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ABSTRACT
Network embedding has been an active research area given its ef-
fectiveness in mapping nodes to low-dimensional representations.
While previous studies mostly focus on network topology, recent
advances have shown that rich node-level information, known as
attributes, often exist and can substantially benefit embedding based
on the assumption of homophily: nodes often connect to other nodes
similar to themselves. However, we find that inconsistencies often
occur in node attributes in real-world data, which can undermine the
homophily assumption and thus degrade the performance of attrib-
uted network embedding. To address this drawback, in this paper,
we present a novel framework for unsupervised network embedding
with attribute refinement. In particular, we propose a learnable filter
to automatically refine the individual attributes of every node. To
overcome the challenge of no supervision, we leverage homophily to
guide the refinement—attributes should be fine-tuned in a way to re-
inforce the correlation with topology. Finally, we conduct extensive
experiments on three benchmark real-world datasets, which show
that our model significantly outperforms state-of-the-art methods
on both node classification and link prediction tasks. Furthermore,
we perform model analysis to demonstrate that our framework can
effectively refine attributes.
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• Computing methodologies → Learning latent representations;
• Information systems → Data mining; Social networks.
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1 INTRODUCTION
Many real-world problems involve a network or a graph, a powerful
structure for modeling not only individual entities as its nodes, but
also complex interplay among these nodes. Prominent examples
include social networks that encompass inter-user relationships, and
biological networks that capture protein-protein interactions. Such
networks enable many crucial applications, for instance, person-
alized recommendation for users [13], query intent classification
[6] and disease gene identification [2], which can often cast as in-
stances of node classification, link prediction or network clustering.
Solving these problems typically requires effective representations
for each node in the network. While earlier studies relied on man-
ual feature engineering to derive node representations, current re-
search has achieved considerable success through network embed-
ding [9, 22, 23, 25], often with significantly reduced manual efforts
and increased performances.

In this paper, we study the problem of unsupervised network em-
bedding with attributes. It aims to learn a mapping from each node
to a low-dimensional and continuous vector, which can be subse-
quently used to support downstream applications. In particular, we
focus on the unsupervised setting, where application-specific labels
are not required. In other words, no manual effort is involved to
learn the mappings, and the resulting vectors can be universally used
by different applications. Traditionally, unsupervised embedding
techniques [9, 22, 23, 25] only leverage network topology (i.e., the
relationships between nodes), missing out on the rich information
associated with individual nodes. Such information almost always
exist, such as the age or location of users in social networks, as
well as the keywords or texts describing proteins. These node-level
information are usually encoded as node attributes in a structured
way. For example, categorical values may employ one-hot encoding,
whereas texts may adopt the vector space model. These attributes
can be used in conjunction with network topology to improve the em-
bedding. In particular, node attributes are fundamentally important
to sparse networks, which are widespread in real-world applications.

Several recent developments [11, 18, 29] have accounted for node
attributes in an unsupervised setting, which generally outperform
topology-only approaches. Their key insight boils down to the as-
sumption of homophily [19, 20]—the tendency for nodes to relate
to or interact with other nodes that are similar to themselves. This
implies that node attributes constitute an important source of informa-
tion to complement network topology. We illustrate the homophily
assumption on three benchmark attributed networks, namely, Cora,
Citeseer and Wiki in Figure 1. Homophily implies that neighbor
pairs (i.e., nodes directly linked to each other in the network) should
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Figure 1: Homophily on three attributed networks (Cora, Cite-
seer and Wiki). On each network, two groups of node pairs are
studied: neighbors and other (non-neighbor) pairs. For each
group, the distribution of their attribute similarities is plotted
and marked with the median, 20th and 80th percentiles.

have significantly more similar attributes than other non-neighbor
pairs. We measure the attribute similarity of a node pair using the
cosine similarity of their attribute vectors. The homophily effect
clearly exists on all three networks, as a neighbor pair is far more
likely to have higher attribute similarity than a non-neighbor pair.

However, the homophily assumption could be severely under-
mined when inconsistencies appear in node attributes, when the
observed attribute values deviate from their presumably normal val-
ues to different extents. Such inconsistencies remain a prevalent
issue in real-world data, although their interpretations often vary in
different contexts. For instance, in social networks, user reported
demographic attributes are often outdated, under-reported or deliber-
ately misreported. Previous studies on Twitter [5, 16] show that only
a small fraction of users (as few as 16%) report city-level locations,
while most leave non-informative or generic locations (e.g., “my
home”, “CA” or “Earth”). On the other hand, in protein interaction
networks, while the keywords describing the proteins are often cu-
rated by experts [4], not all keywords are of equal relevance and
importance. The varying degrees of relevance or importance can be
deemed as a form of inconsistency. A similar interpretation exists
on citation networks where articles have keywords as attributes.

