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ABSTRACT
The graph summarization problem is to define a compressed data

structure that can concisely describe the original graph. A standard

class of techniques for summarization involves grouping nodes

into supernodes via aggregation or clustering such that the lp -
reconstruction error, i.e. the p-norm between the original adjacency

matrix and the adjacency matrix recovered from the compressed

summary, is minimized. Our main result shows that graph summa-

rization can be reformulated as a trace maximization problem, the

relaxed version of which can be solved exactly by all the eigenvec-

tors of the adjacency matrix. We also prove a lower bound on the

optimal solution which uses k eigenvectors for a summary with

k supernodes. Our results motivate a simple spectral clustering

algorithm that can yield excellent summaries. Our experiments

validate the quality of the resultant summaries.
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1 INTRODUCTION
Visualization and analysis of graphs with millions of vertices and

billions of edges can be intractable due to memory and time con-

straints. Graph summaries facilitate preservation of the original

graph topology and efficient processing of queries while requiring

significantly less storage space [4]. However, extracting important

and interesting aspects of the topology is a subjective question that

depends on the context and domain of the graph(s) in question

[1, 11]. Some applications may seek summaries that improve the ef-

ficiency of querying basic graph properties such as node adjacency,

degree, PageRank, number of triangles, etc. [10, 13]; while others

may seek summaries that preserve patterns such as reachability,

stars, bipartite-cores, and cliques [9, 12].
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Node-grouping techniques are commonly used for constructing

summaries for such purposes [11]. As the name suggests, the goal

is to group nodes into supernodes based on application-specific

error measures. A natural way of obtaining supernodes is by parti-

tioning the original graph into (say) k components via clustering

or community detection since structurally similar nodes tend to be

connected or close to each other. Thus, summarization, partitioning

and clustering are closely related problems [14].

Our work is motivated by spectral graph theory which relates

combinatorial properties of graph structures to algebraic properties

of associated matrices. Spectra of graphs play a crucial role in

graph invariants, sparsification, partitioning and cuts [5]. The main

contributions of this paper are:

• We show that minimizing the l2-reconstruction error of the

hypergraph summary can be rewritten as an equivalent trace

maximization problem whose relaxation can be solved ex-

actly by all the eigenvectors of the adjacency matrix.

• We show that eigenvectors corresponding to the k largest

(in magnitude) eigenvalues of the adjacency matrix provide

a lower bound for the relaxed problem of dimension k .
• Experiments on real-world data show that the summary

obtained via spectral clustering has low reconstruction error

and compares favourably to related methods.

2 RELATEDWORK
In this section, we present two broad classes of techniques for graph

summarization via node grouping. We refer the reader to an excel-

lent survey by Liu et al. [11] for summarization via edge-grouping,

bit-compression, simplification and influence.

Node clustering based approaches. Riondato et al. [14] propose algo-

rithms to construct summaries that minimize the lp -reconstruction
error with a constant-factor approximation guarantee. They define

a low-dimensional representation of the adjacencymatrix (by reduc-

ing the number of rows and columns) and apply k-means clustering

to obtain supernodes. Xu et al. [20] use incremental static clustering

to identify structurally connected nodes while other heuristics use

modularity [8] and minimum cut trees [15].

Node aggregation based approaches. LeFevre and Terzi [10] present

GraSS that constructs a lossy representation from which an ex-

pected adjacency matrix can be inferred (where expectation is over

the set of all graphs compatible with a specific summary). This can

efficiently and accurately handle degree, adjacency and eigenvec-

tor centrality queries. Koutra et al. [9] propose VoG, an efficient

method based on the MDL principle for characterizing important
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candidate subgraphs (vocabulary) such as stars and cliques. Dunne

and Schneiderman [7] use motif simplification to identify common

subgraphs with compact glyphs to improve graph visualization.

CoSum by Zhu et al. [21] creates supernodes and superedges with

the objective to improve the accuracy of entity resolution.

3 PROBLEM STATEMENT
3.1 Preliminary Definitions
We consider a simple, static, undirected graph G = (V, E) with

|V| = n. A k-summary S of G is a weighted, undirected hypergraph

defined by a k-partition ({V1, . . . ,Vk }) ofV . Each componentVi of
the partition is referred to as a supernode and there is a superedge

between every pair of supernodes Vi and Vj whose weight is the
density of edges between them.

