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ABSTRACT
We present Geo2DR (Geometric to Distributed Representations),
a GPU ready Python library for unsupervised learning on graph-
structured data using discrete substructure patterns and neural
language models. It contains efficient implementations of popu-
lar graph decomposition algorithms and neural language models
in PyTorch which can be combined to learn representations of
graphs using the distributive hypothesis. Furthermore, Geo2DR
comes with general data processing and loading methods to bring
substantial speed-up in the training of the neural language mod-
els. Through this we provide a modular set of tools and building
blocks to quickly construct methods capable of learning distributed
representations of graphs. This is useful for replication of exist-
ing methods, modification, and development of completely new
methods. This paper serves to present the Geo2DR library and per-
form a comprehensive comparative analysis of existing methods
re-implemented using Geo2DR across widely used graph classifica-
tion benchmarks. Geo2DR displays a high reproducibility of results
of published methods and interoperability with other libraries use-
ful for distributive language modelling, making it a useful addition
to the graph representation learning toolkit.
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1 INTRODUCTION
Representation learning of graphs using neural networks has turned
into a large and exciting hub of research driven by successive pro-
posals of graph representation learning methods and datasets to
apply them onto. A significant part of the activity has focused on
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Graph Convolutional Neural Networks (GCNN). Such neural net-
works are characterised by graph convolutional operators [2, 6, 13]
that serve as useful inductive biases for learning representations of
nodes and other graph substructures. Gilmer et al. [8] generalised
the convolution operator over irregular domains as a message pass-
ing scheme (MPNN), allowing the specification of a full spectrum
of methods as variants of this equation. Representations of en-
tire graphs are then created through the successive application of
graph convolution operations followed by different pooling meth-
ods [6, 15, 28] which aggregate node representations towards a
single vector representation for the entire graph.

The difficulty of reliably constructing GCNN models has driven
the need for toolkits and libraries to facilitate their development for
replication, extension and creation of new models. Several such li-
braries have been made such as: Graph Nets introduced by Battaglia
et al. [1], DGL by Wang et al. [26], GEM by Goyal et al. [9], and
most recently PyTorch Geometric by Fey and Lenssen [7]. These
libraries have greatly contributed to lowering the barrier of entry
into GCNN research, fueling the development of novel methods
and libraries supporting them in a healthy feedback cycle.

Alongside ongoing research into GCNNs and its variants, an-
other approach has focused on extending graph kernel methods
with neural language embedding methods [11, 17, 27] that exploit
the distributive hypothesis to learn representations of graphs. This
is a useful alternative inductive bias to model the vector space em-
beddings of graphs over the distribution of the discrete substructure
patterns contextualising them. Much like how the semantic mean-
ing of words is similar to words that have similar context words
around them [10], comparability can also be defined for graphs with
the appropriate specification of what constitutes context and the
entities (nodes, subgraphs, substructure patterns) that are involved.
Such vector representations of graphs are inductively biased to be
close when they contain similar substructure patterns, and distant
when they do not. This perspective enables the construction of a
powerful class of unsupervised representation learning methods.

At this point, there are multiple excellent MPNN and Graph Ker-
nel libraries for calling specific implementations of existing meth-
ods. Some GCNN focused libraries such as PyTorch Geometric [7]
even allow composing new methods by interfacing with extensible
message-passing or pooling modules. However, to our knowledge,
no toolkit currently exists for rapidly composing new methods ca-
pable of learning distributed representations of graphs. This project,
Geo2DR (Geometric to Distributed Representations), aims to fill this
gap by providing a modular set of building blocks built around a
conceptual framework that is applicable to existing methods and an
even greater number of unexplored ones. The Geo2DR library along
with links to documentation, example methods reimplementations,
experiment replication, and supporting material can be found on
the GitHub repository (https://github.com/paulmorio/geo2dr)
with package releases on PyPI.
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Figure 1: The two-stage design methodology for creating distributed representations of graphs and the various modules (in
rectangles) included in Geo2DR to support this process. All modules were designed with consistent interfaces so that they
may be mixed and matched to create existing and novel methods, as well as simplify integration of custom modules.

