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Abstract

Deep RL approaches build much of their success on the
ability of the deep neural network to generate useful inter-
nal representations. Nevertheless, they suffer from a high
sample-complexity and starting with a good input represen-
tation can have a significant impact on the performance. In
this paper, we exploit the fact that the underlying Markov
decision process (MDP) represents a graph, which enables
us to incorporate the topological information for effective
state representation learning.
Motivated by the recent success of node representations

for several graph analytical tasks we specifically investigate
the capability of node representation learning methods to
effectively encode the topology of the underlying MDP in
Deep RL. To this end we perform a comparative analysis of
several models chosen from different classes of representa-
tion learning algorithms for policy learning in grid-world
navigation tasks, which are representative of a large class of
RL problems. We find that all embedding methods outper-
form the commonly usedmatrix representation of grid-world
environments in all of the studied cases. Moreoever, graph
convolution based methods are outperformed by simpler
random walk based methods and graph linear autoencoders.
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1 Introduction

A good problem representation has been known to be crucial
for the performance of AI algorithms. This is not different in
the case of reinforcement learning (RL), where representa-
tion learning has been a focus of investigation. The core idea
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is to map the high dimensional state space to low dimen-
sional latent representations which are more informative
thus facilitating the learning of an optimal policy. Previous
works, for example, [7, 17] have focused on learning these
representations from the incoming high dimensional signals
or observations corresponding to a state but have ignored the
fact that the underlying stochastic decision process induces
a topological structure over the states which can provide
additional useful features. In this work, we focus on extract-
ing informative low dimensional state features based on the
topological structure of the underlying Markov decision pro-
cesses (MDPs) for deep reinforcement learning.
Deep reinforcement learning combines neural networks

with a reinforcement learning architecture. In particular,
rather than using a lookup table a neural network is used
to approximate a value function (and thus a policy) without
the need to store, index and update all possible states and
their values in look-up tables. While Deep RL approaches
build much of their success on the ability of the deep neural
network to generate useful internal representations, they
nevertheless suffer from a high sample complexity. One way
to overcome this problem, is to start with a better input
representation that can improve the learning performance
significantly. In this paper, we exploit the fact that the under-
lying Markov decision process (MDP) represents a graph and
investigate the suitability of graph representation learning
approaches to learn effective encodings of the state. These
encodings are then used to enrich the sate representation
for Deep RL and improve the speed of learning.

Graph Representation Learning (GRL) approaches [1, 5, 21,
22] aim to embed nodes in a low dimensional space such that
the topological structure of the graph is preserved. Though
these methods have gained popularity and showed state of
the art improvements in several graph analytical tasks like
node classification and link prediction, their suitability or
generalizability to different domains has escaped attention
so far. Our work identifies Deep RL for discrete MDPs as
a promising application for utilizing and evaluating graph
representations. More specifically, we evaluate several unsu-
pervised representation learning methods on their ability to
learn effective state representations encoding the topological
structure of MDP. With a large number of unsupervised GRL
approaches proposed to date we systematically choose mod-
els from 4 GRL classes based on several criteria as elaborated
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in Section 3.2. We then investigate which approaches are best
suited to be used as state representation learning methods for
MDPs in Deep RL.
While the node embeddings are computed from a given

MDP, it is important to note that in this work we do not
assume that the entire MDP is known in advance. Instead,
we first generate an estimate of MDP by collecting random
samples and use the resulting graph to generate node repre-
sentations in an unsupervised manner. We do assume that
the environment is discrete, since otherwise it is not pos-
sible to represent the MDP as a finite graph. In the case of
continuous states, these could be discretised beforehand, ei-
ther manually or via an automated method analogous to tile
coding.

Our Contributions.We evaluate GRL approaches for effec-
tively encoding MDPs under the assumption that the entire
MDP is not known in advance. To the best of our knowledge,
our work is the first to propose the use of pre-trained state
representations entirely on the topological structure of the
MDP and show that dense low dimensional input state rep-
resentations enhance the performance of Deep Q-Networks
(DQN) for navigational tasks. We release our code 1 required
to reproduce our results and for further development. To
summarize our main contributions are

• We propose and evaluate a wide range of graph based
representation learning approaches to generate state
features based on topological structure of MDPs, lead-
ing to improved learning performance in DeepRL.