AS

(
Vi ,Vj

)
=

∑
u ∈Vi ,v ∈Vj

AG (u,v)

|Vi | · |Vj |

where AG is the adjacency matrix of G and AS is the weighted

adjacency matrix of the summary S.

Following [14], we use the lifted matrix A
↑

S
∈ Rn×n

to denote the

adjacency matrix reconstructed from the summary:

A
↑

S
(u,v) = AS (S (u) , S (v))

where S(u) represents the supernode of S that vertex u belongs to.

We define l2-reconstruction error as the entry-wise 2-norm between

AG and A
↑

S
for a particular summary S:

err2

(
AG ,A

↑

S

)
=




AG −A↑
S




2
2

=

|V |∑
u=1

|V |∑
v=1
|AG (u,v) −A

↑

S
(u,v) |2

(1)

Problem 1: Given adjacency matrix AG of graph G and k ∈ N, find
a k-summary S∗ from all possible k-summaries S such that

S
∗ = argmin

S

err2

(
AG , A

↑

S

)
(2)

Let XS ∈ {0, 1}
n×k

represent the one-hot encoding or member-

ship matrix where the (i, j)-th entry denotes that vertex i belongs

to supernode Vj of summary S. Denote ZS = XS

(
X⊤
S
XS

)−1/2
=

[z1 z2 . . . zk ] as the normalized membership matrix where the col-

umn vectors {zi }i ∈[k ] are orthonormal. Define the smoothing pro-

jection matrix PS = ZSZ
⊤
S
∈ Rn×n

to be the orthogonal projection

onto the subspace generated by partition vectors {zi }i ∈[k ]. Note

that P2
S
= PS, P

⊤
S
= PS and PSzi = zi .

The following result connects the lifted matrix with the adjacency

and smoothing projection matrices.

Lemma 1 (Lemma 3 - Riondato et al. [14]): A↑
S
= PSAGPS

3.2 Graph Summarization as Trace
Maximization

At first glance, spectral clustering and graph summarization appear

to be unrelated problems. Spectral clustering uses eigenvectors

to determine partitions and eigenvectors are absent from Equa-

tion 1. In this section, we show that graph summarization can be

expressed as a trace maximization problem whose relaxed version

can be solved exactly by the eigenvectors of the adjacency matrix.

Using the facts that ∥L∥2
2
= tr

[
L⊤L

]
, tr [L +M] = tr [L] + tr [M],

tr [cL] = c · tr [L], and from trace invariance under cyclic permuta-

tion, tr [LMN ] = tr [MNL] = tr [NLM], we get that1:

err2

(
AG A

↑

S

)
2

=




AG ,−A↑
S




2
2

= tr
[(
AG −A

↑

S

)⊤ (
AG −A

↑

S

)]
= tr

[
(A − PAP)⊤ (A − PAP)

]
= tr [(A − PAP) (A − PAP)]

= tr
[
A2 −APAP − PAPA + PAPPAP

]
= tr

[
A2 −APAP

]
− tr [PAPA] + tr [PAPPAP]

= tr
[
A2 −APAP

]
− tr [PAPA] + tr [PPAPPA]

= tr
[
A2 −APAP

]
−����tr [PAPA] +����tr [PAPA]

= tr
[
A2

]
− tr [APAP]

= tr
[
A2

]
− tr

[
AZZ⊤AZZ⊤

]
= tr

[
A2

]
− tr

[
Z⊤AZZ⊤AZ

]
= tr

[
A2

]
− tr

[ (
Z⊤
S
AZS

)
2

]

(3)

where the last equation follows from substituting P = ZZ⊤ and

again using the invariance under cyclic permutation property.

We can now rewrite norm minimization in Problem 1 equivalently

as trace minimization.