2 BACKGROUND
The approach towards distributive modelling of graphs was pio-
neered by Yanardag and Vishwanathan [27]. They observed that
many graph kernel methods can be formulated as instances of the
R-Convolutional framework. Herein, the similarity between dif-
ferent graphs is computed by decomposing graphs into discrete
substructure patterns such as graphlets, shortest paths, and rooted
subgraphs. This produces a |V|-dimensional bag-of-words or pat-
tern frequency vectors for each graph where V is the set of the
unique patterns induced over all the graphs in a dataset. The graphs
and their induced substructure patterns are input to a kernel func-
tion, such as counting the common substructures across pattern
frequency vectors. This defines the relation or similarity measure
between the graphs to construct the kernel matrix for use with
kernel methods such as SVMs.

Yanardag and Vishwanathan [27] further observed that as the
size of graphs and the specificity of substructure patterns to be
induced from graphs increases (via lengthening walks/paths, in-
creasing the number of nodes in graphlet patterns) graphs are rep-
resented by extremely high dimensional pattern frequency vectors.
As a result, only few substructure patterns are common across any
given set of graphs producing sparse solutions where each graph
is more similar to itself, a phenomenon known as diagonal domi-
nance. To tackle this issue the authors proposed the use of neural
language models which exploit the distributive hypothesis [10] to
learn smooth low dimensional distributed representations of the sub-
structures and construct graph kernel matrices. This was quickly
followed up by works such as the aptly named Graph2Vec [17]
and Anonymous Walk Embeddings [11] (AWE). These proposed
different substructure patterns to induce over the graphs and the
use of Doc2Vec variants [14] to build distributed representations of
whole graphs directly. We provide a brief primer and conceptual
framework for learning distributed representations of graphs in
Appendix A.

Geo2DR provides various modules that can be used as "building
blocks" to rapidly construct systems capable of learning such dis-
tributed representations of both substructure patterns and whole

graphs of arbitrary size. Existing libraries for GCNNs [1, 7, 9, 26]
would require a substantial shift in philosophical focus from con-
structing message passing schemes and pooling methods to accom-
modate these methods. Hence Geo2DR is a complementary library
alongside existing toolkits enabling researchers a broader range of
options and tools for graph representation learning. A brief com-
parison of existing libraries for graph representation learning is
provided in Section 5 after describing the structure and usage of
Geo2DR for better exposition.

3 OVERVIEW OF GEO2DR
Geo2DR is a Python library containing various "building blocks"
to support rapid construction of methods capable of learning dis-
tributed representations of graphs. This framework for self super-
vised learning of substructures and entire graphs is based around a
simple two stage design methodology summarised in Figure 1.

• Induction of descriptive substructure patterns: The first
step consists of inducing discrete substructure patterns such
as graphlets, rooted subgraphs, or anonymous walks within
and across the dataset of graphs to construct a shared vo-
cabulary and corpus dataset contextualizing the patterns and
graphs. One may also use the output pattern distributions at
this stage to construct a variety of graph kernels.

• Learning distributed vector representations: The sec-
ond stage consists of utilising the distributive hypothesis [10]
to learn distributed representations of graphs contextualised
by the induced substructure patterns. Embedding methods
which exploit the distributive hypothesis such as skipgram
[16] can be used to learn fixed-size vector embeddings of
substructure patterns or whole graph in an unsupervised
manner.

The two stage methodology allows for the succinct description
of existing methods as compositions of what substructure patterns
are being induced across the graphs, and the specification of the
target-context relationships as implied by the distributive neural
embedding method. Hence, combination of Geo2DR’s modules for
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Table 1: Table characterising each of the existing published methods by the substructure patterns induced and associated
embedding method to create the graph kernel matrix (for DGK models) or graph embeddings.