Towards remediating the adverse impact of inconsistencies, we
present a novel, unsupervised algorithm called Network Embedding
with Attribute Refinement (NEAR). However, detecting and miti-
gating attribute inconsistencies are non-trivial, posing two major
challenges. First, inconsistencies in attribute can occur in an ad-hoc
and non-systematic manner. There is a need for fine-grained refine-
ment designed for individual attributes and nodes. In particular, we
propose to fine-tune each attribute of every node using a learnable
filter, with the ability to refine attributes on a per-attribute, per-node
basis. Second, as we assume an unsupervised setting, there exists no
explicit guidance on modeling attribute inconsistencies. Note that
nodes with attribute inconsistencies are not necessarily outliers, as
they may have irregularities in only one or a few attributes. Fur-
thermore, attributes can be extremely high dimensional, rendering
traditional unsupervised algorithms for outlier detection ineffective.

To compensate for the lack of supervision, we propose to refine
attributes in a manner consistent with the homophily assumption.

To summarize, in this paper, we make the following contributions
to attributed network embedding.

• We observe the need to address inconsistencies in node at-
tributes for more effective and robust network embedding.

• We propose a novel, unsupervised framework NEAR for
network embedding with attribute refinement, through a fully
learnable filter guided by the homophily assumption.

• We conduct extensive experiments to demonstrate that NEAR
can significantly outperform the state-of-the-art in both link
prediction and node classification, and present an in-depth
analysi on the underlying mechanism of NEAR.

2 RELATED WORK
Early research in network embedding has been inspired by word
embedding [21] in natural language processing. In DeepWalk [22],
Perozzi et al. observed that the degrees of nodes in a network follow
a power law, similar to the frequencies of words occurring in natural
languages. Leveraging on this property, DeepWalk performs ran-
dom walks on the network to sample sequences of nodes, which are
similar to sentences in language. Such “sentences” of nodes in fact
leverage network topology: nodes closely connected to each other
should have similar representations. Subsequently, node2vec [9]
generalizes DeepWalk by adopting an improved random walk strat-
egy. The basic idea is to explore the network with both breadth and
depth-first search, and thus captures both local and global topology.
For a similar purpose, several studies [23, 25, 27] design and model
first and second-order proximity to preserve topology both locally
and globally, based on various techniques such as deep autoencoders
and matrix factorization. In particular, in community preserving
network embedding [27], the proposed model incorporates not only
microscopic topological structures such as first and second-order
proximity, but also mesoscopic community structures. More recently,
the macroscopic scale-free property exhibited by many real-world
networks has been investigated [7], where a penalty on the degrees
of nodes is enforced to follow the power law.

All of the above studies only deal with network topology. How-
ever, in real-world networks, nodes are often associated with rich
information, which can be encoded into attributes. The underlying
principle is hinged on the assumption of homophily [19, 20]: nodes
tend to connect with other nodes similar to themselves. This assump-
tion implies that node attributes form a valuable source of informa-
tion to complement network topology. Recent studies [11, 18, 29, 31]
have demonstrated many times that integrating node attributes are in-
deed beneficial, for both text information [29] and general attributes
[11, 18, 32]. Some utilize matrix factorization [3, 11, 29] and some
use deep neural networks [8, 18, 26, 32], but the essence boils down
to integrating the two aspects of topology and attributes, so that nodes
similar to each other in the two aspects share similar representations.
Sometimes, this essence is materialized as explicit constraints. For
instance, Li et al. [15] proposed a property-preserving model called
PPNE, which employs inequality and numeric constraints to force
node pairs with similar attributes to become closer in the learned
representations.
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However, in the above works, inconsistencies in node attributes
are not considered and addressed. In a recent work [30], the node
embeddings are directly built upon attributes. Their model projects
attributes into low-dimensional representations, with parameters
jointly learned with topology. Presumably, inconsistencies can be
refined by a projection with right parameters, as opposed to models
that train node embeddings directly. However, it does not allow for
fine-grained refinement for each node and each attribute. In contrast,
our proposed model NEAR leverages a fully learnable filter, which
is able to refine node attributes on a per-attribute, per-node basis.
Separately, Zhou et al. [33] observed the partial correlation problem
between topological and attribute similarities, i.e., the homophily
effect is not always true. While not necessarily caused by inconsis-
tencies (although they could be a significant factor), they proposed a
relation ranking framework to prioritize node pairs that do satisfy the
homophily assumption. In our approach, we learn a filter to directly
refine attributes so that the homophily effect is reinforced. Finally,
there also exist the related problem of partial observation [28], where
we can only observe the topology of some nodes, or the attributes of
some others. The issue of missing information is beyond the scope
of this paper.

