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ABSTRACT
Generation models of graphs have been used to compare
and analyze the properties of graph structures and to pro-
duce graphs that resemble real-world networks. When us-
ing a generation model to mimic a real-world network, it
is desirable for the error in the properties between the tar-
get graph and the generated graph and the variation of the
errors between generated graphs are small. However, since
many existing generation models generate graphs by adding
edges at random, the extent of the error and its variation for
each generated graph is unclear.

This paper studies the error and the variation of prop-
erties of graphs generated using the dK-series framework,
which has been proposed to analyze the topology of a net-
work based on the degree of nodes. In addition, we propose
a new graph generation model that takes the degree distri-
bution and degree-dependent clustering coefficient as inputs.
We show that the proposed model is able to reduce the error
to a greater extent than other generation models.
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1 INTRODUCTION
Graph generation models have historically been used to com-
pare and analyze the properties of graph structures and to
generate graphs that resemble real-world networks. For ex-
ample, by generating and comparing random graphs with
the same number of nodes and edges as the target graph,
we can observe the properties of the graphs, such as high-
clustered and small-world properties [33]. Additionally, suf-
ficient real-world graph data are difficult to obtain, though
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researchers want these data, which is a motivation for gener-
ating many graphs that resemble real-world networks. Fur-
thermore, while many attempts have been made to use sam-
pling to estimate the overall properties for networks where
the overall topology is unknown, such as large graph struc-
tures of user relationships in online social networking services
(OSNs) [1, 12, 18, 19], the properties that can be estimated
by sampling are limited to those that can be computed from
local information such as the number of nodes, degree distri-
butions, and clustering coefficients. Therefore, graph gener-
ation models have been used to generate graphs that mimic
even properties that are difficult to estimate.

Priya et al. proposed a framework for random graph gener-
ation models called dK-series, which characterizes the prop-
erties of a graph using a series of probability distributions
specifying all the degree correlations within d-sized subgraphs
of a given graph [23]. Consider the following scenario. Sup-
pose you want to understand the structure of a real network
by comparing it to a graph generated by fixing a certain
property. In this case, the feature of the generated graph
when you hierarchically add properties to be fixed is also
of great interest. Additionally, there is another motivation
for generating graphs with properties that we know or esti-
mate via sampling when a particular property of graphs is
available or the overall data are not available. The dK-series
provides a systematic description for such various graph gen-
eration models we use depending on a purpose. Gjoka et al.
proposed a generation model for a 2.5K graph based on dK-
series [15]. The model generates a graph with a fixed joint
degree distribution and degree-dependent clustering coeffi-
cients. Moreover, the graphs generated by this model can
accurately mimic real-world networks.

Graphs generated by a generation model based on dK-
series can estimate globally defined properties with high ac-
curacy, but due to the random addition of the edges, the
noninput properties are different for each generation, even if
the input is the same. Whether the generated graphs vary
greatly from one generation to the next or whether they al-
ways fall within a certain range is unclear. If we want to gen-
erate a graph that resembles a certain graph, the fact that
the generated graph is “similar” to the target graph has to
be reliable, so the error in the properties between the tar-
get graph and the generated graph, as well as its variation,
should be small. However, so far, the error and variation of
the properties of the generated graphs for the same input
have not been thoroughly studied. Furthermore, while dK-
series can mimic almost all properties at 3K graphs, except
those fixed at the input, the generation of 3K graphs entails
enormous computational complexity: 2.5K has been able to
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reduce the complexity to a practically usable level. However,
even at 2.5K, there are concerns about scalability, and the
generation of large-scale graphs with hundreds of millions of
nodes and edges remains challenging.

In this study, we generate a large number of graphs us-
ing generation models based on dK-series for a real network
dataset and compare the errors, variation, and execution
time of each property of the generated graphs. We also pro-
pose a new generation model (1K+) that overcomes the scal-
ability of graph generation while maintaining the accuracy.
The structure of the rest of this paper is as follows. Chapter
2 provides the notation and the definitions of the properties
to be discussed. Chapter 3 presents related work. Chapter
4 discusses the errors and the variations of generation mod-
els based on dK-series. Chapter 5 proposes the new model
and discusses its accuracy and variation. Finally, Chapter 6
summarizes this paper.

