma-

trix 𝑌 generated from this simplified model. Define 𝑚1 = 𝛼1/𝛽1

and 𝑚2 = 𝛼2/𝛽2. Let 𝜈1 = 𝜇1/(1 − 𝑚1) and 𝜈2 = 𝜇2/(1 − 𝑚2),
while 𝜎2

1
= 𝜇1/(1 −𝑚1)3 and 𝜎2

2
= 𝜇2/(1 −𝑚2)3. Assume 𝜈1 > 𝜈2,

𝜈1 ≍ 𝜈2, and 𝜎1 ≍ 𝜎2, where the asymptotic equivalence is with

respect to both 𝑛 and𝑇 . These assumptions imply that the expected

number of events are higher between two nodes in the same com-

munity compared to two nodes in different communities and that

the asymptotic dependence on 𝑛 and 𝑇 are same for both set of

parameters. This setting is useful to understand detectability limits

and has been widely employed in the literature on stochastic block

models [1, 2, 12, 18, 44, 52]. In this setting, we have the following

upper bound on the misclustering error rate.

Theorem 1. Let 𝑌 ∼ CHIP(𝐶,𝑛, 𝑘, 𝜇1, 𝛼1, 𝛽1, 𝜇2, 𝛼2, 𝛽2). The mis-
clustering error rate for spectral clustering on the weighted adjacency
matrix 𝑁 at time 𝑇 →∞ is

𝑟 ≲
𝑇𝜎2

1
𝑛

(𝑛/𝑘)2 (𝜈2 − 𝜈1)2𝑇 2
≍ 𝑘2

𝑛𝑇

𝜎2

1

(𝜈1 − 𝜈2)2
.

We note that if the set of parameters 𝜇, 𝛼, 𝛽 remain constant as

a function of 𝑛 and 𝑇 then the misclustering error rate decreases

as 1/𝑇 with increasing 𝑇 , decreases as 1/𝑛 with increasing 𝑛, and

increases as 𝑘2
with increasing 𝑘 . Hence, as we observe the process

for more time, spectral clustering on 𝑁 has lower error rate. The

rate of convergence with increasing 𝑇 is the same as one would

obtain for detecting an average community structure if discrete

snapshots of the network were available over time [9, 44, 45]. The

dependence of the misclustering error rate on 𝑛 and 𝑘 is what one

would expect from the SBM literature.

4.2 Analysis of Estimated Hawkes Process
Parameters

As discussed in Section 3.2, we are able to estimate𝑚 = 𝛼/𝛽 and

𝜇 from the count matrix 𝑁 using (1). We analyze these estimators

assuming a growing number of nodes 𝑛 and time duration𝑇 . We do

not put any assumption on the distribution of the counts; we only

require that 𝑇 is large enough such that the asymptotic mean and

variance equations in (2) hold. The sample mean 𝑁𝑎𝑏 and sample

variance 𝑆2

𝑎𝑏
of the counts are unbiased estimators of 𝜈𝑎𝑏 and 𝜎2

𝑎𝑏
,

respectively. The following theorem shows that these estimators

are consistent and asymptotically normal.

Theorem 2. Define 𝑛min = min𝑎,𝑏 𝑛𝑎𝑏 . The estimators for𝑚𝑎𝑏

and 𝜇𝑎𝑏 have the following asymptotic distributions as 𝑛min → ∞

and 𝑇 →∞:

√
𝑛𝑎𝑏

©­«�̂�𝑎𝑏 −
©­«1 −

√
𝜈𝑎𝑏

𝜎2

𝑎𝑏

ª®¬ª®¬ 𝑑→ N
(
0,

1

4𝜈𝑎𝑏

)
,

√
𝑛𝑎𝑏

(
𝜇𝑎𝑏𝑇 −

(𝜈𝑎𝑏 )3/2
𝜎𝑎𝑏

)
𝑑→ N

(
0,

9

4

𝜈𝑎𝑏

)
.