While the above models all focus on the unsupervised setting,
there also exist semi-supervised or supervised approaches, where
task-specific supervision is required. Examples include label in-
formed attributed network embedding (LANE) [12], as well as re-
cent graph neural networks such as graph convolutional networks
[14], graph attention networks [24] and GraphSAGE [10]. While
these studies do not assume any attribute inconsistencies, Liang et
al. [17] has proposed a model called SEANO to deal with attribute
noises in a semi-supervised manner.

3 PROPOSED APPROACH
In this section, we introduce our model NEAR, or Network Embed-
ding with Attribute Refinement. We first include some preliminaries
on the notations and problem definition, before presenting our pro-
posed approach.

3.1 Preliminaries
Formally, we denote a network with attributes as 𝐺 = (𝑉 , 𝐸,𝐴).
Herein𝑉 = {𝑣1, 𝑣2, ..., 𝑣𝑛} represents the set of nodes, and 𝐸 ⊆ 𝑉 ×𝑉
represents the set of edges, such that (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 if and only if
𝑣𝑖 is linked to 𝑣 𝑗 . In addition, 𝐴 ∈ R𝑛×𝑚 is the attribute matrix,
where 𝑛 is the number of nodes and 𝑚 is the number of attributes.
More specifically, 𝐴𝑖, 𝑗 encodes the 𝑗 th attribute of node 𝑣𝑖 , which
can be binary or real-valued. Typically, categorical attributes can be
converted into one hot vectors, and texts can be converted into a bag
of words with binary, tf-idf or other weightings. The main notations
used in this paper are summarized in Table 1.

As motivated in Section 1, node attributes often present incon-
sistencies. The 𝑗 th attribute of node 𝑣𝑖 is said to be inconsistent, if
𝐴𝑖, 𝑗 is non-zero and deviates from its (latent) normal value. Note
that when 𝐴𝑖, 𝑗 is zero, it is considered as a potential missing value,
which is beyond the scope of this paper.

Table 1: Summary of main notations.

Notation Description
𝐺,𝑉 , 𝐸 network 𝐺 , node set𝑉 and edge set 𝐸
𝑣𝑖 ∈ 𝑉 a node
N𝑖 the context of node 𝑣𝑖

𝑛,𝑚 number of nodes and attributes, resp.
𝑑 number of embedding dimensions
𝐴, �̃� ∈ R𝑛×𝑚 attribute matrices, original or filtered, resp.
𝑈 ,𝑈 ′ ∈ R𝑛×𝑑 center or context node embeddings, resp.
𝐹 ∈ R𝑛×𝑚 filter matrix
𝑊 ∈ R𝑚×𝑑 weight matrix for attributes
𝐵 ∈ R𝑛×𝑑 bias matrix for topology variations
a𝑖 , ã𝑖 , f𝑖 ∈ R𝑚 the 𝑖 th row vector in 𝐴, �̃� or 𝐹 , resp.
u𝑖 , u′𝑖 ,w𝑖 , b𝑖 ∈ R𝑑 the 𝑖 th row vector in 𝑈 or 𝑈 ′, resp.

3.2 Node representation
Embedding with attributes. To begin with, we integrate attributes
directly into each node’s representation, without assuming any in-
consistency in the attributes at the moment. Specifically, the repre-
sentation matrix for nodes, 𝑈 ∈ R𝑛×𝑑 , is defined as

𝑈 = 𝐴𝑊 + 𝐵, (1)

where𝑊 ∈ R𝑚×𝑑 and 𝐵 ∈ R𝑛×𝑑 are the weight and bias matrices,
respectively, and 𝑑 is the embedding dimension. Even under the
homophily assumption, it is not expected that topology and attributes
align perfectly [33]. In order to account for topology variations from
attributes, the bias is node-specific rather than global to all nodes.
Thus, 𝐵 can be understood as capturing the topological variations
from attributes. Note that the 𝑖 th-row in 𝑈 corresponds to u𝑖 , the
representation for the node 𝑣𝑖 . Similarly, the 𝑖 th-row in 𝐵, or b𝑖 , is
the bias for 𝑣𝑖 .

Attribute filter. Next, we consider potential inconsistencies in the
attributes. Arguably, the weight matrix𝑊 is able to mitigate incon-
sistencies in the 𝑗 th attribute by setting its 𝑗 th row to near-zero values,
but this mechanism is far from ideal. In particular, only when the 𝑗 th

attribute is inconsistent across all of the nodes in 𝑉 , it makes sense
to have w𝑗 ≈ 0. Although there could be such attributes, in a more
general scenario, inconsistencies can present in a more ad-hoc and
less systematic manner.