• We show that RL is a promising application for eval-
uating and enhancing graph representation learning
approaches.

Key Findings. Our key findings and conclusions are
• Pre-trained unsupervised low-dimensional state repre-
sentations when used as input to DQN shows state of
the art improvements over the raw high dimensional
state input for grid-world environments.

• For undirected MDPs, quite surprisingly, the first neu-
ral network based representation learning method
DeepWalk outperforms almost all other methods in-
cluding the more popular graph convolution based
methods.

• By varying the number of samples used to generate an
approximate MDP we show that the best performing
embedding approaches show comparable performance
even with smaller number of samples.

• For directedMDPs, preserving edge directionalitywhile
learning state representations does not appear to be
crucial. For instance DeepWalk, when used to train
representations while ignoring the edge directionality,
showed comparable performance to APP and NERD

1https://github.com/WVik/DeepRL-for-Graphs/

which generated representations in directionality pre-
serving manner.

2 Preliminaries and Related Work

2.1 Markov Decision Processes in RL

Markov decision processes (MDP) are discrete time stochas-
tic control processes which are used to formalize reinforce-
ment learning problems and model RL environments. MDPs
are represented by a 4-tuple (𝑆,𝐴, 𝑃, 𝑅), where 𝑆 is a set of
discrete states an agent can be in, 𝐴 is the set of all possible
actions that the agent can take, 𝑃 denotes a probability den-
sity function with 𝑃 (𝑠 ′ |𝑠, 𝑎) being the transition probability
of moving from state 𝑠 to state 𝑠 ′ after taking action 𝑎, and
𝑅(𝑠, 𝑎) is the immediate reward that the agent receives when
it takes action 𝑎 in state 𝑠 . The objective of reinforcement
learning is then to determine the optimal mapping of a given
state to action, 𝜋 (𝑠) (the policy) such that the chosen action
results in maximizing the expected sum of rewards received
in the future.

2.2 DQN

A widely used modern RL algorithm is Deep Q-Networks
(DQN) [16]. DQN is the "deep" expansion of Q-Learning [25]
and uses essentially the same update rules and operating
principles as Q-Learning but adapted to use a neural network
as its value function representation.
Specifically, the DQN algorithm computes the Q value

function (represented as a deep neural network). This value
function maps a state 𝑠 and action 𝑎 into an estimate of
the expected cumulative reward for executing action 𝑎 in
state 𝑠 and following the optimal policy from then on. As
the agent interacts with its environment, the agent accu-
mulates experience in the form of (𝑠, 𝑎, 𝑟, 𝑠 ′) tuples, which
are used to update the neural network that computes the Q
function. For each experience tuple, the values 𝑄 (𝑠, 𝑎) and
𝑟 +max𝑎′ 𝑄 (𝑠 ′, 𝑎′) are calculated using the neural network.
The difference between these two values is used in the loss
function to update the network. This "bootstrapping" method
enables the agent to learn strong estimates for the expected
return of each state-action pair.

The main strength of DQN is that the deep neural network
can generate useful internal representations of environment
states when provided with very simple state representations.
However, DQN suffers from a very high sample complexity.
The complexity can be reduced by generating a more effec-
tive state representation before feeding it into the neural
network, and this forms the basis of the approach proposed
in this paper.

2.3 Graph Representations

Graph representation learning (GRL) aims to learn low-dimension
latent representations of nodes to be used for downstream
tasks such as link prediction, node classification etc. GRL
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methods include random walk based methods, matrix factor-
ization based and graph neural networks (GNNs). Random
walk based [8, 22, 26] methods optimize the node embed-
dings so that nodes have similar embeddings if they tend to
co-occur on random walks over the graph. Matrix factoriza-
tion based [21] methods rely on low rank decomposition of
a target matrix such as the 𝑘-step transition probability ma-
trix, modularity matrix etc. to obtain node encodings. GNNs
are deep learning models designed to extract features from
the graph structure as well as the input node attributes and
can be further categorized into recurrent graph neural net-
works [24], convolutional graph neural networks [11, 18] and
graph autoencoders [10, 23]. In spite of their success, there
are limited studies on in-depth comparative analysis [3, 9]
of these methods over a wide range of datasets and tasks.
Moreover, none of these works focus on generalizability of
embedding approaches to encode graph structure beyond
using the encodings in node/graph classification or link pre-
diction tasks.

