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ABSTRACT
In this work, we examine a novel forecasting approach for COVID-19
case prediction that uses Graph Neural Networks and mobility data.
In contrast to existing time series forecasting models, the proposed
approach learns from a single large-scale spatio-temporal graph,
where nodes represent the region-level human mobility, spatial
edges represent the human mobility based inter-region connectiv-
ity, and temporal edges represent node features through time. We
evaluate this approach on the US county level COVID-19 dataset,
and demonstrate that the rich spatial and temporal information
leveraged by the graph neural network allows the model to learn
complex dynamics. We show a 6% reduction of RMSLE and an ab-
solute Pearson Correlation improvement from 0.9978 to 0.998 com-
pared to the best performing baseline models. This novel source of
information combined with graph based deep learning approaches
can be a powerful tool to understand the spread and evolution of
COVID-19. We encourage others to further develop a novel mod-
eling paradigm for infectious disease based on GNNs and high
resolution mobility data.

1 INTRODUCTION
From late 2019 to early 2020, COVID-19 went from a local out-
break to a worldwide pandemic, one that has infected over 6.67M
people and resulted in over 391K deaths worldwide [29]. Between
large-scale country-wide quarantines and ‘lockdowns’, COVID-19
is responsible for an estimated 3-10 trillion dollars in economic
damage to the global economy [21]. In a state of pandemic, the
ability to accurately forecast caseload is extremely important to
help inform policymakers on how to provision limited healthcare
resources, rapidly control outbreaks, and ensure the safety of the
general public.

In order to prepare, understand, and control the spread of the
disease, researchers worldwide have come together in a collabora-
tive effort to model and forecast COVID-19. Based on our review
of the literature, there are two popular approaches for such epi-
demiological modelling. One is the mechanistic approach – for
example, compartmental and agent based models that hard-code
predefined disease transmission dynamics at either the population

* Both authors contributed equally to this work.
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level [24, 34] or the individual level [8]. The other is the time se-
ries learning approach – for example, applying curve-fitting [20],
Autoregression (AR) [12], or deep learning [34] on time series data.

These approaches often assume a relatively closed-system, where
forecasts for a given location are dependent only on information
from that location or some observed patterns from other locations.
In practice, we intuit that infection data on inter-regional interac-
tions provides a unique and highlymeaningful avenue formodelling
forecasts. In other words, it is reasonable that a regionâĂŹs future
disease cases are dependent on its own historical information as
well as other regions’, people traveling to/out of this region and
regions with similar epidemic patterns, etc. Based on this insight,
we believe we can improve forecast accuracy by 1) utilizing more ac-
curate real-time data that can describe the inter-region interactions
and region-level mobility and 2) developing a unifying approach
that can encompass both the temporal and spatial interactions for
infectious disease modeling. Historically, this kind of regional move-
ment is difficult to capture. However, researchers have correctly
noticed that the widespread use of GPS enabled mobile devices
provides a novel and highly accurate source of mobility data, and
have called upon the epidemiological community to make ample
use of this powerful new data source [7, 23].

In this work, we focus on the problem of forecasting COVID-19 at
the county level in the United States. We propose a spatio-temporal
graph neural network that can learn the complex dynamics inher-
ent to disease modeling, and use this model to make forecasts on
COVID-19 daily new cases from fine-grained mobility data. We
run several experiments showing the power of novel mobility data
within the GNN framework, and conclude with an analysis of mo-
bility data and its potential in tracking disease spread.

2 BACKGROUND
2.1 Mobility Data in Graphs
Obtaining fine-grained human mobility data that can effectively
capture the inter- and intra-region flows of human activity has
become significantly more feasible in the last decade. In addition
to being vital for accurately modeling disease spread, these data
sources are especially important to understand the efficacy of non-
pharmaceutical interventions (NPI) against COVID-19, such as so-
cial distancing, shelter-in-place, and the shut-down of interstate
and international travel.

The rapid work of the epidemiological academic community was
vital for understanding the role of international flights in the early
spread of COVID-19 to different countries [1, 34], while epidemic
curve fitting analysis for COVID-19 on the SafeGraph dataset [31]
helped to better model the effects and efficacy of social distancing.
We build on those efforts by examining and utilizing two Google
mobility datasets, which offer a global and comprehensive view
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of inter- and intra-region human mobility. These datasets are de-
scribed in more detail in subsection 4.1.

