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ABSTRACT
Triads, i.e., variously interconnected triplets of nodes, significantly
affect the network structure. Closed triads, for instance, are the
building blocks of communities. Our study focuses on the analysis
of triads in which the ego is connected to two alters, with the
alters not having to be connected; therefore, the triads that are
studied need not be closed. The analysis uses two approaches based
on asymmetric relationships between pairs of nodes. In the first
approach, we work with three different node roles, in which the ego
and its alters can appear in triads.We get a total of eighteen different
role-based triad patterns. The second approach allows us to work
with a total of four different types of ties and six different alter-pair
patterns. In experiments with four different types of real-world
networks, we show how the properties of these networks differ in
terms of role-based triad patterns. In some of these networks, we
further show that the triad-based properties remain stable during
network growth. The main contribution of our paper is the use of
asymmetric relations for the definition of four types of dependency-
based tie strengths between nodes and the analysis of their influence
on the occurrence of different triad-based patterns in networks.
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1 INTRODUCTION
At present, we can observe the steady growth of various social
networks, which is generating a huge amount of data. One way to
understand the data is to analyze network structures concerning
the properties that are based on the relationships between pairs of
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nodes in these networks. Here, many challenges and opportunities
arise, so it is necessary to come up with new and exact methods,
and, because of the complexity of the networks, also heuristics
which would help reveal and detect these structural properties.

As it turns out, an important structural characteristic of networks
is the tendency (e.g., triadic closure) to create triadic configurations.
These triadic configurations are the basis of theoretical consid-
erations leading to experimentally confirmed results, such as the
strength of weak ties, tie stability, trust, and structural holes [10, 23].
Social ties are usually divided into three types: strong, weak, or
missing ties. In [22], a weak tie hypothesis was formulated: if node
A is connected to two nodes B and C, then nodes B and C are very
likely to be connected too, leading to a closed triad. Simmel was the
first to explain the social tendency to form closed triads as being
natural [26].

Weak social ties, as stated in [12], make it possible to address
entities (subjects) that are not accessible through strong ties. Weak
ties can then be bridges that connect different subgroups of the
social network (communities) and thus shorten the distances in
the networks. These bridges, however, do not take up the expected
connections based on the triadic closure. Therefore, Granovetter
assumes that the chance of connecting nodes B and C increases if
the ties between A and B and A and C are strong. In [29], the article
states that strong ties occur on the shortest paths and therefore
shorten distances in networks. However, that is rather in contrast
to Granovetter’s theory.

2 BACKGROUND
2.1 Strength of ties
An essential part of estimating whether nodes B and C will get
connected is, therefore, the method of measuring the tie strength
between nodes A and B, and A and C, respectively. The authors
of [29] state that there is a positive correlation between the tie
strength and degree of nodes in the triad, which can be used for
alternative measurements of tie strength. Also related to this are
what are called Simmelian ties, i.e., ties that are surrounded by
several triads in their neighborhood. In [7], the author states that
“The definition of Simmelian ties closely resembles that of a clique;
indeed, a perfectly equivalent definition of a Simmelian tie is that
it is a tie embedded in a clique.” Similarly, the authors of [28] state
that their findings “reveal that the distinction between weak and
strong bridging ties is not very informative if the dyad forming a
bridge is considered independently of the microcontext in which it
is embedded.” The authors further explain that the bridging strength
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of a tie should be judged by whether or not it is embedded in a
dense clique-like structure.

The strong triadic closure (STC) principle, which is based on the
assumption that, in the network, there are no nonadjacent nodes
with strong ties with a common neighbor, is studied in [27]. The
authors formulate a combinatorial optimization problem, and their
goal is to find a weak-strong tie labeling that satisfies this property.
They also show that although the problem is NP-hard, they are
able to identify cases where efficient algorithms with provable ap-
proximation guarantees exist. However, as stated in [1], although
the STC property is theoretically motivated, real-world networks
are noisy and may contain many exceptions to this principle; em-
pirical findings show that the networks that are examined do not
have a large number of strong edges. As presented in [9], the STC
property seems to be too extreme a principle for large-scale real-
world networks; empirical tie strength rather scales linearly with
the neighborhood overlap of an edge, as is shown for a “who talks-
to-whom” network. In [25], the authors consider weak-strong tie
labeling with additional community connectivity constraints; they
assume that each community should be interconnected through
strong ties which allow these constraints to be met, with a small
number of STC violations.