2.4 State Representations in RL

In reinforcement learning, it is a common practice to map
the state(-action) space to a low dimensional latent space
where the main goal of such a transformation is to represent
the input data in a more informative form that facilitates
and improves subsequent steps. The authors in [20] and
[15] proposed the use of the Laplacian basis functions as
state encodings. Basis functions are derived by finding the
“smoothest” eigenvectors (that correspond to the smallest
eigenvalues) of the graph Laplacian and is argued that such
smooth eigenvectors also reflect the smoothness of value
functions over nearby nodes. On the one hand eigenvalue de-
composition is computationally expensive and on the other
hand the smoothness assumption for value functions over
the states might not be always valid as also observed in [14]
. We note that [14] also emphasize the use of node embed-
dings as basis functions to be used in a generalized version
of representation policy iteration (RPI). The authors in [7]
use priors about the structure of robotic interactions with
the physical world to learn state representations. Our work
can be seen as complementary in nature as we propose a
more general approach of encoding such an observed struc-
ture into state-action representations. Other works [2, 17]
which perform state representation learning and reinforce-
ment learning simultaneously have also ignored the fact
that the underlying decision process represents a graph and
is therefore crucial to incorporate the topological informa-
tion for effective state representation learning. Recently [6]
proposed a graph convolutional network based approach
to multi-agent reinforcement learning. But it is not known
a priori if the chosen graph learning model is the best for
the considered use cases. In this work we are evaluating the
capability of graph learning methods on effectively learning
from the MDP structure, focusing on discrete navigation

problems (i.e. mazes) which are representative for a large
class of MDPs. The learnt representations can be further
refined and combined with more input features like sensor
observations corresponding to states for more specific cases
and corresponding architectures and objective functions for
example in [2, 17] can be employed.

3 Comparative Analysis

Unsupervised GRL approaches aim to learn low dimensional
representations for each node while preserving certain topo-
logical characteristics of the underlying graph. Informally,
each of the methods tend to encode similar nodes closer in
the embedding space and the definition of similarity varies
from methods to method. Consequently we might expect
that there cannot be a single winner method which can en-
code all the types of graph structure well and the choice of a
particular methodwould depend on certain structural charac-
teristics of the underlying graph which might be application
specific. Therefore we choose a wide range of representative
methods from several classes of GRL methods and argue
about their suitability to be used in Reinforcement learning
applications.

3.1 Compared Models

Let 𝐺 = (𝑉 , 𝐸) denotes the graph with |𝑉 | nodes and |𝐸 |
edges corresponding to the MDP estimated from the ob-
tained random samples. In particular, an observed state 𝑠 is
represented by a node in 𝐺 . Corresponding to some sample
(𝑠, 𝑎, 𝑠 ′), an edge between 𝑠 and 𝑠 ′ represents the action 𝑎. We
train low dimensional vector representation or embedding,
𝜙 (𝑣) for each node 𝑣 ∈ 𝑉 using the following GRL methods.

DeepWalk [22]. Inspired by techniques of language mod-
elling and unsupervised feature learning fromword-sequences
DeepWalk generates node-sequences from graphs using
short random walks and trains the Skip-Gram model us-
ing hierarchical softmax akin to word2ve†c-based training
procedure. The training set is prepared by sampling vertex-
context pairs over a sliding window in a given random walk.
In particular, it attempts to find node embeddings such that
the likelihood of observing a vertex 𝑣𝑖 ∈ 𝑉 given its context
( i.e. other neighboring vertices within a specified window
of the random walk) is maximized. Let Φ denotes the latent
representation matrix, {𝑣𝑖−𝑤, · · · , 𝑣𝑖−1, 𝑣𝑖+1, · · · , 𝑣𝑖+𝑤} is the
set of neighbors of 𝑣𝑖 in a given random walk within window
size𝑤 , the optimization problem then is

min
Φ

− logP({𝑣𝑖−𝑤, · · · , 𝑣𝑖−1, 𝑣𝑖+1, · · · , 𝑣𝑖+𝑤} |𝜙 (𝑣𝑖 ))

APP [26]. As opposed to many embedding methods which
preserve symmetric proximities, which can be insufficient for
some applications, here an asymmetric proximity preserving
(APP) method both for undirected and directed graphs is
proposed. It uses an approximate version of Rooted PageRank
wherein several paths are sampled from the starting vertex
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using a restart probability. Each vertex 𝑣 ∈ 𝑉 is given two
representations, source and target, denoted as 𝜙𝑠 (𝑣) and
𝜙𝑡 (𝑣) respectively. The two representations are learnt such
that the likelihood of a training pair (𝑢, 𝑣) in their respective
source and target roles, P(𝑣 |𝑢) is maximized. The likelihood
is modelled as softmax as follows and is optimized using
negative sampling.