Thus, we propose a fully learnable filter 𝐹 ∈ R𝑛×𝑚 , which has the
same shape as the attribute matrix 𝐴. Therefore, 𝐹 can be applied to
𝐴 in an element-wise manner, achieving fine-grained refinement on
a per-node, per-attribute basis. More specifically, we extend Equa-
tion (1) to the following:

𝑈 = (𝐴 ◦ 𝜎 (𝐹 ))𝑊 + 𝐵, (2)

where ◦ denotes the Hadamard product, and 𝜎 denotes the sigmoid
function. Note that 𝐴 is typically very sparse. Therefore, 𝐹 is also
sparse: if 𝐴𝑖, 𝑗 = 0, 𝐹𝑖, 𝑗 needs not be materialized. Note that zero-
value attributes present a different problem of handling potentially
missing values, which we leave to future work.

3.3 Overall framework and loss
The overall framework is summarized in Figure 2. We design a
loss function that not only incorporates node attributes and network
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Figure 2: Overall framework. Node embedding matrix 𝑈 is derived jointly from both topology and (filtered) attributes.

topology, but also performs fine-grained attribute refinement guided
by the homophily effect.

Topology and attributes. Like previous work, we also assume that
a node 𝑣𝑖 is associated with a set of context nodes N𝑖 . These context
nodes are closely related to 𝑣𝑖 based on network topology, such
as the neighbors of 𝑣𝑖 , or nodes sampled by random walks (i.e.,
the skip-gram model [22]). We call 𝑣𝑖 as the center of its contexts.
Subsequently, we aim to predict the contexts of a given center 𝑣𝑖 :

𝑃 (N𝑖 |𝑣𝑖 ) =
∏

𝑣𝑗 ∈N𝑖

𝑃 (𝑣 𝑗 |𝑣𝑖 ) =
∏

𝑣𝑗 ∈N𝑖

exp
(
u′
𝑗
· u𝑖

)
∑𝑛
𝑘=1 exp

(
u′
𝑘
· u𝑖

) , (3)

where u′
𝑗

is the embedding of 𝑣 𝑗 served as the context, and u𝑖 is the

representation of 𝑣𝑖 served as the center. In particular, u′
𝑗

is the 𝑗 th

row of the context embedding matrix 𝑈 ′ ∈ R𝑛×𝑑 , a matrix to be
fitted as illustrated in Figure 2. In practice, negative sampling could
be adopted for the softmax function to accelerate training. Finally,
we minimize the negative log-likelihood of all nodes on the network:

𝐿𝛼 = −
∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈N𝑖

log 𝑃 (𝑣 𝑗 |𝑣𝑖 ). (4)

Since the embedding u𝑖 depends on the attributes of node 𝑣𝑖 , the
above loss incorporates both topology and attributes.

Reinforcement of homophily. As motivated earlier, to guide the
learning of the filter 𝐹 without supervision, we exploit the homophily
assumption. Specifically, inconsistencies should be identified and
refined in a way to reinforce homophily. That is, after attribute re-
finement using the filter, the homophily effect should ideally become
stronger—given a pair of nodes, their similarities in terms of topol-
ogy and in terms of attributes should correlate better with each other.
Let simt (𝑣𝑖 , 𝑣 𝑗 ) ∈ [0, 1] measure the topological similarity between
𝑣𝑖 and 𝑣 𝑗 , and sima (𝑣𝑖 , 𝑣 𝑗 ) ∈ [0, 1] measure the attribute similarity
between 𝑣𝑖 and 𝑣 𝑗 . Therefore, we can optimize the reinforcement of
homophily by minimizing the following loss:

𝐿𝛽 = −
∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈N𝑖

simt (𝑣𝑖 , 𝑣 𝑗 ) sima (𝑣𝑖 , 𝑣 𝑗 ). (5)

Note that the 𝑛 × 𝑛 matrix for homophily reinforcement in Figure 2
is sparse, as only the cells corresponding to the center-context pairs
are non-zero.

Since the network topology remains fixed in our model, simt (𝑣𝑖 , 𝑣 𝑗 )
can be treated as a constant and precomputed. One choice for simt
is the Adamic/Adar index [1]: simt (𝑣𝑖 , 𝑣 𝑗 ) =

∑
𝑣𝑘 ∈𝑁𝑖∩𝑁 𝑗

1
log |𝑁𝑘 | ,

where 𝑁𝑖 is the set of neighbors of 𝑣𝑖 . The intuition is that, a com-
mon neighboring node of 𝑣𝑖 and 𝑣 𝑗 is less significant when that
common node itself has a large neighborhood.