2 NOTATION
We consider an undirected, unweighted and static graph G =
(V,E), with |V | = n nodes and |E| = m edges. We call a
node v ∈ Vk a “degree k node”, where Vk is the set of all
nodes of degree k. Let the set of nodes V = {v1 · · · vn}; the
degree of vi is denoted as di. N(v) ⊂ V is the set of neighbors
of v.

2.1 Properties of Interest
The degree distribution is represented as a probability distri-
bution P (k) = P (di = k) for i ∈ {1, · · · , n}. In this paper,
we use another property of degree, called the joint degree
distribution (JDD) P (k1, k2) = P (di = k1, dj = k2) (i ̸= j),
which represents the distribution of a pair of degrees con-
nected as edges.

The clustering coefficient ci of a node vi captures the ex-
tent to which the neighbors of a node form triangles and
is typically defined as the ratio of the number of edges be-
tween neighbors divided by the maximum number of such
edges. Thus, the clustering coefficient ci is represented as
ci = 2Ti

di(di−1) , where Ti is the number of triangles includ-

ing vi. The degree-dependent clustering coefficient c̄(k) is
defined as c̄(k) = 1

|Vk|
∑

vi∈Vk
ci. Additionally, the average

clustering coefficient c̄, ci averaged over all nodes in G, is
defined as c̄ = 1

n

∑
vi
ci, and c̄(k) determines c̄ because

c̄ = 1
n

∑
k |Vk| · c̄(k).

The shortest path distribution is defined as the probabil-
ity of a distance between arbitrary pairs of nodes, where the
distance between nodes vi and vj , dist(vi, vj), in unweighted
graphs is denoted as the minimum number of edges of paths
connecting nodes vi and vj . The maximal clique distribu-
tion is defined as the frequency of the size of maximal cliques,
where a clique is a complete subgraph and its size is the num-
ber of nodes in the subgraph. Furthermore, the cycles distri-
bution is defined as the frequency of the cycle length for a
minimal cycle basis, in which a cycle cannot be reconstructed
by the union of cycles in the base. The spectrum is the eigen-
values of a graph: we use the distribution of the 20 largest

eigenvalues. The closeness centrality of a node vi is defined as
the multiplicative inverse of

∑
vj∈N(vi)

dist(vi, vj), the sum

of distances of the node to all other nodes. The greater the
closeness centrality of a node is, the closer it is to all other
nodes.

3 RELATED WORK
The Erdős-Rényi model is a random graph generation model,
also known as the ER model, that was introduced in the late
1950s [11]. There are two types of ER models, the G(n,m)
model and the G(n, p) model. The G(n,m) model involves
uniform random selection among a set of graphs with n nodes
and m edges. In contrast, the G(n, p) model independently
constructs an edge for each pair of vertices with probability
p; that is, the expected number of edges in the G(n, p) model
is

(
n
2

)
p. The main motivation for generating random graphs

with the ER model is to verify what properties a graph with
the same number of nodes n and edges m generally satisfies,
which is not a sufficient model to mimic a real network.
Since the G(n,m) model does not add edges with probability
independent from that of other edges, the G(n, p) model,
which usually considers p as a function of n and considers
the structure in n→∞, is commonly used.

The model for generating a random graph with a fixed
degree distribution is called the configuration model. The
configuration model has been studied since the 1970s and
has been used in a number of research projects [3–7, 21,
22, 24, 25]. Here, we apply the model using the approach
by Newman, Strogatz, and Watts [9, 10]. Suppose that the
degree sequence di · · · dn is independent and satisfies P (di =

k) = |Vk|
n . This model takes the number of nodes n and

the degree distribution P (di = k) as inputs and, assuming
that there are di half-edges from node vi, randomly selects
two half-edges to construct a connecting edge. This method
may generate multiple edges and self-loops. An algorithm to
avoid multiple edges and self-loops has also been proposed
[17].