2.2 Asymmetry-based approach
The subject of our experiments is triads with one ego, which has
ties to two alters, with there not necessarily being a tie between a
pair of alters. As follows from the statements above, the probability
of the existence of a tie between alters is influenced by their con-
nections with common neighbors. In our approach, we work with
the structural properties of undirected networks and asymmetric
relationships between pairs of nodes. This structural asymmetry
describes the dependency of one node on another and quantifies the
degree of interconnection of both nodes with their common neigh-
bors versus their interconnection with other nodes [15]. With the
dependency being used, four different types (strengths) of ties be-
tween pairs of adjacent nodes and three roles of nodes are described,
with consideration being given to the degree of their dependency
on the surroundings. In [11, 13], examples of alternative ways of
extracting the structural roles of nodes are presented.

In this paper, while working with triads, we use patterns, which
take into account the roles that nodes play in the triad. Patterns thus
differ from triadic configurations, which do not take into account
the types of nodes in the triad but deal with the types of connections
between them. Thanks to there being three roles, we get a total of
eighteen triad patterns. The individual patterns differ in terms of
the roles in which the ego and its two alters appear in the triad.

In the next section of the paper, we will introduce the basic
concepts related to dependency and describe the types of connec-
tions between nodes and node roles with which we will later work.
Furthermore, after twelve datasets have been briefly introduced,
experiments aimed at analyzing the frequency and degree of closed-
ness of individual role-based triad patterns and alter-pair patterns
will follow. In these experiments, we will show how various types
of networks differ in these properties and also that these properties

remain stable as the network grows over time. Finally, we sum-
marize the results achieved and formulate questions related to the
future use of our approach.

3 DEPENDENCY
Research and experiments with asymmetric structural dependency
in artificial and real-world networks have been published in [15].
For the needs of the experiments in this paper, we, therefore, present
only basic definitions related to experiments with triad analysis.

Definition 3.1 (Structural dependency). Let 𝑥,𝑦 be nodes, then
dependency 𝐷 (𝑥,𝑦) of node 𝑥 on node 𝑦 is defined as follows:

𝐷 (𝑥,𝑦) =
𝑤 (𝑥,𝑦) +∑

𝑣𝑖 ∈𝐶𝑁 (𝑥,𝑦) 𝑤 (𝑥, 𝑣𝑖 ) · 𝑟 (𝑥, 𝑣𝑖 , 𝑦)∑
𝑣𝑗 ∈𝑁 (𝑥) 𝑤 (𝑥, 𝑣 𝑗 )

(1)

𝑟 (𝑥, 𝑣𝑖 , 𝑦) =
𝑤 (𝑣𝑖 , 𝑦)

𝑤 (𝑥, 𝑣𝑖 ) +𝑤 (𝑣𝑖 , 𝑦)
, (2)

where 𝐶𝑁 (𝑥,𝑦) is set of all common neighbors of 𝑥,𝑦, 𝑁 (𝑥) is set
of all neighbors of 𝑥 , 𝑤 (𝑥,𝑦) is weight of edge between 𝑥,𝑦, and
𝑟 (𝑥, 𝑣𝑖 , 𝑦) is the coefficient of the dependency of node 𝑥 on node 𝑦
via the common neighbor 𝑣𝑖 .

Dependency is generally non-symmetric for both weighted and
unweighted networks. The reason is that not only are the weights
of edges with common neighbors taken into account (which do
not differ for unweighted networks), but also the weights of all
the other edges that both nodes have with their neighbors (and
these may be different for each node). In the illustrative network
in Figure 1, the calculated dependencies for the node pairs of an
unweighted undirected network are shown. The arrows indicate the
direction of dependency with a value of at least 0.5. The exceptions
are nodes 4 and 7, which have low mutual dependencies and also
low dependencies on their other neighbors.
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Figure 1: Illustrative network with calculated dependencies.

To simplify the view on the dependency of one node on another,
a simple binarization to the IsDependent relation can be used.

Definition 3.2 (IsDependent). Let 𝑥,𝑦 be neighboring nodes, then
IsDependent relationship is defined as follows:

𝐼𝑠𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (𝑥,𝑦) =
{
𝑇𝑟𝑢𝑒, if 𝐷 (𝑥,𝑦) ≥ 0.5
𝐹𝑎𝑙𝑠𝑒, otherwise

The dependency threshold is set to 0.5 to take into account and
reasonably balance a mutual dependency between two neighboring
network nodes. The threshold, however, can be both higher and
lower than 0.5. At higher values, the number of strong and very
strong ties decreases in the network, which can lead to weak ties
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even in dense clique-like structures. Conversely, a lower thresh-
old value causes a decrease in weak ties, which also results in a
decrease in strongly prominent nodes. Moreover, both cases reduce
the interpretability of the results.