P(𝑣 |𝑢) = exp(𝜙𝑠 (𝑢) · 𝜙𝑡 (𝑣))∑
𝑛∈𝑉 exp(𝜙𝑠 (𝑢) · 𝜙𝑡 (𝑛)

NERD [8].Node Embeddings RespectingDirectionality (NERD)
exploits the fact that in directed graphs, the neighborhood of
a node differs based on its role as a source or a target (destina-
tion) node. To model node similarity while preserving its role
semantics NERD proposes an alternating random walk strat-
egy similar to SALSA[12] which alternates between source
nodes (hubs) and target nodes (authorities). Two embeddings
per node are learnt such that the probability of observing
the sampled neighbors (in their respective roles) from an
alternating random walk is maximized. It differs from APP
in the kind of the random walk employed to collect training
pairs and is more suitable for graphs with prominent hub
authority structure.

HOPE [21]. High-Order Proximity preserved Embeddings
orHOPE for short, is an embedding framework also designed
for directed graphs and based on finding source and target
node embeddings while optimizing for various high-order
proximity measures exist like Katz Proximity, Personalized
Pagerank, Common Neighbour measure, Adamic-Adar, etc.
In particular it finds a low rank decomposition of a proximity
measure (in this work we use Katz proximity) where the two
factors correspond to source and target embeddings of a
node. If 𝑆 represents the Katz proximity matrix,HOPE learns
source and target representation matrices Us and Ut while
optimizing the following objective

min
Us,Ut

| |S − Us · (Ut)⊤ | |2.

Unsupervised GraphSage [5]. GraphSage belongs to
the family of Graph convolution based models [11] which
incorporate neighborhood aggregation mechanism in the
learning algorithm to generate node representations. In this
work we use GraphSage in an unsupervised setting, using
a graph-based loss which encourages nearby nodes to have
similar representations, and far away nodes are enforced a
distinct representation. In particular, it samples node pairs
as in DeepWalk and uses the negative sampling based loss
to embed vertices occurring together in short random walks
closer.

Graph Autoencoders. This family of models aim to map
each node to a vector in a lower dimension, from which
reconstruction of the adjacency list of node should be pos-
sible. While Graph autoencoders using graph convolution

networks(GCNs)[11] as encoders are quite popular, recent
empirical evidence [23] suggests that the GCN based en-
coders can be replaced by linear models without compromis-
ing performance in various downstream tasks. Though we
compare various graph autoencoder models, namely GCN
Autoencoder[10], GCN Variational Autoencoder[10], Linear
Autoencoder, Linear Variational Autoencoder, and the deep
versions of these autoencoders, we present results only corre-
sponding to Graph Linear Autoencoder (Glae) as it showed
much superior performance.

3.2 Rationale behind chosen Methods

NodeClassification and State value functions.We choose
DeepWalk in our study because of its robust performance
in generating unsupervised node representations suitable
for node classification task as shown in [9]. Note that as
the task of finding an optimal policy is equivalent to find-
ing optimal value function over nodes, one can interpret
value functions as continuous forms of classes where similar
nodes would have similar value functions. We hypothesize
that methods performing well on node classification tasks
would also generate embeddings suitable for approximating
the optimal policies well. Our hypothesis is validated by our
empirical results in which DeepWalk turns out to be the
best performing method for all studied undirected MDPs.

Asymmetric Local Neighborhoods. A crucial aspect for
node representations in MDPs which is ignored by several
representation learning methods could be the existence of
asymmetrical local neighborhoods even for the cases when
the underlying mazes are undirected. APP learns two em-
beddings per vertex in its source and destination roles re-
spectively, stressing the fact that a node 𝑥 is similar to node
𝑦 in its destination role if 𝑦 is reachable from 𝑥 in a small
number of steps. As placement of obstacles can induce asym-
metrical local structures in MDPs, we chose APP as one of
the compared models. Moreover, APP is a general method
also applicable for directed graphs.