On the other hand, sima (𝑣𝑖 , 𝑣 𝑗 ) is a function of the refined at-
tributes of 𝑣𝑖 and 𝑣 𝑗 , which is ultimately a function of the learnable
filter 𝐹 . We adopt the common cosine similarity: sima (𝑣𝑖 , 𝑣 𝑗 ) =

ã𝑖 · ã𝑗/∥ã𝑖 ∥∥ã𝑗 ∥, where ã𝑖 ∈ R𝑚 is the refined attribute vector of
𝑣𝑖 , or the 𝑖 th row of the refined attribute matrix. Correspondingly,
a𝑖 ∈ R𝑚 is the raw attribute vector.

Overall loss. Accounting for both loss components in Equation (4)
and (5), we minimize the following with respect to model parameters
Θ = (𝐹,𝑊 , 𝐵,𝑈 ′):

𝐿 = 𝐿𝛼 + 𝜆𝐿𝛽 , (6)

where 𝜆 ≥ 0 is a hyperparameter to control the trade-off between the
two loss components. While 𝑈 = (𝐴 ◦ 𝜎 (𝐹 ))𝑊 + 𝐵 and 𝑈 ′ are the
embeddings for nodes serving as the center and context respectively,
we use 𝑈 +𝑈 ′ as the final embedding following SNE [18], given its
generally better empirical performance.

3.4 Optimization
We use the Adam optimizer to solve the loss function 𝐿 in Equa-
tion (6). The partial derivatives of 𝐿𝛼 and 𝐿𝛽 with respect to each
parameter can be computed as follows. Note that 𝐿𝛽 is only a func-
tion of 𝐹 , and is independent of other parameters in Θ.

𝜕𝐿𝛼

𝜕𝑊
= −

∑
𝑣𝑖 ∈𝑉

∑
𝑣𝑗 ∈N𝑖

ã⊤𝑖

(
u′𝑗 −

∑
𝑘∈𝑉

𝑃 (𝑣𝑘 |𝑣𝑖 )u′𝑘

)
, (7)

𝜕𝐿𝛼

𝜕b𝑖
= −

∑
𝑣𝑗 ∈N𝑖

©«u′𝑗 −
∑
𝑣𝑘 ∈𝑉

𝑃 (𝑣𝑘 |𝑣𝑖 )u′𝑘
ª®¬ , (8)
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𝜕𝐿𝛼

𝜕f𝑖
= − ©«

∑
𝑣𝑗 ∈N𝑖

u′𝑗 − |N𝑖 |
∑
𝑣𝑘 ∈𝑉

𝑃 (𝑣𝑘 |𝑣𝑖 )u′𝑘
ª®¬𝑊 ⊤ ◦ a𝑖

𝜕𝜎 (f𝑖 )
𝜕f𝑖

, (9)

𝜕𝐿𝛼

𝜕u′
𝑖

= −
∑

𝑣𝑗 ∈N−1
𝑖

u𝑗 +
∑
𝑣𝑘 ∈𝑉

|N𝑘 |𝑃 (𝑣𝑖 |𝑣𝑘 )u𝑘 , (10)

𝜕𝐿𝛽

𝜕f𝑖
= −

∑
𝑣𝑗 ∈N𝑖∪N−1

𝑖

simt (𝑣𝑖 , 𝑣 𝑗 )
𝜕 sima (𝑣𝑖 , 𝑣 𝑗 )

𝜕𝜎 (f𝑖 )
𝜕𝜎 (f𝑖 )
𝜕f𝑖

, (11)

where N−1
𝑖

denotes the inverse of context—the set of centers of
𝑣𝑖 when 𝑣𝑖 is the context. When sima is the cosine similarity, it is
differentiable with respect to 𝜎 (𝐹 ), and we omit it here.

To accelerate the training process, we use negative sampling to
approximate the softmax function. Instead of considering all nodes in
𝑉 as the negative examples, we only sample a fixed number of nodes
with the log-uniform sampler 𝑃neg (𝑣𝑖 ) = log(𝑖+1)−log(𝑖)

log(𝑛+1) , where the
nodes 𝑣1, 𝑣2, ..., 𝑣𝑛 are sorted in descending order of their degrees. In
this way, a node with a larger degree has a higher probability to be
sampled. Note that when negative sampling is used, the 𝑛 × 𝑛 matrix
for softmax classifiers in Figure 2 becomes sparse.

Lastly, we analyze the time complexity of our optimization during
one training epoch. Assume a total of ℓ context-center pairs, i.e.,∑
𝑖∈𝑉

∑
𝑗 ∈N𝑖

1 = ℓ . By Equation (2), the node representation matrix
𝑈 can be computed in 𝑂 (𝑛𝑚𝑑) time. Given a computed 𝑈 , the
softmax function for a single pair can be computed in 𝑂 (𝑑) time
with negative sampling, where a constant number of context nodes
are sampled for each node. Subsequently, the loss function and its
gradients can be computed with the time complexity of 𝑂 (𝑛𝑚𝑑 +
ℓ𝑚𝑑). Typically ℓ ≥ 𝑛, and thus the overall complexity becomes
𝑂 (ℓ𝑚𝑑), i.e., our algorithm scales linearly in the number of pairs,
attributes and embedding dimensions.