As shown in experiments with real-world networks [15], es-
timation of the time complexity of calculating the dependencies
between all the node pairs (dependency matrix) of a sparse network
is𝑚 log𝑛, where 𝑛 is the number of nodes and𝑚 is the number of
network edges. Network dependencies are stored in a sparse matrix
in the dictionary of keys (DOK) format, network is represented by
the adjacency list; computation time of the dependency matrix is
given in Table 1.

3.1 Four types of ties between nodes
Because of binarization, regardless of whether the network is weighted
or not, there are different dependencies between adjacent nodes
𝑢 and 𝑣 . Nodes 𝑢 and 𝑣 can be mutually dependent, or mutually
independent, or node 𝑢 may be dependent on node 𝑣 and vice versa.
Below, we will, with regards to the IsDependent relationships, de-
note the tie between two mutually dependent nodes as very strong,
the tie between mutually independent nodes as weak, and the tie in
the two remaining cases as strong. If the nodes are not neighbors,
then the fourth type of tie will be referred to as missing. Note that
the dependency-based type (strength) of the tie does not correspond
to the strength of the edge in the meaning of weight in weighted
networks. A key factor influencing the type of tie between a pair of
nodes is the effect of the weights of edges with common neighbors
compared to the weights of edges with other neighbors of both
nodes. Our exact technical approach is partly close to that of Sim-
melian ties. The difference is that when determining the strength
of the tie, we take into account the surroundings of the pair of
nodes that are not part of their common clique-like substructure.
The types of ties that are described can be observed in Figure 1
and Figure 2, which shows a Karate Club network with three types
of ties based on the directions of mutual dependencies between
neighbors. E.g., node 17 is dependent on nodes 6 and 7 and has a
strong tie with both, but the tie between nodes 1 and 3 is weak
(similarly to the weak tie between nodes 4 and 7 in Figure 1).
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Figure 2: Karate Club: Strengths of ties, IsDependent rela-
tionships, and structural roles.

3.2 Dependency-based roles of nodes
In our approach, the role stems from what the ego network of
the node that is examined looks like from the point of view of

dependency.We distinguish three different roles; in the experiments,
we will denote them by the abbreviations S, W, and N.
A strongly prominent node (S) is not dependent on any of its

neighbors, and at least one of its neighbors is dependent on it.
A weakly prominent node (W) has at least one neighbor that
is dependent on it, and the node itself is not dependent on that
neighbor.

A non-prominent node (N) is a node that is neither strongly nor
weakly prominent.
In Figures 1 and 2, the strongly and weakly prominent nodes are

shown in red and yellow and the non-prominent nodes in green.
It is also possible to observe in Figures 1 and 2 what strengths the
ties between which nodes have.
Weak ties typically connect SS and SW pairs of prominent nodes
(e.g., 32-34, 1-3, 1-32, but also 3-9, 9-34).

Very strong ties typically connect WW or NN node pairs (e.g.,
5-11, 6-7, 25-26). These pairs can be understood with a little
exaggeration as mutually dependent weakly or non-prominent
twins; these ties are often embedded in clique-like structures
(including dyads and triads).

Strong ties typically connect non-prominent or weakly promi-
nent nodes with both types of prominent nodes; they, therefore,
include the relations NW, NS, WW, or WS (e.g., most of the green
non-prominent neighbors of the prominent red and yellow nodes
in Figure 2).
The examples that are given are not, and cannot be understood

as, the only possible ones. Networks contain complex substructures
that can go beyond common situations. Possible examples in the
Karate Club network are weak ties between nodes 20 and 34 or 26
and 24. Another and more interesting example is node 28, which is
non-prominent (no other node are dependent on it), but has only
weak ties with all of its neighbors.

The structure of the Karate Club in Figure 2 also shows, following
Granovetter’s theory, the strength of weak ties. Most dependency-
based weak ties here represent direct connections between more
strongly interconnected network substructures; the connections be-
tween substructures are made through strongly and weakly promi-
nent nodes. Therefore, as will be described in our experiments, it
makes sense to examine triads with a focus on node roles, because
different configurations of roles in a triad can represent a different
purpose.

In general, the occurrence of specific situations depends on what
the dependencies between the nodes are in a particular network.
In [15], the network dependency property (NetDep, see Eq. 3.2) is
defined to assess the degree of dependency in the network as a
whole, which takes into account the total number of weak ties𝑚∗

to all the ties𝑚 in the network. If the NetDep value is close to one,
then most of the ties between network nodes are strong or very
strong, and if it is close to zero, the opposite is true (e.g., NetDep =
0.756 for the Karate Club in Figure 2). Thus, networks with a low
NetDep value have a predominant number of weak ties.

𝑁𝑒𝑡𝐷𝑒𝑝 = 1 − 𝑚∗

𝑚
. (3)

The next section of the paper describes the networks we used in
our experiments. For all these networks, the types (strengths) of
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ties for all pairs of adjacent nodes and subsequently the roles of all
nodes were detected during the preparation of the experiments.