Homophily and Graph Convolution Based Methods.

Recent theoretical works[13, 19] imply that graph convo-
lution operation is a special form of Laplacian smoothing
which mixes the features of a vertex and its nearby neigh-
bors. The smoothing operation makes the features of vertices
in the same cluster similar, thus greatly easing the classifi-
cation task, which is the key reason why GCNs work so
well in node classification tasks. Moreover the empirical evi-
dence [9] further supports the fact the GCN based models
best perform for high homophily networks where labels do
not vary a lot over adjacent vertices. We argue that the real
world decision processes do not always give rise to high
homophilic graphs, in the sense two adjacent nodes might
not always have similar value functions. In this work we
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experiment with unsupervised GraphSage and several GCN
based autoencoders.

Encoding Directionality. For directed MDPs, it is crucial
to take into account of the edge directions to decide on a
favourable policy. In this work we therefore compare three
methods specifically designed to learn unsupervised node
representations for directed graphs. We chose APP, NERD
and HOPE which exploit different characteristics of directed
graphs. Moreover, we also compare these methods with
DeepWalk (used while ignoring the edge direction) to verify
the importance of taking into account of the edge direction-
ality while learning input state representations.

4 Experiments and Results

4.1 Experimental Setup

Grid-world Domains. The experiments were carried out
on various grid-world domains, more specifically 20 × 20 or
a 400 state square grids. These tasks are representative of a
large class of discrete RL environments, and thus provide a
suitable testbed. The domain has four walls, some obstacles,
a start-state and a reward-state. The goal of the agent is to
navigate the grid and reach the reward state. At each step,
the agent gets some reward between −1 and 1. Moreover, the
obstacles in the domain are soft, meaning the agent can get
into an obstacle state, but it incurs a heavy negative reward.
The agent gets a reward of +1 if it reaches the reward state,
−0.3 if it goes into an obstacle, and −0.1 if it bumps into a
wall along the edge of the maze. Additionally to motivate
the agent to find the shortest path, every valid move of the
agent has a small negative reward of −0.01. We compare all
GRL methods with a matrix representation of the grid-

world where a grid is a 20 × 20 matrix with all valid states
represented by 1, all obstacles by 0, the target by 0.75 and
current agent-location by 0.5.
Additionally, we tested our agent on two different types

of grid-worlds. One, in which it resembles an undirected
graph, meaning the agent can go into any of the empty
neighbouring cells. The other type are the ones in which the
agent’s movements are restricted, adding directionality to
the MDP graph. We describe different mazes as well as the
corresponding results in Section 4.2.

Model architecture employed for DQN. The neural net-
work has an input layer, which takes in the embedding 𝜙 (𝑠)
of dimension 𝑑 of the current state of the agent. For the
matrix representation, the input layer is a flattened matrix
corresponding to the grid. Further, there are two hidden lay-
ers with tanh activation, and then an output layer (with tanh
activation) with four neurons. Each neuron corresponds to
one of the four directions that the agent can move, and its
value represents the state-action value of taking the respec-
tive action. At each time-step, the agent chooses the direction
having the maximum value as predicted by the network. The

loss function for the network is Mean Squared Error (MSE)
loss.

Hyperparameter Settings for DQN. During the training
of the network, the agent performs episodes from the starting
state till either it reaches the end state, or reaches a threshold
of negative reward of −25. This high negative threshold
ensures that the agent explores the maze long enough to
learn. After completing an episode, the agent is reset to
the initial state. The agent learns using experience replay.
So during the agent’s episodes, it’s steps are stored in a
memory in the form of (𝑠𝑡 , 𝑎, 𝑟𝑡 , 𝑠𝑡+1) (where the symbols
have usual meaning). Moreover, the ’experience-gaining’
phase is separate from the ’learning phase’, even though
they are interleaved. After each time step, random previous
actions from the memory are selected and are used in the
learning phase.