4 EXPERIMENTS
In this section, we conduct extensive experiments on three public
datasets. In particular, we evaluate the performance of NEAR and
state-of-the-art baselines using two common tasks on network data:
node classification and link prediction. We further investigate the
underlying mechanism of NEAR by analyzing the impact of incon-
sistencies, the learnable filter, and the selection of parameter.

4.1 Experimental setup
Datasets. We consider three public network datasets1 with node
attributes, as summarized in Table 2. Each node represents a docu-
ment, and the links represent the citations between the documents. A
node is associated with some attributes, where each attribute repre-
sents a word feature. In particular, on the Cora and Citeseer datasets,
the attributes are binary-valued to indicate the presence or absence
of the words in their titles and abstracts. On the Wiki dataset, the
attributes are real-valued as the tf-idf of the words derived from
the entire document. Nodes without any attribute is removed in a
preprocessing step. On each dataset, a node is further labeled as one
of the classes (e.g., the topics of the documents).

Tasks and evaluation. We evaluate the learned embedding on two
common tasks, namely, node classification and link prediction. We

1https://github.com/thunlp/TADW

Table 2: Description of datasets.

Dataset # Nodes # Edges # Attributes Attr. type # Classes
Cora 2 708 5 429 1 433 binary 7

Citeseer 3 312 4 732 3 703 binary 6
Wiki 2 405 17 981 4 973 real 19

held out 10% of the edges in each network for validation and another
10% for testing, while the remaining 80% are used for training node
embeddings. Nodes not found in the training edges are disregarded.

For node classification, each node is associated with one of the
several classes as shown in Table 2. Therefore, this is a multi-class
classification problem. Note that the classes are often imbalanced,
and thus we evaluated the results with micro- and macro-F scores
in addition to accuracy. Each node’s final embedding is used as the
feature vector.

For link prediction, while using the held-out 10% test edges as
positive instances, we further sampled an equal number of unlinked
node pairs as negative instances. In particular, half of the negative
instances were randomly sampled from nodes that are two-hop away
from each other, and the other half were randomly chosen from
all unlinked pairs. The task is thus cast as a binary classification
problem, and can be evaluated with the standard metrics of F-score,
AUC-ROC and accuracy. As each instance contains two nodes, we
used the Hadamard product of the two nodes’ final embeddings as
the feature vector.

For both tasks, we used an SVM classifier. The instances for each
task were further split into 80% for training and 20% for testing of
the SVM, and the classifier is tuned on the training set with five-fold
cross validation. We repeated such splitting for 10 times and report
the average results.

Algorithms under evaluation. We compare NEAR with the follow-
ing baseline algorithms, as well as two variants of NEAR.

• DeepWalk [22]: A classic network embedding algorithm that
exploits topology only.

• SNE [18]: A state-of-the-art method for attributed network
embedding, which fuses node and attribute encodings and
feeds them into a neural network.

• AANE [11]: A state-of-the-art method for attributed network
embedding, which aims to recover attribute and toplogy-based
similarity matrices jointly through matrix factorization.

• GraphSAGE [10]: A state-of-the-art graph neural network
method, which derives node representations from attributes in
a toplogy-aware manner. We adopt their unsupervised variant
to match our setting.

• NEAR\F: The same as NEAR except that no filter is used, i.e.,
in Equation (2) the filter matrix 𝐹 is set to all one’s without
any learnable parameter. This variant is also similar in spirit
to the UPP-SNE model [30].

• NEAR\H: The same as NEAR except that there is no rein-
forcement on the homophily effect, i.e., in Equation (6) we
set 𝜆 = 0.

In all methods, the number of embedding dimensions is set to
64. Other dimensions such as 128 give similar results. The hyper-
paramters of the baselines are tuned empirically based on guidance
from their respective papers. In NEAR, the hyperparameter 𝜆 that
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Table 3: Performance on node classification (multi-class classification).

Cora Citeseer Wiki
Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy Micro-F Macro-F Accuracy

DeepWalk 0.5673 0.5671 0.5928 0.4178 0.3679 0.4262 0.5846 0.4321 0.5867
SNE 0.6456 0.6414 0.6555 0.4411 0.4033 0.4623 0.5914 0.4585 0.5939
AANE 0.0000 0.0658 0.2990 0.2252 0.1056 0.2103 0.0076 0.0188 0.1682
GraphSAGE 0.3364 0.3499 0.4239 0.3392 0.2931 0.3454 0.3562 0.2491 0.3628
NEAR\F 0.7350 0.7326 0.7495 0.5567 0.5242 0.5865 0.6869 0.5625 0.6791
NEAR\H 0.7044 0.7054 0.7159 0.5170 0.4743 0.5363 0.6263 0.4868 0.6198
NEAR 0.7604 0.7577 0.7707 0.6440 0.6241 0.6667 0.6885 0.5792 0.6912

Table 4: Performance on link prediction (binary classification).