2.2 Spatio-Temporal Graph Neural Networks
Graphs are natural representations for a wide variety of real-life
data in social, biological, financial, and many other fields. Recently,
graph neural network (GNN) based deep learning methods [4, 6, 32,
37, 38] have shown superior performance on several tasks, including
semi-supervised node classification [14, 16, 28], link prediction [5,
17, 36], community detection [9, 15, 26], graph classification [13,
22, 33], and recommendations [19, 35].

Spatio-temporal graphs are a kind of graph that model connec-
tions between nodes as a function of time and space, and have
found uses in a wide variety of fields [25]. GNNs have been success-
fully applied to spatio-temporal traffic graphs [11] and (especially
relevant to this work) spatio-temporal influenza forecasting [10].
In these latter two cases, temporal dependencies were primarily
incorporated at the model level, either through decomposition of a
dynamic Laplacian matrix or through a recurrent neural net.

3 METHOD
3.1 Graph Neural Networks
The core insight behind graph neural network models is that the
transformation of the input node’s signal can be coupled with the
propagation of information from a node’s neighbors in order to bet-
ter inform the future hidden state of the original input. This is most
evident in the message-passing framework proposed by Gilmer
et al. [13], which unifies many previously proposed methods. In
such approaches, the update at layer (l + 1) is:

m(l+1)
i =

∑
j ∈N(i)

F (l ) (h(l )i ,h(l )j )
, h(l+1)i = G(l ) (h(l )i ,m(l+1)

i
)

(1)

where F (l ) and G(l ) are learned message functions and node up-
date functions respectively,m(l ) are the messages passed between
nodes, and h(l )i are the node representations. The computation is
carried out in two phases: first, messages are propagated along the
neighbors; and second, the messages are aggregated to obtain the
updated representations.

3.2 Modelling the COVID-19 Graph
In infectious disease modeling, we usually have multiple time-series
sequences that represent the observables of transmission dynamics
in each location. The prediction problem is usually formulated
as a regression learning task that takes in a certain time series
t − k, . . . , t − 1, t and outputs a single value t + 1 or future time
series t + 1, t + 2, . . . as forecasted values. However, time series
make a poor fit for modeling human mobility across locations.
Mobility data is naturally represented as a spatial-graph, where
any individual node represents a location i that is connected to
an arbitrary number of other nodes j, l ,m, . . . , and where edge-
weights correspond to measures of human mobility between the
nodes.

In order to model spatial and temporal dependencies, we create
a graph with different edge types. In the spatial domain, edges
represent direct location-to-location movement and are weighted

Figure 1: A slice of the COVID-19 graph showing spatial and
temporal edges (highlighted in red) across three days. Each
slice represents spatial connections between counties, while
the connections between slices represent temporal relation-
ships. For clarity, only temporal edges to the center node are
shown; in practice, every node in the graph has direct tem-
poral edges to nodes in d previous days.

based on mobility flows normalized against the intra-flow (in other
words, the amount of flow internal to the location). In the temporal
domain, edges simply represent binary connections to past days.
The graph manifests as 100 stacked layers. Each layer represents
the county connectivity graph for that day, with the bottom layer
representing Feb 22nd, 2020 (when cases began appearing in earnest
in the US), and the top layer representing May 31st, 2020. Each node
within each layer has direct edges to the 7 nodes directly before it
in time, i.e. a week’s worth of temporal information. We provide a
visual of a part of the graph in Figure 1.

3.3 Skip-Connections Model
For our graph convolutions, we use a version of the spectral graph
convolution model proposed by Kipf and Welling [16], modified
with skip-connections between layers to avoid diluting the self-node
feature state. Specifically, the output of each layer is concatenated
with a learned embedding from the temporal node features. The
model prediction P can be represented as:

H0 = mlp(xt |xt−1 |...|xt−d) (2)

Hl+1 = σ (ÂHlWl) | H0 (3)
P = mlp(Hs) (4)

where H represents the hidden state at layer l , Â is the spectral
normalized adjacency matrix,W is the learned weight matrix at
layer l , | is the concat operator, and σ is a nonlinearity (in our case,
a relu). See Figure 2 for a visual representation. The first embedding,
H0, is simply the output of an mlp over the node’s temporal features
x at time t reaching back d days, while the final prediction is the
output of an mlp over s spatial hops.