Hyperparameter Settings for GRL Methods. The repre-
sentation learning phase requires the graph as an input in
either edgelist or adjacency list format. For DeepWalk the
walk-length, and window-size were set to 20 and 5 respec-
tively. For GraphSage, the GCN mean aggregator was used.
For all other methods like APP, NERD and Glae, the default
hyperparameters for these algorithms were used. In methods
like APP, NERD and HOPE for example, which generate two
embeddings, each of dimension 𝑑 per node of a graph, the
embeddings of current state and the next state (correspond-
ing to a particular action) are concatenated to form an input
embedding of dimension 2𝑑 . The rest of the architecture of
the network remains the same.

Evaluation MetricsWe used standard metrics for evalua-
tion which are, average cumulative reward received by the
agent against number of time-steps, and against the number
of episodes completed by the agent. As discussed before,
the goal of the agent is to accumulate the maximum reward
from the grid. The better the method, the quicker the agent
reaches the target and the more reward it accumulates. We
argue that a better method would represent the input state-
space better, and hence the agent would accumulate more
reward. Another way to look at this is that a better input
state representations would result in less number of episodes,
or less number of steps to find out the optimal path to reach
the target. With this in mind, the different domains which
were used, and the plots of the metrics discussed above are
presented in the next section.

4.2 Sampled Grid Environments

In this section we describe the results for different types
of mazes. Here we assume that enough number of samples
were drawn in order to build the complete mazes. In addition
the empirical time complexity of maze construction from
the acquired samples is roughly 1% of the time for training
the deep network. We observe that for all the studied mazes
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the pre-trained state representations outperform the matrix
based state representation.We note that overall we compared
9 GRL methods out of which results for 6 are presented in
this section. The other three methods, which are GCN based
shallow and deep autoencoders showed worse results than
the others and hence we don’t show their performance here.
As already mentioned we plot the standard evaluation

metrics: (i) average cumulative reward against the number of
time-steps (ii) average cumulative reward against the number
of episodes with 90% confidence intervals. For the results
presented in this section we run all methods for 60 episodes
and repeat experiments for at least 40 iterations. We note
that in the plots corresponding to time steps, some of the
methods stop much earlier than the others, which indicates
that they have shorter episodes, which in turn indicates that
they were much faster in finding the optimal policy and
achieving higher rewards much earlier.

4.2.1 Maze 1. The obstacle and the start state are in far-
thest rows of the maze.The results are presented in Figures 1
and 2. DeepWalk and APP outperform other GRL methods.
While Figure 1 shows the cumulative reward against time-
steps, Figure 2 shows it against number of episodes. For the
rest of the mazes we will stick only to the step-wise plots
as they clearly are more informative than the episode-wise
plots.

Figure 1.Maze 1 against its plot of the average episode-wise
reward obtained with a 90% confidence interval.

Figure 2. Episode-wise rewards obtained for maze 1

4.2.2 Maze 2. In this maze the agent is expected to find
a longer but less convoluted path than in maze 1. The re-
sults for this domain are presented in Figure 3. Once again
we observe that DeepWalk is the best performing method
followed by APP and Glae.

Figure 3. Maze 2 against its plot of the step-wise reward
obtained.

4.2.3 Maze 3. This domain is very similar to maze 2 in that
the obstacles are exactly at the same place, but the locations
of the start state and the target are changed. The results are
presented in Figure 4. As opposed to Maze 1, Glae outper-
forms APP and performs comparable to DeepWalk.

Figure 4. Maze 3 against its plot of the step-wise reward
obtained.

4.2.4 Mazes 4 and 5. Mazes 4 and 5 are directed in nature.
Maze 4 is like Maze 3 in terms of obstacles location, but
only down and left actions of agent are permitted. Maze 5
is similar to Maze 1, but with 15% of the possible actions
removed randomly. For both these mazes, we used meth-
ods like HOPE and NERD, which are explicitly designed
for directed graphs. We additionally compared them with
DeepWalk (while ignoring the edge directionality) to inves-
tigate if the edge directionality has a large impact on state
representations. In Maze 4, APP and DeepWalk are the best
performing methods followed by NERD, whereas in Maze 5,
APP and NERD outperform DeepWalk.

In both the mazes, APP, which also takes into account the
edge directionality outperforms DeepWalk and also exhibit
less variance in the obtained cumulative rewards.
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Figure 5. Step-wise reward obtained for maze 4 and maze 5

4.2.5 Main Observations. With respect to our results in
this section, we make the following main observations and
conclusions.