4 DATASETS
In the experiments, we work with a total of twelve networks of
four types obtained from the datasets below. For each type (bio-
logical, co-authorship, communication, and social), three networks
were the subject of our experiments. If a network was weighted,
dynamic, signed, or directed, it was straightforwardly converted to
an unweighted undirected one. All the calculations are thus based
on the same input conditions and allow the interpretation to focus
on purely structural properties of the networks that were analyzed.

bio-CE-CX [6] WormNet: a network constructed by integration of
all data-type-specific networks (CE-CX, CE-GN, ...) by modified
Bayesian integration. Available at http://networkrepository.com/
bio-CE-CX.php

ChCh-Miner [31] network of interactions between drugs, which
are approved by the U.S. Food and Drug Administration. Avail-
able at https://snap.stanford.edu/biodata/datasets/10001/10001-
ChCh-Miner.html

PP-Pathways [2] protein-protein interaction network that con-
tains physical interactions between proteins that are experimen-
tally documented in humans. Available at https://snap.stanford.
edu/biodata/datasets/10000/10000-PP-Pathways.html

astro-ph [21] weighted network of coauthorships between sci-
entists posting preprints on the Astrophysics E-Print Archive.
Available at http://www-personal.umich.edu/~mejn/netdata/

cond-mat-05 update [21] network of coauthorships between sci-
entists posting preprints on the CondensedMatter E-Print Archive.
Available at http://www-personal.umich.edu/~mejn/netdata/

coauth-DBLP [4] collaboration graph of authors of scientific pa-
pers from the DBLP computer science bibliography. We used a
version that is restricted to publications with 25 authors at most.
From that, we have created a subset containing the first 200k
nodes ordered by the first occurrence from the total 1.9M nodes
in the original dataset. Available at https://www.cs.cornell.edu/
~arb/data/coauth-DBLP/

anobii [3] two types of networks are available. A network com-
posed of a union of friendships and neighborhood links is the
first. The second one is a communication network representing
message exchanges. Available (on request) at https://www.icwsm.
org/2016/datasets/datasets/

linux-kernel [17] the communication network of the Linux kernel
mailing list. Nodes are persons, and each directed edge represents
a reply from a user to another. Available at http://networkrepository.
com/comm-linux-kernel-reply.php

enron [14, 18] communication network that covers all the email
communication within a dataset of around half a million emails.
Available at http://networkrepository.com/ia-enron-email-dynamic.
php

fb-friends [30] network of friendship where nodes are users and
edges between the users represent friendship relations. Available
at http://networkrepository.com/fb-wosn-friends.php

musae_git [24] sample of GitHub users created by a random walk
sampling algorithm. Available at https://snap.stanford.edu/data/
github-social.html

epinions [20] who-trust-whom online social network of a general
consumer review site Epinions.com. Available at
http://networkrepository.com/soc-epinions-trust-dir.php
Table 1 summarizes the properties of all the networks that were

analyzed (type, number of nodes and edges, maximum and average
degree, average clustering coefficient, Louvain modularity, assorta-
tivity, NetDep, percentages of role occurrences, and computation
time for dependency matrix). The biological networks have a high
average degree (they are denser). The co-authorship networks differ
mainly in their characteristics related to the community structure
(modularity and clustering coefficient); they also have a positive
assortativity, unlike most other networks. The highest diversity
can be seen in the network dependency. The co-authorship net-
works have the highest NetDep, followed by the communication,
social, and biological networks. The reason is that co-authorship
and communication interactions often take place in structures close
to cliques, in which there are strong dependencies. Besides, for the
co-authorship networks, the share of weakly prominent nodes is
much higher (see the W% column), which indicates diverse depen-
dencies in small substructures of networks (collaborating teams).

The analysis of the roles of nodes in triads will allow us to look
at the differences in network types with fresh eyes. Surprisingly, it
will be shown how, in terms of various role-based triad patterns,
networks of the same type can resemble each other on the one
hand, and networks of various types differ on the other.

5 ROLE-BASED TRIAD PATTERNS
It was stated in the introduction that our approach is based on the
analysis of triads in which the ego node has ties with two of its
alter nodes. If we consider the role of each node of such a triad, we
get a total of eighteen different patterns. Individual patterns will
be denoted by three abbreviations of role names (W, S, N), with
the role of ego in the first place and alter roles arranged from W
through S to N.

S

W N

S

N N

Figure 3: A closed triad with SWN-WSN-NWS patterns on
the left, and an open triad of the SNN pattern on the right.