Problem 2: Given adjacency matrix AG of graph G and k ∈ N, find
a k-summary S∗ from all possible k-summaries S such that

S
∗ = argmin

S

tr
[
A2

G

]
− tr

[ (
Z⊤
S
AGZS

)
2

]
s.t. Z⊤

S
ZS = I , ZS = XS

(
X⊤
S
XS

)−1/2
XS ∈ {0, 1}

n×k

(4)

Since tr
[
A2

]
is a constant, to minimize the objective function in

Problem 2 is to maximize tr
[(
Z⊤
S
AZS

)
2

]
. That is, Problems 1, 2,

and 3 are equivalent.

Problem 3: Given adjacency matrix AG of graph G and k ∈ N, find
a k-summary S∗ from all possible k-summaries S such that

S
∗ = argmax

S

tr
[ (
Z⊤
S
AGZS

)
2

]
s.t. Z⊤

S
ZS = I , ZS = XS

(
X⊤
S
XS

)−1/2
XS ∈ {0, 1}

n×k

(5)

1
We drop G and S from the subscript for notational convenience.
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4 METHOD
We now present our solution to Problem 3. Our approach is similar

in flavour to the one for computing normalized cuts [18] which

also can be expressed as a trace optimization (different than ours)

problem. We first relax the binary constraint on the entries of XS

and allow ZS to be any arbitrary orthonormal matrix. We obtain

candidate solutions to the relaxed problem. Finally, we round the

candidate solution to its binary form via k-means clustering to

obtain the summary. For our analysis, we consider three cases

based on the dimension of the problem: (1) k = n, (2), k = 1, and (3)

for any general k ∈ 2, . . . ,n − 1.

4.1 Case 1: k = n
Consider the case where ZS comprises of n orthonormal column

vectors, i.e. ZS ∈ Rn×n
. The following result shows that all eigen-

vectors of AG exactly solve the relaxed version of Problem 2.

Theorem 1: Let AG = BΛB⊤ be the eigendecomposition of AG
where columns of B are it’s eigenvectors and B is orthonormal. Let

Z ∗ be the optimal solution to Equation 4. That is,

Z ∗ = argmin

Z
tr

[
A2

]
−tr

[ (
Z⊤AZ

)
2

]
subject toZ⊤Z = I ,Z ∈ Rn×n

(6)

Then, Z ∗ = B.

Proof. Since Equation 1 is the 2-norm and is equivalent to Equa-

tion 4, it’s minimumvaluemust be non-negative. SubstitutingZ = B
into Equation 4, we get

tr
[
A2 −

(
Z⊤AZ

)
2

]
= tr

[
A2 − BΛB⊤ZZ⊤BΛB⊤ZZ⊤

]
= tr

[
A2 −

(
BΛ

(
B⊤B

)
B⊤

) (
BΛ

(
B⊤B

)
B⊤

) ]
= tr

[
A2 − BΛB⊤BΛB⊤

]
= tr

[
A2 −A2

]
= 0

□

4.2 Case 2: k = 1

Lets consider the case when Z = z ∈ Rn
is a single column vector

of unit norm. Then tr
[ (
Z⊤AZ

)
2

]
= tr

[ (
z⊤Az

)
2

]
=
(
z⊤Az

)
2

. The

following result shows that Problem 3 is optimized by the eigen-

vector corresponding to the largest (in magnitude) eigenvalue of A.

Lemma 2. Let z = z∗ be a non-zero vector that maximizes the
following quantity with respect to a fixed A:

R (z) =

(
z⊤Az

)
2

(z⊤z)2

Then, Az∗ = λmaxz
∗, where λmax is the largest (in magnitude) eigen-

value of A and z∗ is the corresponding eigenvector.

Proof. The proof follows similarly to Theorem 2.2.1 [17]. Since

the Rayleigh quotient is homogeneous
2
, the square of the Rayleigh

2
A function is called homogeneous with degree k , if it satisfies the condition

f (αx, αy) = αk f (x, y).

quotient is also homogeneous. And so it suffices to consider unit

vectors z. Since the set of unit vectors is closed and compact, the

function has a maximum value. So we have,

∇

(
z⊤Az

)
2

(z⊤z)2
=

4

(
z⊤Az

)
(Az)

(
z⊤z

)
2

− 4
(
z⊤Az

)
2

·
(
z⊤z

)
· (z)(

(z⊤z)2
)
2

Let z∗ be a non-zero vector that maximizes R (z). The gradient

of a function at it’s maximum value must equal the zero vector.