Using Theorem 2, we can obtain confidence intervals for 𝜇 and

𝑚, which we derive in the extended version of the paper [5]. In

the simplified special case of Theorem 1, we have equal commu-

nity sizes so 𝑛𝑎𝑏 ≍ (𝑛/𝑘)2. Therefore, the condition 𝑛min → ∞
boils down to (𝑛/𝑘)2 → ∞, which is a reasonable assumption.

Theorem 2 guarantees convergence of our estimators for 𝜇 and

𝑚 with the asymptotic mean-squared errors (MSEs) decreasing at

the rate 𝑛𝑎𝑏 ≍ (𝑛/𝑘)2 under the assumption that the community

structure is correctly estimated. Next, we provide an “end-to-end”

guarantee for the convergence of the asymptotic MSE to 0 for esti-

mating the mean number of events in each block pair 𝜈𝑎𝑏 using the

sample mean 𝑁𝑎𝑏 over the estimated communities using spectral

clustering.

Theorem 3. Assume 𝑛𝑎𝑏 ≍ (𝑛/𝑘)2. The weighted average of
asymptotic MSEs in estimating 𝜈𝑎𝑏 using the estimator 𝑁𝑎𝑏 with
communities estimated by spectral clustering is∑

𝑎𝑏 𝑛𝑎𝑏𝐸 [(𝑁𝑎𝑏 − 𝜈𝑎𝑏 )2]∑
𝑎𝑏 𝑛𝑎𝑏

≲
𝑘𝑇

𝑛
max

{
𝜎2

1
,

𝑘2𝜎2

1
𝜈2

2

(𝜈1 − 𝜈2)2

}
.

For comparison, under the assumption that the community structure
is correctly estimated, the weighted average of asymptotic MSEs in
estimating 𝜈𝑎𝑏 using the estimator 𝑁𝑎𝑏 is∑

𝑎𝑏 𝑛𝑎𝑏𝐸 [(𝑁𝑎𝑏 − 𝜈𝑎𝑏 )2]∑
𝑎𝑏 𝑛𝑎𝑏

=
𝑘2𝑇𝜎2

1

𝑛2
.

Theorem 3 guarantees that the MSE for estimating Hawkes pro-

cess parameters decreases at least at a linear rate with increasing

(𝑛/𝑘) when the error from community detection is taken into ac-

count instead of the quadratic rate when the error is not taken into

account.

5 EXPERIMENTS
We beginwith a set of simulation experiments to assess the accuracy

of our proposed estimation procedure and verify our theoretical

analysis.We then present several experiments on real data involving

both prediction and model-based exploratory analysis. Additional

experiments and code to replicate our experiments are provided in

the extended version of the paper [5].

5.1 Community Detection on Simulated
Networks with Varying 𝑇 , 𝑛, and 𝑘

We simulate networks from the simplified CHIP model while vary-

ing two of 𝑇 , 𝑛, and 𝑘 simultaneously. We choose parameters

𝜇1 = 0.085, 𝜇2 = 0.065, 𝛼1 = 𝛼2 = 0.06, and 𝛽1 = 𝛽2 = 0.08.

The upper bounds on the error rates in Theorem 1 involve all three

parameters 𝑛, 𝑘,𝑇 simultaneously, making it difficult to interpret

the result. To better observe the effects of 𝑛, 𝑘,𝑇 and their rela-

tionship with respect to each other, we perform three separate



Scalable and Consistent Estimation in Continuous-time Networks of Relational Events Conference’17, July 2017, Washington, DC, USA