2
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Figure 2: A visualization of a 2-hop Skip-Connection model.
Multiple layers of spatial aggregations are used on tempo-
ral embedding vectors. At each layer, the embedding of the
seed-node (represented in blue) is concatenated and propa-
gated up to the next embedding layer. The final embedding
is passed through an MLP and used to predict P .

4 EXPERIMENTS
4.1 Data
Wemake use of three datasets: theNewYork Times (NYT) COVID-19
dataset1, the Google COVID-19 Aggregated Mobility Research
Dataset, and the Google Community Mobility Reports2. The Aggre-
gated Mobility Research Dataset helps us understand the quantity
of movement, while the Community Mobility Reports helps us un-
derstand the dynamics of various types of movement. Together,
these datasets add significant lift to the standard node features
provided by the NYT.

4.1.1 Common Node Features. Each node contains features for
state, county, day, past cases, and past deaths. The latter two are
represented as normalized vectors that stretch back d days. We use
COVID-19 case and death count numbers published by the New
York Times [27], which includes daily reports of new infections and
deaths at both state and county level in US.

4.1.2 Aggregated Mobility Research Dataset. The Google COVID-
19 Aggregated Mobility Research Dataset aggregates weekly flows
of users from region to region, where the region is at a resolution of
5km2. The flows can be further aggregated to obtain inter-county
flows and intra-county flows(source and destination regions are
in the same county) to build our proposed graph network. This
information is useful for understanding how people move before
and during the pandemic – for example, Figure 3 shows the re-
duction in inter-county flows in US counties in April, compared
to a January baseline. Figure 4 illustrates the change in mobility
to King County, Washington, where mobility dropped by nearly
100% from distant counties, likely due to reductions in air travel.
By comparison, reductions are less strong from nearby counties,
e.g. 64% reduction from Snohomish County, Washington. For a full
description of how the Aggregated Mobility Research Dataset is
created, see (Appendix) 6.1.

1https://github.com/nytimes/covid-19-data
2https://www.google.com/covid19/mobility/

4.1.3 Community Mobility Reports. The Community Mobility Re-
ports summarize mobility trends at various categories of places that
are aggregated at the county level. The categories include: grocery
and pharmacy, parks, transit stations, workplaces, residential, and
retail and recreation. The dataset was normalized to have 0 as the
‘normal’ mobility based on median value for the corresponding day
of the week, during the 5-week period Jan 3−Feb 6, 2020 [18], and
deviations are measured as the relative changes in mobility from
the baseline. A value of -0.25 under transit stations therefore repre-
sents a 25% reduction in visits to public transit stations compared
against baseline. Figure 5 provides a visual example of the daily
mobility changes in King County, Washington for each category in
Google’s Community Mobility Reports.

4.1.4 Limitations of Data Sources. These results should be inter-
preted in light of several important limitations. First, the Google
mobility data is limited to smartphone users who have opted in to
Google’s Location History feature, which is off by default. These
data may not be representative of the population as whole, and
furthermore their representativeness may vary by location. Im-
portantly, these limited data are only viewed through the lens of
differential privacy algorithms, specifically designed to protect user
anonymity and obscure fine detail. Moreover, comparisons across
rather than within locations are only descriptive since these regions
can differ in substantial ways. This data can be viewed as similar
to the data used to show how busy certain types of places are in
Google Maps — for example, helping identify when a local business
tends to be the most crowded.

We also note that there are significant other factors not captured
in any of these datasets, such as the increased prevalence of wearing
masks or changes in the weather. These factors, combined with
increased awareness, can effectively reduce the transmission even
when mobility remains unchanged. We encourage future work that
explores the addition of these external features.

4.2 Hyperparameters, Architectures, and Splits
Unless explicitly stated otherwise, for all of our GNN experiments,
we use a 7 day (i.e. one week) time horizon and look over 2 hops of
spatial data (using the 32 neighbors with the highest edge weight
for each hop). GNN models were implemented in Tensorflow. We
utilize an ADAM optimizer with learning rate set to 1e-5. We use
a two hop spatial model with a single layer MLP on either side.
Therefore, we have four hidden layers – an initial embedding layer,
the two hops of spatial aggregation, and the final prediction layer.
The hidden layer architecture forW0,W1,W2, andW3 are [64, 32,
32, 32], respectively. Each layer has a dropout rate of 0.5, and a l2
regularization term of 5e-4. GNN models were trained for 1M steps
with a MSLE regression loss.