Priya et al. proposed dK-series [23], a framework for sys-
tematically characterizing a graph using a probability dis-
tribution P (k1, k2, · · · , kd) that identifies all degree correla-
tions in a connected subgraph consisting of d nodes. The 0K
graph fixes only the average degree k̄ of the graph G; that
is, the G(n,m) model in the Erdős-Rényi model described
above is equivalent. The 1K graph, given the degree distribu-
tion P (k), can be generated by the configuration model de-
scribed above. The 2K graph is generated by identifying and
fixing the joint degree distribution (JDD) P (k1, k2), which
can be accomplished by extending the configuration model
[23]. A model for generating 2K graphs that avoids multi-
ple edges and self-loops has been proposed by Isabelle et al.
[29, 30].

The 3K graph fixes the distributions P△(k1, k2, k3) and
P∧(k1, k2, k3) of 3-node subgraphs formed as triangles and
wedges. As d increases, the size of the subgraphs increases.
An nK graph defined using the number of nodes n is identical
to graph G of the original network.
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Priya et al. use a method called dK-randomizing rewiring
to randomly swap edges while preserving the existing form
of the dK distribution and compare the result to the prop-
erties in the original graph. It has been shown that d = 2
reproduces most of the properties, and d = 3 reproduces
all the properties almost faithfully, while the computational
complexity of the dK graph generation increases rapidly as
d increases [23]. Moreover, generating a graph that satisfies
the input probability distribution is difficult at 3K and above
[23].

Gjoka et al. proposed an idea to reproduce properties that
are difficult to estimate by generating a graph with fixed
properties that can be estimated with high accuracy by sam-
pling a large-scale graph structure, such as a social network,
where the overall topology is unknown.

Following the dK-series, Gjoka et al. presented a model to
generate 2.25K graphs with a fixed average clustering coef-
ficient c̄ in addition to JDD and 2.5K graphs with a fixed
degree-dependent clustering coefficient c̄(k) and JDD and
compared the results with 2K graphs with respect to accu-
racy. They also proposed a method to estimate the JDD and
degree-dependent clustering coefficients with high accuracy
[15, 31].

A 2.5K graph is generated by two steps: 1) assigning a
number of positions to all nodes in the algorithm to generate
the 2K graph and sorting all pairs of nodes by their distance
to produce a graph with many triangles, and 2) reducing the
clustering coefficients by swapping two nodes with the same
degree while still satisfying the JDD.

The 2.5K graph is similar to the target graph for a wide
range of major properties other than the maximal clique
distribution. However, due to its nature as a random graph,
different graphs are generated for each generation, and there
is no mention of how much variation exists and how reliable
the graphs are once generated.

Orsini et al. studied the randomness of graphs generated
by dK-series models [27]. They showed that many impor-
tant properties of real networks are closely reproduced by
dk-random graphs whose degree distributions and cluster-
ing coefficients are the same as in the corresponding real
network. They considered some, but limited, real networks.
Specifically, social network datasets should also be consid-
ered. Additionally, various other properties must be verified,
and more graphs must be produced to verify the accuracy.

Furthermore, many studies on graph generation models
that fix degree-dependent clustering coefficients have been
reported. Serrano et al. [28] proposed a model for gener-
ating random graphs satisfying the degree-dependent clus-
tering coefficient c̄(k) and degree distribution P (di = k),
but this method is not practical for graphs that have large
clustering coefficients. According to Wang [32], graph gen-
eration models satisfying a given clustering coefficient has
also been proposed by Bansal et al [2], Newman [26], and
Gleeson [16]. Bansal et al. proposed a model that satisfies
the average clustering coefficient c̄, and Newman proposed a
model that fixes ci for each node unless one edge is used to
generate multiple triangles. Gleeson proposed an improved

Table 1: Dataset: Each number is of the largest con-
nected component of each graph.

Dataset |V | |E| d̄ c̄
Caltech [14] 769 16 656 21.65 0.409

Rice [14] 4 087 184 828 45.22 0.294
wiki-Vote [20] 7 115 100 762 14.16 0.141

Table 2: Environment.