Therefore,

∇

(
(z∗)⊤Az∗

)
2(

(z∗)⊤ z∗
)
2
= 0

Az∗ =

(
(z∗)⊤Az∗

(z∗)⊤ z∗

)
· z∗

This implies, that z∗ maximizes R (z) if and only if z∗ is an eigen-

vector of A with eigenvalue equal to the Rayleigh quotient. And

therefore the maximum value of R (z) = λ2
max

where z∗ is the cor-
responding eigenvector.

□

4.3 Case 3: k ∈ {2, . . . ,n − 1}
Lets first write Equation 5 in vector form for any k ∈ {2, . . . ,n − 1}
where ZS = [z1, z2, . . . , zk ]. We have,

tr
[ (
Z⊤
S
AZS

)
2

]
= tr

[ (
[z1, . . . , zk ]

⊤A [z1, . . . , zk ]
)
2

]
= tr


©­­­­«
z⊤
1
Az1 z⊤

1
Az2 · · · z⊤

1
Azk

z⊤
2
Az1 z⊤

2
Az2 · · · z⊤

2
Azk

...
...

. . .
...

z⊤k Az1 z⊤k Az2 · · · z⊤k Azk

ª®®®®¬
2

=

k∑
j=1

(
z⊤j Azj

)
2

+

k∑
j=1

∑
i ∈[k ]\{j }

z⊤j Aziz
⊤
i Azj

(7)

Problem 4: Given adjacency matrixAG of graph G, find k orthonor-
mal vectors z1, . . . , zk that optimize the following:

argmax

z1, ...,zk

k∑
j=1

(
z⊤j Azj

)
2

+

k∑
j=1

∑
i ∈[k ], \{j }

z⊤j Aziz
⊤
i Azj

subject to ∀i ∈ [k] z⊤i zi = 1

∀i, j ∈ [k] , i , j, z⊤i zj = 0

(8)

Since A is symmetric, ∀i , j, z⊤j Azi = z⊤i Azj . Each term in the

objective function of Equation 8 is the square of a scalar and is thus

nonnegative. Therefore, the optimal value of Problem 4 is at least

as much as the maximum value of

k∑
j=1

(
z⊤j Azj

)
2

. Consider the sub-

space orthogonal to the subspace defined by the first (say)m largest

(in magnitude) eigenvectors ofAG . The following result shows that
the unit vector z from this orthogonal subspace that maximizes(
z⊤Az

)
2

is them + 1-th largest eigenvector of AG . Subsequently,

the maximum value of

k∑
j=1

(
z⊤j Azj

)
2

is achieved by eigenvectors
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corresponding to the k largest (in magnitude) eigenvalues of AG .
Moreover, it’s value is the sum of the corresponding eigenvalues.

Theorem 2. Given adjacency matrix A of graph G, there exist num-
bers µ1, . . . , µk and orthonormal vectors ψ1, . . . ,ψk such that ∀i ∈
[n] , Aψi = µiψi . And, for 2 ≤ i ≤ k ,

ψi ∈ argmax

∥z ∥=1
z⊤ψj=0, for j<i

(
z⊤Az

)
2

(9)

Proof. Similarly to the Spectral Theorem, we show this result

by induction. Let λ2
min

be the minimum value of R (z) for some

vector zmin. Matrices A and Ã = A +
(
1 − µ2

min

)
I have the same

eigenvectors. For all unit norm vectors z, Ã is positive definite be-

cause z⊤Ãz = z⊤Az + 1− µ2
min
≥ 1. So it suffices to prove the result

for positive definite matrices.

The base case is true forψ1 due to Lemma 2. Assume that Equation 9

holds for the firstm eigenvectors ψ1, . . . ,ψm . We now show that

the result is valid for i =m + 1 andψm+1. Define,

Am = A −
m∑
i=1

µiψiψ
⊤
i .