Let us now consider three interconnected nodes of a network.
Such a triplet generates three different role-based closed triads
because each of them can belong to a different pattern as a result
of a different ego and its alters. This situation with patterns SWN,
WSN, NWS is shown in Figure 3 on the left. If the triplet is not
closed (it has only two edges), then it only belong to one pattern as
presented for the SNN pattern in Figure 3 on the right.

Table 2 contains the total counts of detected role-based triads
and the percentages of individual patterns. Triads occur in all role-
based patterns, at least in units of percentages, only in the co-
authorship networks, which distinguishes them from the other
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Table 1: Properties of the networks that were analyzed

Network Type 𝑛 𝑚 𝑘𝑚𝑎𝑥 𝑘𝑎𝑣𝑔 𝐶𝐶 𝑄𝐿 𝑟 NetDep S% W% N% Dep. matrix (s)

bio-CE-CX BIO 15229 245952 375 32.30 0.21 0.60 0.34 0.02 24.28 0.58 75.14 3.08
ChCh-Miner BIO 1514 48514 443 64.09 0.30 0.39 -0.10 0.03 13.01 3.17 83.82 0.79
PP-Pathways BIO 21557 338636 2132 31.76 0.13 0.40 -0.04 0.03 16.20 0.21 83.59 7.61

astro-ph COA 160476 121251 360 15.11 0.67 0.73 0.24 0.50 26.63 13.25 60.12 0.81
coauth-DBLP COA 200000 410775 171 4.11 0.53 0.90 0.19 0.73 14.60 6.44 78.96 1.65
cond-mat-05 COA 39577 175692 278 8.88 0.65 0.72 0.19 0.50 22.39 13.10 64.50 0.92

anobii COM 179653 1165929 6559 12.98 0.17 0.56 -0.03 0.12 26.82 2.32 70.85 26.48
linux-kernel COM 26885 159994 2989 11.90 0.31 0.36 -0.18 0.23 15.72 3.50 80.78 6.02
enron COM 86978 297456 1726 6.84 0.12 0.66 -0.17 0.33 5.48 0.60 93.93 5.11

fb-friends SOC 63731 817090 1098 25.64 0.22 0.61 0.18 0.04 28.75 1.79 69.46 8.99
musae_git SOC 37700 289003 9458 15.33 0.17 0.45 -0.07 0.08 20.00 0.90 79.11 17.18
epinions SOC 131570 711202 3558 10.81 0.13 0.46 -0.07 0.17 17.47 1.51 81.02 21.92

types of networks. This, with reference to the previous section,
again confirms that in the co-authorship networks, dependencies
between nodes are much more diverse than in the other types of
networks as a result of the high overall network dependency and
interconnection of clique-like substructures.

For the biological networks and the fb-friends network, there is
a higher proportion of triads in the NSS, NSN, and NNN patterns,
in which the ego is in the role of a non-prominent node. As can
be seen in Table 1, these networks have a high average degree and
low dependencies as a result of the NetDep value. At the same
time, they have a small proportion of W nodes and a relatively high
proportion of S nodes. Thus, if the ego node is in the role of N in
these networks, it is natural that its most probable neighbors in
the triad are S and N nodes, and the ties between them are rather
weak. Similarly, the proportion of triads is higher in SSN and SNN
patterns, but this is also true for most other networks.

The third column of Table 2 shows the percentage of strong triads.
By the term strong triad, wemean a triad in which the ego has strong
or very strong ties with both its neighbors, regardless of the closure
of this strong triad. Co-authorship networks have a higher share of
strong triads, which is obviously due to the occurrence of clique-like
structures. On the other hand, biological and social networks have
an almost negligible share of strong triads. This is related to the
overall occurrence of strong and very strong ties in the networks,
which, as presented in Table 4, has a higher occurrence only in the
co-authorship networks.

Another property we investigated in the experiments is the pro-
portion of triads that are closed for a given pattern. The closedness
of triads in various contexts seems to us to be important for a more
detailed understanding of principles such as triadic closure. Ex-
periments have shown that this property can also help us see in a
simple way how networks of the same type resemble each other.
In Figure 4, radar charts show the proportions of closed triads in
individual role-based patterns in groups according to the network
type. At first glance, we can see a significant difference between
the co-authorship networks and the other types. The biological net-
works differ less significantly from the communication and social
networks, which, more or less, do not differ from the point of view
of the closedness of role-based triad patterns.

Observations (role-based patterns)
(1) All the networks have a very low proportion of closed triads

in patterns with ego in the role of S (the lower part of the
radar charts). This is because strongly prominent nodes, which
usually have a higher degree, are hubs, and thus lie between
several otherwise weakly interconnected substructures such as
communities (see Figure 2 and experiments in [15]). Therefore,
they usually have many pairs of alters in their ego network
between which there is a missing tie.