2 4 6 8 10 12
Number of blocks k

1024

512

256

128

64

32

Ti
m

e 
du

ra
tio

n 
T

0.0

0.2

0.4

0.6

0.8

1.0 Adjusted Rand Score

(a) Fixed 𝑛 = 256

2 4 6 8 10 12
Number of blocks k

2048

1024

512

256

128

64Nu
m

be
r o

f n
od

es
 n

0.0

0.2

0.4

0.6

0.8

1.0 Adjusted Rand Score

(b) Fixed𝑇 = 64

32 64 128 256 512 1024
Time duration T

2048

1024

512

256

128

64Nu
m

be
r o

f n
od

es
 n

0.0

0.2

0.4

0.6

0.8

1.0 Adjusted Rand Score

(c) Fixed 𝑘 = 8

Figure 1: Heat map of adjusted Rand score of spectral clustering on weighted adjacency matrix, with varying 𝑇 , 𝑛, and 𝑘 ,
averaged over 30 simulated networks.

simulations each time varying two and fixing the other one. The

community detection accuracy averaged over 30 simulations using

the weighted adjacency matrix 𝑁 as two of 𝑇 , 𝑛, and 𝑘 are varied

is shown in Figure 1. Since the estimated community assignments

will be permuted compared to the actual community labels, we eval-

uate the community detection accuracy using the adjusted Rand

score [30], which is 1 for perfect community detection and has an

expectation of 0 for a random assignment.

Note that Theorem 1 predicts that the misclustering error rate

varies as 𝑘2/(𝑛𝑇 ) if all three parameters are varied. Figure 1(a)

shows the accuracy to be low for small 𝑇 and large 𝑘 . As we simul-

taneously increase 𝑇 and decrease 𝑘 the accuracy improves until

the adjusted Rand score reaches 1. We also note that it is possible

to obtain high accuracy either with increasing 𝑇 or decreasing 𝑘 or

with both even when 𝑛 is fixed. This is in line with the prediction

from Theorem 1 that the misclustering error rate varies as 𝑘2/𝑇
if 𝑛 remains fixed. We observe a similar effect of increasing accu-

racy with increasing 𝑛 and decreasing 𝑘 when 𝑇 is kept fixed in

Figure 1(b). Finally, Figure 1(c) verifies the prediction that accuracy

increases with both increasing 𝑛 and 𝑇 for a fixed 𝑘 .

5.2 Hawkes Process Parameter Estimation on
Simulated Networks

Next, we examine the estimation accuracy of the Hawkes process

parameter estimates as described in Section 4.2. We simulate net-

works from the simplified CHIP model with 𝑘 = 4 blocks, duration

𝑇 = 10,000 and parameters 𝜇1 = 0.0011, 𝜇2 = 0.0010, 𝛼1 = 0.11,

𝛼2 = 0.09, 𝛽1 = 0.14, and 𝛽2 = 0.16 so that each parameter is

different between block pairs. We then run the CHIP estimation

procedure: spectral clustering followed by Hawkes process param-

eter estimation.

Figure 2 shows the mean-squared errors (MSEs) of all four esti-

mators decay quadratically as 𝑛 increases. Theorem 2 states that �̂�

and 𝜇 are consistent estimators with MSE decreasing at a quadratic

rate for growing 𝑛 with known communities. Here, we observe

the quadratic decay even with communities estimated by spectral

clustering, where the mean adjusted Rand score is increasing from

0.6 to 1 as 𝑛 grows. We observe that 𝛼 and 𝛽 are also accurately

estimated for growing 𝑛 even though 𝛽 is estimated using a line

search for which we have no guarantees.

5.3 Comparison with Other Models on Real
Networks

We perform experiments on three real network datasets. Each

dataset consists of a set of events where each event is denoted

by a sender, a receiver, and a timestamp. The MIT Reality Mining

[15] and Enron [34] datasets were loaded and preprocessed identi-

cally to DuBois et al. [13] to allow for a fair comparison with their

reported values. On the Facebook wall posts dataset [50], we use

the largest connected component of the network excluding self

loops (43,953 nodes).