Cora Citeseer Wiki
F AUC-ROC Accuracy F AUC-ROC Accuracy F AUC-ROC Accuracy

DeepWalk 0.6202 0.6682 0.6262 0.6211 0.6517 0.6120 0.8285 0.9027 0.8301
SNE 0.6868 0.7430 0.6854 0.6583 0.7172 0.6574 0.8007 0.8754 0.8043
AANE 0.6321 0.6675 0.6202 0.6222 0.6612 0.6457 0.7891 0.8387 0.7758
GraphSAGE 0.6611 0.7158 0.6624 0.6253 0.6555 0.6159 0.7710 0.8494 0.7674

NEAR\F 0.6957 0.7449 0.6903 0.6721 0.7235 0.6643 0.8240 0.8943 0.8190
NEAR\H 0.6829 0.7505 0.6804 0.6462 0.6842 0.6415 0.8243 0.8972 0.8179
NEAR 0.7092 0.7626 0.7014 0.6736 0.7161 0.6756 0.8394 0.9013 0.8430

controls the homophily effect is tuned using the softmax loss on the
held-out validation edges.

4.2 Performance comparison
We compare the performance of the baselines and NEAR on both
tasks of node classification and link prediction.

Node classification. We first report the results on the three dataset in
Table 3. In summary, our NEAR obtains the best results consistently
across all datasets and metrics. Among the baselines, DeepWalk
only considers network topology. Thus, by integrating valuable node
attributes, SNE is able to perform better than DeepWalk as expected.
Note that, while AANE and GraphSAGE also considers attributes,
they achieve unsatisfactory results as they do not handle class im-
balance well. In particular, on the Cora and Wiki datasets, AANE
predicts the largest class on almost all nodes, giving very low micro-
and macro-F scores. In general, SNE represents the best baseline, but
it is still inadequate as it assumes no inconsistency in the attributes.
Thus, our proposed NEAR outperforms SNE often by a large margin,
e.g., by 10% or more in micro-F scores.

Not surprisingly, NEAR is also superior to its two variants. It
is worth noting that NEAR\F is often better than NEAR\H, even
though the former does not employ any filter whereas the latter does.
The results imply that the noise filter is not learnable on its own in
an unsupervised setting; without any guidance from the homophily
assumption, the filter may eventually lead to worse outcomes given
an increased number of parameters. To gain more insights, we will
further examine the quality of the learned filters in Section 4.3.

Link prediction. We report the results in Table 4. Similarly, our
method NEAR generally outperforms all the baselines. On the Cora
and Citeseer datasets, the attributed embedding baselines including

SNE, AANE and GraphSAGE often perform better than DeepWalk.
On the Wiki dataset, as the attributes are extracted from the full
document, more inconsistencies in the attributes can be expected (in
contrast, on the Cora and Citeseer datasets, the attributes are only
extracted from the titles and abstracts). This potentially explains
why DeepWalk performs better on the Wiki dataset. However, since
NEAR is able to filter out such inconsistencies, it still outperforms
the baselines by a noticeable margin, e.g., up to 3.3% in F-scores.

4.3 Analysis and discussion
To understand the underlying mechanism of NEAR, we further
investigate the impact of inconsistencies, analyze the learned filters,
and study parameter selection.

Impact of inconsistencies. While the datasets naturally contain in-
consistencies in node attributes, to better analyze the refinement
mechanism of NEAR, we further added artificial inconsistencies to
the attributes. Specifically, for each attribute of each node whose
original value is zero, there is a probability to flip to one if the
attribute is binary, or a non-zero real value sampled from the distri-
bution of that attribute. We varied this probability between 0 and
0.05 in our experiments.

We compare NEAR with its two simpler variants NEAR\F and
NEAR\H, as introduced earlier. In Figures 3 and 4, we plot the
impact of artificial inconsistencies on node classification and link
prediction tasks, respectively. Note that a zero probability is equiv-
alent to the original dataset. While the performance of NEAR and
its variants all decreases as the probability of inconsistencies in-
creases, NEAR is generally less affected due to its learnable filter
and fine-grained refinement mechanism. Similar to the observation
in Section 4.2, NEAR\F generally outperforms NEAR\H, which
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Figure 3: Impact of artificial inconsistencies on node classification.
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Figure 4: Impact of artificial inconsistencies on link prediction.

means the homophily reinforcement is necessary for learning the
filter.