(2) Almost all the networks have a high proportion of closed triads
in WWW, WWN, WSW, and WSS patterns (at the top right
in the radar charts). This indicates the importance of egos in
the W role for the local interconnection of nodes into dense
substructures. However, there are two patterns, WSN andWNN,
for which this is not the case. In these patterns, the ego, unlike
in the previous four patterns, can be, e.g., connected to alters
only by weak ties.

(3) It is surprising how small the differences are in the proportions
of closed triads in the three co-authorship networks. This is
especially evident in patterns with ego in the role of N. These
patterns are typical of the co-authorship networks, because one
of the characteristics is cooperation in small teams connected
into cliques. Therefore, non-prominent nodes connect with
nodes from these cliques, regardless of their role.

(4) The biological networks have proportions of closedness that are
more balanced than the communication and social networks.
However, for all three network types, it can be observed that
some patterns have a very low closedness; this is best seen
with the NNN pattern. Apparently, the three nodes in the N
role in these three types of networks occur in less dependent
and more complicated structures than, for example, clique-like
substructures in the co-authorship networks.

All these observations lead us to believe that in the study of
triads, their closedness, and interconnection into larger substruc-
tures, more attention should be paid to asymmetric relationships
(regardless of whether the network is directed or undirected) and
the roles that nodes in triads play. This is also related to the results
of the alter-pairs analysis in the next section.
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Table 2: Triad counts and percentage of role-based patterns

Network Count Strong WWW WWN WSW WSS WSN WNN SWW SWN SSW SSS SSN SNN NWW NWN NSW NSS NSN NNN

bio-CE-CX 23417777 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.03 0.02 5.71 17.86 15.88 <0.01 0.02 0.01 6.89 25.90 27.67
ChCh-Miner 6595978 0.29 0.01 0.37 0.11 0.22 1.55 2.79 0.06 2.05 0.67 2.32 13.91 21.81 0.17 3.26 1.49 4.38 19.93 24.90
PP-Pathways 60401332 0.52 <0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 0.06 0.05 18.28 37.91 24.62 <0.01 <0.01 0.01 5.10 9.05 4.90

astro-ph 5325457 21.80 2.56 2.99 4.35 3.41 2.95 1.45 3.29 5.81 14.42 26.39 17.50 3.95 1.00 1.65 1.62 1.97 2.29 2.39
coauth-DBLP 4263656 33.44 0.31 1.20 0.89 1.05 2.18 1.64 0.81 5.77 6.26 21.16 29.31 14.77 0.39 1.32 1.30 2.58 4.27 4.80
cond-mat-05 4629273 13.39 0.79 1.42 2.75 3.15 2.66 0.86 2.96 7.06 16.42 27.67 22.67 5.73 0.37 0.54 1.17 1.77 1.28 0.74

anobii 199783133 6.46 <0.01 0.01 0.01 0.01 0.02 0.01 0.06 1.38 0.78 33.57 39.84 17.40 <0.01 0.01 0.02 3.43 2.84 0.63
linux-kernel 53773227 5.61 <0.01 <0.01 <0.01 0.05 0.02 <0.01 0.10 2.25 3.59 40.83 39.93 12.37 <0.01 <0.01 0.02 0.67 0.16 0.02
enron 49424399 12.13 <0.01 0.07 0.01 0.08 0.35 1.02 0.01 0.85 0.58 16.40 37.06 38.70 0.03 0.05 0.17 2.63 1.41 0.58

fb-friends 71111352 0.07 <0.01 <0.01 <0.01 0.02 0.02 0.01 <0.01 0.14 0.15 12.72 28.20 16.81 <0.01 0.03 0.04 7.86 19.92 14.06
musae_git 127167272 3.06 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 1.03 0.53 12.29 41.89 42.00 <0.01 <0.01 <0.01 0.98 0.96 0.31
epinions 182188819 1.26 <0.01 <0.01 <0.01 0.05 0.03 0.01 0.01 0.38 1.05 58.97 32.36 5.74 <0.01 <0.01 0.02 1.14 0.21 0.01
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Figure 4: Proportions of closed triads for 18 role-based triad patterns.

5.1 Alter-pair patterns
If we focus on pairs of alters in role-based triads, then we get a
total of six alter-pair patterns. However, the total count of alter-
pairs is lower for the networks that were investigated than the total
number of role-based triads, because one pair of nodes may have
more nodes (egos) in common. Table 3 summarizes the results and
also shows the differences between the co-authorship and other
networks.