We fit our proposed Community Hawkes Independent Pairs

(CHIP) model as well as the Block Hawkes Model (BHM) [33] to all

three real datasets and evaluate their fit. We also compare against

a simpler baseline: spectral clustering with a homogeneous Pois-

son process for each node pair. For each model, we also compare

against the case 𝑘 = 1, where no community detection is being

performed. We do not have ground truth community labels for

these real datasets so we cannot evaluate community detection

accuracy. Instead, we use the mean test log-likelihood per event

as the evaluation metric, which allows us to compare against the

reported results in DuBois et al. [13] for the relational event model

(REM). Since the log-likelihood is computed on the test data, this

is a measure of the model’s ability to forecast future events rather
than detect communities.

As shown in Table 1, CHIP outperforms all other models in all

three datasets. Note that test log-likelihood is maximized for CHIP

at relatively small values of 𝑘 compared to the BHM. This is because

CHIP assumes independent node pairs whereas the BHM assumes

all node pairs in a block pair are dependent. Thus, the BHM needs a

higher value for 𝑘 in order to model independence. This difference

is particularly visible for the Reality Mining data, where CHIP with

𝑘 = 1 is the best predictor of the test data, while the best BHM

has 𝑘 = 50 on a network with only 70 nodes! These both suggest a

weak community structure that is not predictive of future events in

the Reality Mining data, whereas community structure does appear

to be predictive in the Enron and Facebook data.

In addition to the improved predictive ability of CHIP compared

to the BHM, the computational demand is also significantly de-

creased. Fitting the CHIP model for each value of 𝑘 took on average
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(b) 𝑚: 𝛼 to 𝛽 ratio (MSE decay rate: 2.05)
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(c) 𝛼 : jump size (MSE decay rate: 2.01)
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Figure 2: Mean-squared errors (MSEs) of CHIP’s Hawkes parameter estimators averaged over 100 simulations (± 2 standard
errors) on a log-log plot. MSEs for all four parameters decreases as the number of nodes increases with the estimated decay
rate (exponent) beginning at 90 nodes listed.

Table 1:Mean test log-likelihood per event for each real network dataset across allmodels. Larger (less negative) values indicate
better predictive ability. Bold entry denotes best fit for a dataset. Results for REM are reported values from DuBois et al. [13].
Poisson denotes the spectral clustering + Poisson process baseline model. The BHM local search inference does not scale up
to the Facebook network, so we only report results without community detection (𝑘 = 1).

Dataset Statistics Model 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 10 Best 𝑘

Reality

𝑛 = 70

𝑙train = 1,500

𝑙test = 661

CHIP -4.83 -4.88 -5.06 -6.69 -4.83 (𝑘 = 1)

REM -6.78 -7.42 -6.11 -6.61 -6.11 (𝑘 = 3)

BHM -9.05 -7.56 -7.60 -5.74 -5.37 (𝑘 = 50)

Poisson -10.3 -10.4 -9.63 -9.38 -8.51 (𝑘 = 32)

Enron

𝑛 = 142

𝑙train = 3,000

𝑙test = 1,000

CHIP -5.63 -5.61 -5.65 -7.15 -5.61 (𝑘 = 2)

REM -7.02 -6.86 -6.84 -7.26 -6.84 (𝑘 = 3)

BHM -8.72 -8.43 -8.39 -7.93 -7.49 (𝑘 = 8)

Poisson -11.9 -11.4 -11.5 -12.0 -11.4 (𝑘 = 4)

Facebook

𝑛 = 43,953

𝑙train = 682,266

𝑙test = 170,567

CHIP -9.54 -9.58 -9.58 -9.61 -9.46 (𝑘 = 9)
BHM -14.6 – – – –

Poisson -20.8 -21.1 -21.1 -20.6 -19.2 (𝑘 = 55)

0.15 s and 0.3 s on the Reality Mining and Enron datasets, respec-

tively, while the BHM took on average 250 s and 30 m, mostly due

to the time-consuming local search
1
. We did not implement the

MCMC-based inference procedure for the REM and thus do not

have results for REM on the Facebook data or computation times.