We also observe that NEAR\F and NEAR\H are more prune
to inconsistencies in node classification than in link prediction. A
potential explanation is that attributes are node-level information
that could more directly influence node classification.

Evaluation of learned filter. As our model hinges on the learnable
filter, we evaluate the learned filter to demonstrate that it aligns with
the goal of attribute refinement. As there is no ground truth on
attribute inconsistencies, we analyze the filters learned when we
added artificial inconsistencies to the datasets with probability 0.05.
Specifically, we examine the individual elements in the learned filter
𝐹 , dividing them into two subsets: Φ containing the elements in 𝐹

corresponding to the non-zero attribute values in the original dataset;
and Φ′ containing the elements in 𝐹 corresponding to the artificial
inconsistencies. Intuitively, a meaning filter is able to separate the
original attribute values and the artificial inconsistencies, resulting
in differently distributed subsets Φ and Φ′.

To evaluate how well Φ and Φ′ can be separated (and hence how
good the filter is), we compute several metrics defined below.

• Mean-ratio: the ratio between the mean values of Φ and Φ′.
A random filter produces a ratio of 1, whereas a meaningful
filter produces a significantly larger ratio;

• AUC-ROC: using the filter value as a predictor to classify
whether a given element belongs to Φ or Φ′, we assess the
classification power by AUC-ROC. A random filter produces

a score of 0.5, whereas a meaningful filter produces a score
close to 1;

• 𝑝-value: we perform the nonparametric Kolmogorov-Smirnov
test to compare if the two subsets Φ and Φ′ are drawn from the
same continuous distribution. For this purpose, we randomly
sample 1 000 values from each subset for comparison. A
sufficiently small 𝑝-value rejects the null hypothesis that the
two samples are drawn from the same distribution.

We present the above metrics in Table 5 to compare the filters
learned by NEAR and NEAR\H. We hypothesize that, NEAR\H
will learn a near-random filter that does not separate Φ and Φ′, as
it employs no explicit guidance to learn the filter. On the contrary,
NEAR guides the learning with the homophily assumption, and
thus will learn a meaningful filter that better separates the two sub-
sets. The results in Table 5 indeed establish consistent evidence that
NEAR learns much more meaningful filters than NEAR\H does.
The implication is that the homophily assumption is crucial to learn-
ing a meaningful filter, towards identifying and mitigating attribute
inconsistencies effectively.

Selection of hyperparameter. Last but not the least, we study how
the hyperparameter 𝜆 influences our model NEAR. Specifically, we
vary 𝜆 between 0 and 104, and report the resulting performance
in Figure 5. Note that NEAR degenerates to NEAR\H when 𝜆 =

0. The datasets marked with # indicate that they contain artificial
inconsistencies with probability 0.05.

First, consider the node classification task in Figure 5(a). As we
increase 𝜆, model performance generally improves until eventually
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Table 5: Comparison of filters learned by NEAR and NEAR\H.

Cora Citeseer Wiki
NEAR\H NEAR NEAR\H NEAR NEAR\H NEAR

mean-ratio 1.01 6.74 1.00 6.07 1.01 10.3
AUC-ROC .504 .649 .501 .651 .503 .912

𝑝-value .459 < .001 .493 < .001 .603 < .001
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Figure 5: Effects of 𝜆 on both original datasets and their coun-
terparts with artificial inconsistencies (marked with #).

reaching a plateau. Moreover, the plateau is often reached earlier
on the original datasets than on their counterparts with artificial in-
consistencies. Such an observation is intuitive: when inconsistencies
are more severe, stronger homophily assumption (i.e., a larger 𝜆) is
required to properly guide the learning of the filter.

Second, on the link prediction task in Figure 5(b), a similar gen-
eral pattern still exists, although the trend is weaker than that on
node classification. Again, a potential explanation is that attribute
inconsistencies affect node classification more, given that attributes
are node-level information.

5 CONCLUSION
In this paper, we studied the problem of network embedding with
attribute inconsistencies. To exploit both network topology and node
attributes, the homophily assumption is leveraged: nodes tend to
link with other nodes similar to themselves. However, in real-world
networks, node attributes often present inconsistencies in various
ways, undermining the homophily assumption. Towards robust net-
work embedding with attributes, we proposed a novel model NEAR
hinging on a learnable filter, to automatically refine attributes in an
unsupervised and fine-grained manner under the guidance of the
homophily assumption. In particular, attributes should be refined in
a way that reinforces the correlation between attributes and topology.
Lastly, we conducted extensive experiments on three datasets, and
obtained promising results on node classification and link prediction
tasks. We further investigated the learned filter, which demonstrates
its ability to effectively refine attributes.
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