Table 3: Alter-pair counts and percentage of alter-pair pat-
terns

Network Count WW SW WN SS SN NN

bio-CE-CX 6342068 <0.01 0.05 0.10 9.06 41.77 49.01
ChCh-Miner 594619 0.14 1.29 6.01 2.74 27.65 62.17
PP-Pathways 25351284 <0.01 0.07 0.11 10.56 46.20 43.07

astro-ph 1779993 3.29 18.19 8.83 33.05 29.69 6.95
coauth-DBLP 2943808 0.82 7.19 7.42 24.12 39.30 21.16
cond-mat-05 2572475 3.11 18.01 9.31 29.78 31.11 8.68

anobii 138452270 0.08 1.03 1.94 28.77 45.07 23.12
linux-kernel 19770792 0.21 3.87 4.85 11.01 52.28 27.78
enron 27988775 0.01 0.53 1.08 7.00 38.28 53.10

fb-friends 31812564 <0.01 0.28 0.30 18.77 48.48 32.16
musae_git 95873484 0.01 0.58 1.23 9.32 41.53 47.33
epinions 83900931 0.01 1.47 0.57 39.72 48.04 10.20

Moreover, we can consider two factors; (1) the types of ties
between alters may be different (very strong, strong, weak, missing),

and (2) the frequency of their occurrence can also vary. Since one
alter-pair can be linked to multiple egos, such as alters 6-7 with
egos 1 and 17 in Figure 2, the question of how these factors relate is
undoubtedly relevant. Table 4 summarizes the results of the analysis
focused on these factors. The first part of the table is dedicated to
the occurrence of different types of ties between alter-pairs, the
second to the number of triads (egos) around an alter-pair, and the
third to the degree of closedness for individual alter-pair patterns.

Observations (alter-pair patterns)
(1) The occurrences of very strong, strong, and weak ties in the

co-authorship networks are relatively balanced. This is related
to the above-mentioned considerations about more diverse de-
pendencies in these networks.

(2) In the biological, communication, and social networks, very
strong ties occur very rarely and strong ties only to a small
extent. Higher proportions of weak ties occur only in the bio-
logical networks and in the fb-friends network; apparently, this
is related to their higher density, which also affects the higher
degree of closedness of the alter-pair patterns shown in the
third part of the table.

(3) A higher proportion of closed alter-pairs for all the patterns
in the third part of the table can also be observed for the co-
authorship networks. However, here there is another reason; it
is related to the large quantity of clique-like substructures in
these networks.

Themiddle part of Table 4 deserves special attention; it shows the
average numbers of common egos for the alter-pairs. At first glance,
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Table 4: Properties of alter-pairs focusing on tie strengths and closedness

Network Percentage by tie strengths Avg count of neighboring egos Percentage of closed alter-pairs by patterns STCVery strong Strong Weak Missing Very strong Strong Weak Missing WW SW WN SS SN NN

bio-CE-CX <0.01 0.03 3.59 96.38 1.30 4.91 29.56 2.73 43.75 5.60 2.29 4.99 3.73 3.27 57.12
ChCh-Miner <0.01 0.24 7.70 92.06 100.50 43.76 35.91 8.93 14.39 13.33 9.59 20.16 11.69 5.45 45.31
PP-Pathways <0.01 0.02 1.08 98.90 11.79 8.05 26.08 2.12 40.48 2.14 0.67 3.04 1.21 0.50 4.04

astro-ph 0.78 2.56 3.36 93.30 23.02 19.15 18.00 1.84 12.38 6.32 7.77 6.47 5.67 9.12 79.31
coauth-DBLP 3.23 5.33 3.24 88.19 3.79 3.57 4.18 1.13 26.79 13.32 15.85 9.98 10.71 13.40 55.27
cond-mat-05 0.64 2.67 3.29 93.40 5.48 5.74 7.67 1.45 8.66 6.29 7.35 6.58 6.41 6.52 54.96

anobii <0.01 0.05 0.55 99.40 2.11 2.57 9.20 1.40 1.82 0.93 0.30 1.01 0.56 0.18 0.67
linux-kernel <0.01 0.11 0.60 99.28 1.58 3.83 46.87 2.45 0.33 0.66 0.12 3.85 0.48 0.04 0.92
enron <0.01 0.10 0.64 99.26 37.86 5.45 18.99 1.65 9.33 2.36 3.13 3.64 1.04 0.07 1.15

fb-friends <0.01 0.06 2.25 97.69 2.10 3.61 14.59 1.95 27.30 4.81 2.68 2.75 2.30 2.04 46.27
musae_git <0.01 0.01 0.22 99.77 1.39 2.44 7.22 1.31 0.12 0.22 0.03 0.83 0.32 0.05 0.19
epinions <0.01 0.05 0.61 99.34 2.14 5.80 28.32 2.01 5.85 0.69 0.67 1.21 0.33 0.06 3.57