5.4 Model-Based Exploratory Analysis
We use CHIP to performmodel-based exploratory analysis to under-

stand the behavior of different groups of users in the Facebook wall

post network. We consider all 852,833 events and choose 𝑘 = 10

blocks using the eigengap heuristic [51], which required 141 s to fit.

Note that the CHIP estimation procedure can scale up to a much

higher number of communities also—fitting CHIP to the Facebook

data with 𝑘 = 1,000 communities took just under 50 minutes! The

adjacency matrix permuted by the block structure is shown in Fig-

ure 3(a), and heatmaps of the fitted CHIP parameters are shown in

Figures 3(b) and 3(c). Diagonal block pairs on average have a base

intensity 𝜇 of 2.8 × 10
−7
, which is higher compared to 9.5 × 10

−8

for off-diagonal block pairs, indicating an underlying assortative

1
Experiments were run on a workstation with 2 Intel Xeon 2.3 GHz CPUs with a total

of 36 cores.

community structure. However, not all blocks have higher rates of

within-block posts, e.g. 𝜇5,8 > 𝜇5,5 and 𝜇8,5 > 𝜇5,5, as shown in red

boxes in Figure 3(b), which illustrates that the CHIP model does

not discourage inter-block events. These patterns often occur in so-

cial networks, for instance, if there are communities with opposite

views on a particular subject.

While the structure of 𝜇 reveals insights on the baseline rates

of events between block pairs, the structure of the 𝛼/𝛽 ratio 𝑚

shown in Figure 3(c) reveals insights on the burstiness of events

between block pairs. For some block pairs, such as (3, 10), there
are very low values of 𝛼 and 𝛽 indicating the events are closely

approximated by a homogeneous Poisson process, while some block

pairs such as (2, 8) are extremely bursty despite low baseline rates.

Both block pairs are shown in blue dashed boxes. The different

levels of burstiness of block pairs cannot be seen from aggregate

statistics such as the the count matrix 𝑁 or even the mean number

of events per node pair in the block pair, as shown in Figure 3(d).

6 CONCLUSION
We introduced the Community Hawkes Independent Pairs (CHIP)

model for timestamped relational event data. The CHIP model has
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Figure 3: Inferred CHIP parameters on the largest connected component of the Facebook Wall Posts dataset with 𝑘 = 10. Axis
labels denote block numbers. Each tile corresponds to a block pair where (𝑎, 𝑏) denotes row 𝑎 and column 𝑏. Boxed block pairs
in the heatmap are discussed in the body text.

many similarities with the Block Hawkes Model (BHM) [33]; how-

ever, in the CHIP model, events among any two node pairs are

independent which enables both tractable theoretical analysis and

scalable estimation. We demonstrated that an estimation procedure

using spectral clustering followed by Hawkes process parameter

estimation provides consistent estimates of the communities and

Hawkes process parameters for a growing number of nodes. Lastly,

we showed that CHIP also provides better fits to several real net-

works compared to the Relational Event Model [13] and the BHM.

It also scales to considerably larger data sets, including a Facebook

wall post network with over 40,000 nodes and 800,000 events.

There are several limitations to the CHIPmodel and our proposed

estimation procedure. Assuming all node pairs to have indepen-

dent Hawkes processes simplifies analysis and increases scalability

but also reduces the flexibility of the model compared to multi-

variate Hawkes process-based models that specifically encourage

reciprocity [10, 43]. Additionally, our estimation procedure uses

unregularized spectral clustering to match our theoretical analysis

in Section 4. We note that regularized versions of spectral clustering

[4, 11, 32, 46, 59] have been found to perform better empirically

and would likely improve the community detection accuracy in the

CHIP model. Additionally, methods that jointly estimate the com-

munity structure and Hawkes process parameters, such as the local

search and variational inference approaches explored in Junuthula

et al. [33] for the Block Hawkes Model could also improve estima-

tion accuracy of both.
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