For all j ≤ m, due to the orthogonality of eigenvectors, we have

Amψj = Aψj −
m∑
i=1

µiψiψ
⊤
i ψj

= Aψj − µ jψj

= 0

(10)

For all vectors z orthogonal toψ1, . . . ,ψm , we have

Amz = Az(
z⊤Amz

)
2

=
(
z⊤Az

)
2

argmax

∥z ∥=1
z⊤ψj=0, j≤m

(
z⊤Az

)
2

= argmax

∥z ∥=1
z⊤ψj=0, j≤m

(
z⊤Amz

)
2

⊆ argmax

∥z ∥=1

(
z⊤Amz

)
2

(11)

Consider a unit vector u that maximizes

(
z⊤Amz

)
2

. Since Am is a

symmetric matrix, according to Lemma 2, umust be an eigenvector

of Am . If we show that u is orthogonal to ψ1, . . . ,ψm , then from

Equation 11, we know that u is also an eigenvector of A. Define the
projection of u orthogonal toψ1, . . . ,ψm .

ũ = u −
m∑
j=1

ψj
(
ψ⊤j u

)

Algorithm 1: Spectral Summarization with l2-reconstruction
error

1 Input: G = (V, E); k, l ∈ N.

2 Output: k-summary of G under l2-reconstruction error.

/* Compute top-l (in magnitude) eigenvectors */

3 Z ← computeEigenvectors
(
AG , l

)
/* Cluster rows of Z ∈ Rn×l */

4 S← getClusteringPartition (Z ,k)

/* Compute densities for the summary */

5 AS ← computeDensities
(
S,AG

)
6 return (S,AS)

If ũ = u, then we are done. We show this by contradition. Say that

there exists some

(
ψ⊤i u

)
, 0. This implies, ∥ũ∥ < ∥u∥ . We have

ũ⊤Am ũ = ũ⊤Am
©­«u −

m∑
j=1

ψj
(
ψ⊤j u

)ª®¬
= ũ⊤Amu − ũ⊤ ©­«

m∑
j=1

����: 0(
Amψj

) (
ψ⊤j u

)ª®¬
= ũ⊤Amu

=
©­«u −

m∑
j=1

ψj
(
ψ⊤j u

)ª®¬
⊤

Amu

= u⊤Amu

(12)

So

(
ũ⊤Am ũ

)
2

=
(
u⊤Amu

)
2

.

Define û = ũ/∥ũ∥ . Substituting into Equation 12, we get(
ũ⊤Am ũ

)
2

=
(
u⊤Amu

)
2(

(∥ũ∥ û)⊤Am (∥ũ∥ û)
)
2

=
(
∥u∥ u⊤Amu ∥u∥

)
2(

∥ũ∥2

∥u∥2

)2 (
û⊤Am û

)
2

=
(
u⊤Amu

)
2

(13)

where the equality holds becauseu is a unit vector. But ∥ũ∥2 /∥u∥2 <
1 and therefore

(
û⊤Am û

)
2

>
(
u⊤Amu

)
2

. This is a contradiction

because by definition, u maximizes

(
z⊤Amz

)
2

for all unit vectors

z. Therefore ũ = u and u is orthogonal toψ1, . . . ,ψm . We can thus

set u = ψm+1 and this completes the proof.

□

4.4 Algorithm
With these results, we motivate a spectral algorithm for graph

summarization. Consider the eigenvector coordinates as a spectral

embedding of the nodes of a graph. These represent good candidate

solutions to the relaxed problem. By clustering these points, we

round the relaxed solution to obtain supernodes for our summary.

Algorithm 1 presents the pseudocode. We define two parameters, k
represents the size of the summary and l represents the number of

eigenvectors of AG used for clustering.
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Time Complexity. In Step 1, we compute top l eigenvectors3 us-
ing fast iterativemethods such as Lanczos and subspace embeddings

[6] that compute each single eigenvector in
˜O

(
m +

n ·s(AG)
max{gap2.5ϵ,ϵ 2.5 }

)
(where ϵ is the accuracy parameter, s

(
AG

)
is the stable rank and gap

is the relative eigengap) with
˜O (·) hiding log factors in n and gap.

For Step 2, we use the lightweight coreset algorithm by Bachem,

et al [2] that runs independent of the number of clusters k . The
running time of this algorithm is O (nl). In Step 3, densities can be

computed in time O
(
m + k2

)
. If we choose l = O (logn), this gives

an overall runtime of
˜O
(
m + n + k2

)
upto log factors.