it might seem as if the higher the number of common nodes around a
pair of alters is, the stronger the tie they have will be. This, however,
does not correspond to the research cited in the introduction. More
than just the sheer number of common neighbors, it is about local
connections around the tie. As illustrated in the Karate Club in
Figure 2, the very strong and strong ties which we defined occur
in clique-like substructures (from the smallest dyads and triads to
larger network substructures). Weak ties can occur, for example,
between a pair of nodes in role S. These strongly prominent nodes
may havemore common neighbors. However, at the same time, each
of them can be connected to many other nodes in its neighborhood;
it contributes to their independency (see, e.g., nodes 1 and 3 in
Figure 2). As can be seen in Table 4, alter-pairs with weak ties and
many common neighbors occur in the biological, communication,
and social networks.

The last column of Table 4 shows the percentage of closed strong
triads, i.e., those that meet the criteria for strong triadic closure
(STC). An interesting feature can be observed in the degree of
closedness; the shares are either relatively high, at around 50 per-
cent or more (three co-authorship, two biological and one social
network), or rather negligible; the figure is 34.80 percent for the
Karate Club in Figure 2. The answer to the question of why there
are such extreme differences in the closedness may be related to the
roles of nodes in triads and the dependencies between them; this
hypothesis, however, requires deeper analysis. Moreover, as can be
seen in the middle part of the table, alter-pairs that have a common
tie have, on average, a higher number of common neighbors than
alter-pairs with a missing tie. This observation confirms the results
of the empirical findings in [9]. Even with our alternative view on
the types of ties, the triadic closure is based on a combination of
two factors: neighborhood overlap and the strengths of the ties in
the triad.

5.2 Role-based triad patterns in evolving
networks

Figure 4 shows that similar types of networks exhibit similar proper-
ties according to the analysis of the closedness of role-based triads.
We were interested in how much these properties change over time.
For five of the networks studied above, their datasets contained
information about growth. For each of these networks, we prepared

five frames in time, which corresponds to an increase in the num-
ber of nodes by twenty percent. We got five networks containing
20, 40, 60, 80, and 100 percent of the nodes for each network; the
last frames correspond to the networks analyzed in the previous
sections of the paper.

In Figure 5, there are five-frame radar charts for the five networks
studied, with the color of the frame corresponding to its age; the
oldest frame (20 percent of the nodes) is the lightest, and the last
frame of the entire network (100 percent of the nodes) is the darkest.
Except for fb-friends, the network properties are very stable from
the first frame; this is especially true for the co-authorship dblp
network, where the proportions of closed role-based triads do not
change substantially during its growth. For the fb-friends network,
the properties vary only at 20 and 40 percent, after which they
stabilize. So, the degree of triad closedness for individual role-based
triad patterns looks like a stable parameter during network growth.

6 CONCLUSIONS AND FUTUREWORK
In the first part of the paper, we described a new perspective on the
strength of ties in networks, which corresponds relatively well with
the previous research cited in the introduction. We understand the
strength of the tie as a consequence of the relationship between
what the two nodes have in common structurally and how they
are structurally different. However, in our view, the differences in a
particular case can cause even two nodes which are part of a densely
interconnected clique-like substructure to have a weak tie because
of their mutual independency. From this perspective, our alternative
approach may seem somewhat controversial in comparison with
traditional approaches.

In our experiments, we studied role-based triads and especially
the degree of their closedness in various real-world networks. De-
pending on the type of ties a node has with its neighbors, its role
varies; this in turn leads to a new perspective on triads in which the
ego and a pair of alters take on different roles. We have shown that
looking at a network through role-based triads gives us a simple
characteristic of the network type and a property that is relatively
stable during network growth.

In our paper, we did not pay attention to directed networks and
weights in networks in terms of the intensity of the interaction
between nodes, even though structural dependency allows such an
approach. Neither did we address the directions of dependencies in
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Figure 5: Evolving networks: Proportions of closed triads for 18 role-based triad patterns.

role-based triads. Both lie outside the scope of this paper and will
be the subject of further research.

On the basis of the experiments that were performed, we believe
that thanks to the application of asymmetry and the use of roles
based on structural dependencies between network nodes, we de-
scribed interesting structural properties with further potential for
use. This can be especially true for the area of link prediction [16],
which has been investigated intensively recently. Although recent
link prediction methods often use ensemble approaches combin-
ing structure, heterogeneity and metadata analysis [5, 8, 19], we
believe that our purely structural approach can make a significant
contribution to this area. Our preliminary experiments so far show
a prediction accuracy approaching 80 percent for all the networks
studied here.
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