1. For undirected mazes DeepWalk is the best method.
APP and Glae are also competitive methods but their
performance varies over different mazes. All these
methods outperform GraphSage and the raw matrix
input representation.

2. The graph convolution based method,GraphSage is
the worst performing method for all undirected mazes
among the GRL methods. We remark that in our initial
experiments we had also compared GCN based shal-
low and deep autoencoders and found that the graph
linear autoencoder was the better performing model.
We, therefore, conclude that GCN based methods are
not the best choice for learning unsupervised state
representations in MDPs in absence of external node
features.

3. For directed mazes,APP is the best performing method
followed either by DeepWalk or NERD. The good per-
formance of DeepWalk in these mazes is a bit sur-
prising and points to the fact that the directionality
of the underlying MDPs (at least for the studied en-
vironments) can be ignored as far as learning state
representations is concerned.

4. We also observe that the best performing methods
also incur shorter episodes supporting the fact that a
better input state representation not only improved
the learning quality but also made it faster.

4.3 Sensitivity to Embedding Dimension

In this section we study the effect of dimension of embed-
dings on learning performance of the DQN. In principle, we
want the dimension of the embedding space to be consider-
ably smaller than the original dimension of the state-space.
In Figure 6 we consider four different dimensions for four
different methods. For all these methods, we observe a dimin-
ishing return after a dimension of size 30. While increasing
the dimension would improve the performance up to some
extent, but it would incur additional time cost of training
extra parameters. For APP and DeepWalk we observe that a
higher dimensions only lead to smaller episodes.

(a) APP
(b) DeepWalk

(c) Glae (d) GraphSage

Figure 6. Sensitivity to dimensions. All results correspond
to experiments of Maze 1 using different embedding dimen-
sions, 𝑑 ∈ {20, 30, 40, 50}.

4.4 Sensitivity to Sample Size

As described previously, in all the results until now, we as-
sume that enough samples were drawn to build the complete
maze. In this section, we investigate how sample size af-
fects the learning. On average, to reconstruct a 20 × 20 maze
with obstacles by drawing random samples, approximately
8000 samples are required. This can be mathematically calcu-
lated using the Coupon Collector’s Problem [4]. The results
are shown in Figure 7. The purple line shows the cumula-
tive reward when the complete maze is used to learn state
representations. From the plots, we see that the green line,
corresponding to 1000 samples performs the worst, and the
cumulative rewards never start to rise. On increasing the
sample sizes, the performance incrementally improves. For
GraphSage and Glae in particular, even with a small sam-
ple size of 2000 show performance comparable to collecting
8000 samples, though their overall performance is worse
than APP and DeepWalk.

5 Conclusion

In this work we propose and evaluate a wide range of graph
based representation learning approaches to generate state
features based on topological structure of MDPs, leading to
improved learning performance in navigational tasks. In par-
ticular, we conducted an empirical study over a wide range
of unsupervised graph representation learning methods and
conclude that a random walk based method DeepWalk is
best suited for generating low dimensional state representa-
tions based on the topological structure of the underlying
MDP. For directed MDPS, APP and NERD are competitive
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(a) APP (b) DeepWalk

(c) Glae (d) GraphSage

Figure 7. Sensitivity to sample size. All results correspond
to experiments of Maze 1 constructed using different sizes
of random samples, 𝑆 ∈ {1000, 2000, 4000}. The purple line
corresponds to when complete maze was used.

methods and can offer advantages in encoding specific di-
rected MDPs. We also find that the more popular GCN based
models are the worst performing among the compared mod-
els. We also performed parameter sensitivity experiments
where we investigated the effect of (i) increasing embed-
ding dimension (ii) increasing the sample sizes to generate
the MDP. We observe that though increasing dimensions
improve the learning performance, a small value of 30 for
embedding dimensions already suffices to obtain compet-
itive performance. This is important for DQNs where the
number of network parameters increase with the number
of input embedding dimensions. We also show that the rep-
resentation learning methods also perform comparably to
their best performance (computed over the complete MDP)
while using a much smaller number of random samples to
build an estimate of the MDP. Our work also shows that RL
can serve as a promising application and test bed for graph
representation learning approaches.
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