Discussion. The primary distinction between the solutions to

normalized cut and graph summarization is that the former uses

eigenvectors corresponding to k algebraically largest eigenvalues of
AG while the latter uses eigenvectors corresponding to k largest in
magnitude eigenvalues. Moreover, we only provide a lower bound

on the optimal solution for the relaxed problem. But we conjec-

ture that this lower bound is tight. In our future work, we aim to

resolve this conjecture by better understanding Problem 5. Lastly,

we note that our relaxation approach may not be able to provide a

constant-factor approximation guarantee to the integer problem. In

general, approximate balanced graph cut problems can be NP-hard

themselves [3].

5 EXPERIMENTS
In this section, we empirically evaluate the quality of the summaries

built by our algorithm in terms of the l2-reconstruction error. We

compare the performance of our algorithm with that of Riondato,

et al [14].

Setup. We use Cora from Sen, et al. [16] and Facebook, and
Enron graphs from the SNAP repository

4
. All graphs are sim-

ple, undirected, and unweighted. AG thus has binary entries and

err2

(
AG , A

↑

S

)
∈ [0,n]. We report results for the err2 divided by n

for normalization (which may result in differences between our

reported values). We compute the l2 norm directly without ap-

proximations. We extend the C++11 implementation
5
[14] for our

experiments. Our implementation of Algorithm 1 does not use the

lightweight coreset construction by Bachem, et al [2] since it would

not affect the performance for the sparse, small graphs we consider.

For the algorithm by Riondato, et al [14], we similarly do not use

sketching and approximate distance computations. We use Lloyd’s

iterative procedure with kmeans++ initialization for k-means clus-

tering in both algorithms. Our experiments are performed on a

4-core AMD processor with 32GB RAM running Linux CentOS 7.6.

Algorithm 1 (SS) takes k (number of clusters) and l (number of top

eigenvectors) as input while the algorithm by Riondato, et al [14]

(S2L) takes only k as input. Table 1 presents the results averaged

over 5 runs for each combination of parameters.

3
The full eigendecomposition of AG can be computed in O (nω ) where ω < 2.373 is
the matrix multiplication constant [19].

4
http://snap.stanford.edu/data/

5
https://github.com/rionda/graphsumm

Size of summary. For k = 1 and for other smaller values of k , we
find that the standard deviation is relatively large. This is especially

true for the small, sparse graphs we study in our experiments. So

choose the values ofk to be a significant fraction of the total number

of nodes in the graph. As Theorem 1 showed, l2 error is minimized

for the trivial summary when k = n. This implies, summaries with

low error can be achieved for large values of k . Note, setting k = n
will simply recover the original adjacency matrix. The runtime of

both, SS and S2L, increases linearly as k increases.

Number of eigenvectors. We choose l , the number of eigenvec-

tors, to range from 1 (only the top eigenvector) to l = n (full eigen-

decomposition). We also choose 2 intermediate values for l to match

the size of the summary. As expected, the runtime increases as l
increases. Since we do not use a fast subspace embedding imple-

mentation, computing the eigenvectors is expensive. Our algorithm

therefore, runs slower than S2L.

l2-reconstruction error. As the size of the summary increases,

the reconstruction error decreases for both algorithms. Similarly,

as the number of eigenvectors increases the l2 error reduces. For
all three graphs, our algorithm compares favourably against S2L

for an appropriate choice of l .

6 CONCLUSION
In this paper, we demonstrated a novel spectral connection to

graph summarization by rewriting it as an equivalent trace maxi-

mization problem. This has a similar (but not equivalent) form to the

k-way normalized cut problem. Motivated by this, we investigate its

relaxed version. We find that clustering nodes using eigenvectors

corresponding to the top-k largest (in magnitude) eigenvalues of

the adjacency matrix effectively captures the community structure

and leads to useful summaries with low reconstruction error.
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avg (×10−2) stdev (×10−3)
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2708 0.08 0.1 0.9
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Table 1: l2-reconstruction error comparison between Spectral Summarization (SS) and Riondato, et al [14] (S2L) on Cora,
Facebook, and Enron. The reported results are averaged over five runs.
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