OS macOS Mojave 10.14.5
Processor 2.7 GHz Intel R⃝ CoreTM i7
Memory 16 GB 2133 MHz LPDDR3

Language
Python 2.7.10 (for 2K & 2.5K graphs)

Python 3.6.3 (for others)

model that focuses on the constraints of Newman’s gener-
ation model. Except for Bansal et al.’s generation model,
these approaches cannot satisfy the degree distribution at
the same time. Therefore, limited graph generation models
are available for fixing degree-dependent clustering coeffi-
cients and degree distributions.

4 ERROR AND ITS VARIATION FOR
GENERATED GRAPHS

We generate a number of random graphs with generation
models based on dK-series using properties computed from
real network datasets as input and compare the various prop-
erties of the generated graphs with the real values in the
datasets.

4.1 Preparation
In this experiment, we use three datasets with the various
topologies shown in Table 1. The entire dataset is treated as
an undirected graph, and its largest connected component
(LCC) is used in the experiment.

The 0K graphs are generated with gnm random graph [8]
in NetworkX, a Python library for network graph analysis.
The 1K graphs are generated with the configuration model,
and 2K graphs and 2.5K graphs are generated with
construct simple 2K, construct triangles 2K and
mcmc improved 2 5 K of the software published by Gjoka et
al. [13], respectively.

We measure the difference between two discrete distri-
butions using the normalized mean absolute error (NMAE)
defined below.

NMAE(̂⃗x, x⃗) =
∑

(|x̂i − xi|)∑
xi

̂⃗x and x⃗ are vectors that correspond to the real and estimated
discrete distributions.

Additionally, this experiment is conducted under the en-
vironment described in Table 2.
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Table 3: Graph generation time in seconds.

Dataset 0K 1K 1K+ 2K 2.5K
Caltech [14] 0.0658 1.17 1.13 0.532 11.3

Rice [14] 0.629 64.0 53.1 5.09 84.7
wiki-Vote [20] 0.382 47.2 42.5 3.29 62.7

4.2 Measurement
For each dataset, 1) we calculate the number of nodes, num-
ber of edges, degree distribution, JDD, and degree-dependent
clustering coefficients, 2) generate 100 graphs with each ran-
dom graph generation model using the corresponding prop-
erties, and 3) for their generated graphs, calculate the NMAE
of the following graph properties.

• Shortest path distribution
• Maximal clique distribution
• Cycles distribution
• Spectrum (20 largest eigenvalues)
• Closeness centrality

4.2.1 Property Analysis. The distributions of the above five
properties for the Caltech dataset and its generated graphs
are shown in Figure 1.

The red line in each figure plots the distribution of the
target graphs, while the other plots the distribution of the
generated graphs. As d of dK increases, some properties be-
come closer to the distribution of the red line.

4.2.2 Error Distribution. For each of the graphs generated
from the three datasets Caltech, Rice, and wiki-Vote, the
error distributions of the above five properties are shown in
Figure 2.

For all properties, the error variation is small regardless
of the generation model: 0K is very small for all properties.

For each dK, the variation of the shortest path distribu-
tion, spectrum, and closeness centrality is stably small, and
the error tends to decrease as d increases.

The errors and their variations of the maximum clique and
cycle distributions are larger than those of the other prop-
erties, and the distributions vary depending on the topology
of the data set.

4.2.3 Performance. The execution time to generate one graph
for each generation model is shown in Table 3. Ten graphs
were generated, and the average is shown. The 0K and 1K
graphs were run with Python 3.6.3, and 2K and 2.5K were
run with Python 2.7.10.

The 0K graphs can be generated the fastest, and the gen-
eration of 2.5K graphs is the most time consuming.

5 1K+ GRAPH GENERATION MODEL
We propose a generation model that fixes the degree dis-
tribution and makes the degree-dependent clustering coeffi-
cients closer to the input than that of the 1K graph. In this
generation model, because graphs generated by conventional
models tend not to have large size cliques compared to real

graphs, as shown in Figure 1, we focus on cliques and gen-
erate graphs by two steps: 1) generating cliques according
to the number of triangles for degree k, and 2) matching
the degree of each node using the conventional configuration
model. We call the graph generated by this generation model
a 1K+ graph.