All models were trained to predict the change in the number
of cases on day t + 1, given previous information. We have data
from January 1st onwards; however, we do not observe cases in the
US until late February. As a result, we use data from days 59-120
(roughly, March and April, 2020) for training, and data from days
120 to 150 (roughly, May, 2020) was used for testing. For each model,
we look at the top 20 counties by population. The reported values
are averaged across all counties for all thirty days of inference.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’20, August 2020, San Diego, CA, USA Kapoor, Ben et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: The reduction of inter-
county mobility flow for US counties,
comparing flows in April to baseline
values in the first 6 weeks of 2020.

Figure 4: The reduction of inflow for
King county from various US coun-
ties. Note that because King county
has an airport, it has direct edges to
US counties that may be physically
distant.

Figure 5: The mobility trends for
King county. There are dramatic re-
ductions in many of the mobility cat-
egories in late March due to non-
pharmaceutical interventions like so-
cial distancing and quarantine.

4.3 Baselines
To evaluate the benefits of the GNN framework, we compare against
a range of popular methods as baselines. For all of our baselines,
we examine how region-level mobility features, such as aggregated
flows and place visit trends, affect our results. ‘No Mob’ versions
of our baselines indicate that these baselines do not utilize any
mobility information.

4.3.1 Previous Day. Next day case prediction is highly correlated
with features from the previous day. We use two previous day
baselines. For PreviousDelta, we predict that the delta in the number
of cases will be the same as the delta from the previous day. For
Previous Cases, we predict that the delta in the number of cases
will be 0 (and that the actual number of cases will be the same as
the previous day). These baselines help us understand what lift, if
any, our models are able to extract from the rest of the provided
features; however, we do not treat these as ‘model‘ baselines in our
analysis.

4.3.2 ARIMA. We utilize a univariate ARIMA model that treats
the time dependent daily new cases as a univariate time series that
follows a fixed dynamic. Each day’s new case count is dependent
on the previous p days of observations and the previous q days
of estimation errors. We selected the order of the ARIMA model
using Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC) to balance model complexity and generalization, we
minimize parameters by using a constant trend with ARIMA(7, 1, 3).

4.3.3 LSTM and Seq2Seq. Our LSTM baseline contains a stack of
two LSTM layers (with 32, 16 units respectively) and a final dense
layer. The LSTM layers encode sequential information from input
through the recurrent network. The dense connected layer takes
the final output from the second LSTM layer and outputs a vector
of size four, which is equal to the number of steps ahead predictions
needed.

The Seq2Seq model has an encoder-decoder architecture, where
the encoder is composed of a fully connected dense layer and a GRU
layer that can learn from sequential input and return a sequence of
encoded outputs in a final hidden state. The decoder is an inverse of
the encoder. The dense layer is 16 units and the GRU layer is 32 units.
To match common practice, we apply Bahdanau attention [2] on
the sequence of encoder outputs at each decoding step to make next

step prediction. Both the LSTM and Seq2Seqmodels, we use a Huber
loss, an Adam optimizer with a learning rate of 0.02, and a dropout
rate of 0.2 for training, which works best in our experiments. During
inference, both models observe data from the previous 10 days in
order to make a prediction about the next day in the sequence.

4.4 Case Prediction Performance
In Table 1, we compare the forecasting performance of the spatio-
temporal GNN with a range of baseline models. We report the
RMSLE and Pearson Correlation for the predicted caseload (RMSLE,
Corr), calculated as the sum of the predicted delta and the previous
day’s cases. We aggregate the performance metrics from top 20
populated counties in US. We note that we can trivially achieve a
high correlation because the problem framing naturally relies on
the general trend of the data from time t – in fact, the Previous Cases
baseline achieves the highest case correlation overall. To account
for this, we also report the RMSLE and Pearson Correlations for the
case deltas (∆ RMSLE, ∆ Corr), even though we expect the ground
truth values to be confounded by unaccounted variables like the
availability of testing centers or whether it is a workday.

We find that the GNN successfully outperforms our baselines,
achieving either best or second-best score on each evaluation met-
ric. Further, we note that for all of our deep models, introducing
additional mobility data improves results. Interestingly, introducing
mobility data resulted in worse performance for the ARIMA base-
line. ARIMA assumes fixed dynamics and a linear dependence on
the county-level mobility – while this helps the ARIMA model in
the early stages of the epidemic, when there was a strong positive
correlation between reduced mobility and daily new cases, it may
cause the model to under-perform with the increase of mobility in
late May.

5 CONCLUSION
In this work we developed a graph neural network based approach
for COVID-19 forecasting with spatio-temporal mobility signals.
This modeling framework can be readily extended to regression
problems with large scale spatio-temporal data – in particular for
our case, disease status reports and human mobility patterns at
various temporal and geographical scales. In comparison to previ-
ous mechanistic or autoregressive approaches, our model does not
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Model RMSLE Corr ∆ RMSLE ∆ Corr

Previous Cases 0.0226 0.9981 4.7879 NaN
Previous Delta 0.0127 0.9965 0.9697 0.1854

No Mob ARIMA 0.0124 0.9968 0.9217 0.1449
ARIMA 0.0144 0.9952 0.9624 0.0966
No Mob LSTM 0.0125 0.9978 0.9172 0.1540
LSTM 0.0121 0.9978 0.9163 0.1863
No Mob Seq2Seq 0.0118 0.9976 0.8467 0.1020
Seq2Seq 0.0116 0.9977 0.8634 0.2802
GNN 0.0109 0.9980 0.7983 0.2230

Table 1: Summary of model performances.

rely on assumptions of the underlying disease dynamics and can
learn from a variety of data, including inter-region interaction and
region-level features.

There is still much to be done, both for COVID-19 and for model-
ing infectious disease in general; we hope that this paper sparks an
increased focus on leveraging this powerful new source of mobility
information through novel techniques in graph learning. Future
work can expand on these results by incorporating new features,
expanding the time horizon for long term predictions, and exper-
imenting on epidemiological mobility data in other parts of the
world.
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6 APPENDIX
6.1 Google COVID-19 Aggregated Mobility

Research Dataset
The Google COVID-19 Aggregated Mobility Research Dataset used
for this study is available with permission from Google LLC. The
Dataset contains anonymized mobility flows aggregated over users
who have turned on the Location History setting, which is off by
default. This is similar to the data used to show how busy certain
types of places are in Google Maps — helping identify when a local
business tends to be the most crowded. The dataset aggregates
flows of people from region to region, which is further aggregated
at the level of US county, weekly in this study.

To produce this dataset, machine learning is applied to logs data
to automatically segment it into semantic trips [3]. To provide
strong privacy guarantees, all trips were anonymized and aggre-
gated using a differentially private mechanism [30] to aggregate
flows over time3. This research is done on the resulting heavily
aggregated and differentially private data. No individual user data
was ever manually inspected, only heavily aggregated flows of large
populations were handled.

All anonymized trips are processed in aggregate to extract their
origin and destination location and time. For example, if users
traveled from location a to location b within time interval t , the
corresponding cell (a,b, t) in the tensor would be n ± err , where
err is Laplacian noise. The automated Laplace mechanism adds ran-
dom noise drawn from a zero mean Laplace distribution and yields
(ϵ,δ )-differential privacy guarantee of ϵ = 0.66 and δ = 2.1× 10−29
per metric. Specifically, for each weekW and each location pair
(A,B), we compute the number of unique users who took a trip
from location A to location B during weekW . To each of these
metrics, we add Laplace noise from a zero-mean distribution of
scale 1

0.66 . We then remove all metrics for which the noisy num-
ber of users is lower than 100, following the process described in
https://research.google/pubs/pub48778/, and publish the rest. This
yields that each metric we publish satisfies (ϵ,γ )-differential pri-
vacy with values defined above. The parameter ϵ controls the noise
intensity in terms of its variance, while γ represents the deviation
from pure ϵ-privacy. The closer they are to zero, the stronger the
privacy guarantees.
3See https://policies.google.com/technologies/anonymization for more.
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