In the proposed generation model, for each degree, we
generate cliques that can form the closest number of triangles
to the target number of triangles among nodes with the same
degree.

Algorithm 1 illustrates the implementation of 1K+. Let
the input be ntri[k], which is the sum of the number of trian-
gles joined by the degree k nodes, computed from the degree
distribution P (di = k) and the degree-dependent clustering
coefficient c̄(k).

The graphs generated by this 1K+ algorithm can ensure
that the degree-dependent clustering coefficients are closer to
the target graph than the graphs generated by the 0K, 1K,
and 2K graph generation models. Figure 3 shows the dis-
tribution of degree-dependent clustering coefficients of the
generated graphs. The red dots in the figure plot the distri-
bution of the target graphs, and the others are the distri-
bution of the 100 generated graphs. The distribution of the
degree-dependent clustering coefficients of the 1K+ graphs
overlaps well with the red dots compared to the graphs gen-
erated by the 0K, 1K, and 2K approaches.

The experiment discussed in Chapter 4 is repeated for
the 1K+ generation model. Using the degree distribution
and the distribution of the degree-dependent clustering co-
efficient as inputs, we generate 100 graphs with the 1K+
model in Python 3.6.3, as described in Algorithm 1.

The distribution of properties for the Caltech dataset is
shown in Figure 1. As shown in Figure 2, the graphs gen-
erated by the proposed 1K+ algorithm have smaller errors
than the 2K graphs; for example, with respect to the shortest
path distribution, 1K+ has the smallest error in the Caltech
graph and the second smallest error, after 2.5K, in the Rice
graph. Additionally, the errors of the maximal clique and
cycle distributions in the 1K+ graph are the smallest, on
average, in the Wiki-Vote graph, with some improvement
from 1K in Caltech and Rice. Furthermore, as can be seen
from Table 3, although the 1K+ graph requires more inputs
than the 1K graph, it can be generated in a shorter time.
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0K

1K

1K+

2K

2.5K

Shortest path Maximal clique Cycle Spectrum Closeness centrality

Figure 1: Distribution of properties (Caltech).

(a) Caltech (b) Rice (c) wiki-Vote

Figure 2: Error distribution.
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Algorithm 1 Generate 1K+ graph.

Require: d1 · · · dn: degree sequence
ntri[k]: the sum of the number of triangles joined by node
v ∈ Vk

Ensure: 1K+ graph
V ′ ← {1, · · ·n}
E′ ← empty set
V ′
k ← degree k node vi

for all degree k do
if |V ′

k | < k + 1 then
if ntri[k] < the number of triangles can be generated
by the size |V ′

k | clique then
generate clique with nodes v ∈ V ′

k whose size can
generate the nearest number of triangles to ntri[k]

update E′

else
generate size |V ′

k | clique with nodes v ∈ V ′
k

update E′

end if
else

if |V ′
k | ≥ the number of triangles can be generated by

the size k clique then
generate size k + 1 clique with nodes v ∈ V ′

k

update E′

else
generate clique with nodes v ∈ V ′

k whose size can
generate the nearest number of triangles to ntri[k]

update E′

end if
end if

end for
match the degree with configuration model
G′ ← (V ′, E′)
return G′

6 CONCLUSION AND FUTURE WORK
In this study, we examined the variation of properties of
graphs generated by the graph generation model based on
dK-series. We also considered the distribution of errors: the
error variation is small for properties not given as inputs in
the generation models.

Furthermore, we proposed a model for generating a 1K+
graph that focuses on cliques and constructs triangles using
degree-dependent clustering coefficients as input. We showed
that this model is faster than 1K and 2.5K graph generation
and, depending on the topology, can reduce the error of the
properties compared to those of the 2K graph.

The future task is to improve the 1K+ model by making
its degree-dependent clustering coefficients closer to the in-
puts and to stably reduce the errors in the properties, such
as the maximum clique distribution.

(a) 0K (b) 1K

(c) 2K (d) 1K+

Figure 3: Distribution of degree-dependent cluster-
ing coefficient (Caltech).
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