Method Induced substructure pattern Embedding method Object embedded

DGK-WL WL rooted subgraphs Skipgram or CBOW Substructure patterns
DGK-SP Shortest paths Skipgram or CBOW Substructure patterns
DGK-GK Graphlets Skipgram or CBOW Substructure patterns
Graph2Vec WL rooted subgraphs PV-DBOW Whole graphs
AWE-DD Anonymous walks PV-DM Whole graphs

decomposition and distributed representation learning can be used
to quickly replicate existing methods such as those shown in Table
1. Just as importantly, it highlights the vast possibilities for the de-
velopment of novel methods intersecting ongoing research in graph
theory and distributive modelling through focused development of
the modules.

Consistent input/output interfaces were implemented across
modules to encourage creation of novel methods. For example, one
could create a "novel" unpublished method combining existing mod-
ules on inducing shortest path patterns and learning graph-level
embeddings with PV-DBOW. This form of light experimentation
fosters understanding and control of the various inductive biases in-
volved when building such models. However, in a more far-sighted
view, we hope it would also encourage the creation of custom mod-
ules that can plug and play with the rest of the framework to create
truly novel methods down the line.

Practically, the library is centered around three subpackages
under Geo2DR. The data subpackage, contains modules for trans-
forming data formats used by popular dataset repositories such as
Kersting et al. [12] into consistent formats used by the decomposi-
tion algorithms implemented in Geo2DR. In Geo2DR, we chose to
use the GEXF (Graph Exchange XML Format) as permanent storage
format for individual instances of the graphs. This is because the
format is compatible with network analysis software such as Gephi
and NetworkX for detailed inspection.

The modules within the decomposition subpackage contain
algorithms for inducing the substructure patterns in the graphs and
forming vocabularies. The outputs of these algorithms are directly
compatible with our PyTorch implementations of neural language
models to utilize GPUs as well as those in Gensim [19]. This es-
sentially describes the packages and modules necessary for Step
1 of the process. The final subpackage embedding_methods con-
tains modules for constructing corpus datasets and neural language
models to build the distributed representation learning methods of
Step 2. Several Trainer classes are also included which serve as
battery-included corpus and neural net combinations that can be
used to construct common architecture setups.

Existing methods for learning distributed representations as in
Table 1 and several graph kernels can all be implemented using the
modules and frameworks presented. We have included all these
methods as examples within the repository to get users started on
creating their own variations. A brief code example using Geo2DR
is provided in Appendix B.

4 EMPIRICAL EVALUATION
As a form of validation on the correctness for the various imple-
mented modules, we empirically evaluate re-implementations of
existing models using Geo2DR. Table 1 describes the induced sub-
structure pattern and neural language model driving each method.
We performed a series of common benchmark graph classification
tasks under homogeneous data and evaluation scenarios giving a
fairer picture of how they compare.

All datasets were downloaded from the benchmark dataset repos-
itory by Kersting et al. [12] and processed into the format used by
Geo2DR with the included data formatter. In each of the datasets
the discrete node labels are exposed, but not the edge labels. For
unlabelled datasets such as REDDIT-B, the node was labelled by
their degree following practice of Shervashidze et al. [21] to enable
methods such as the WL rooted subgraph decomposition to induce
patterns in the graphs; this was also applied to methods which can
directly handle unlabelled graphs for conformity. As these datasets
are standard benchmarks we have left specific descriptive details
in Appendix C.

For all experiments, attempts were made to follow the hyperpa-
rameter setups described in the published papers of the original
methods, with best-guess settings where details were unknown. As
we look at several kernels and embedding models specific hyperpa-
rameter ranges can be found in Appendix D. In all cases, the same
off-the-shelf support vector machine implemented in SciKit-Learn
[18] was used with an RBF kernel trick for the supervised classifica-
tion task on the graph embeddings learned. This SVM was chosen
on the basis that all works used SVMs in their downstream classifi-
cation tasks. 𝐶 values were estimated over the set (0.001, 0.01, 0.1,
1, 10, 100). We report the average score of 10 iterations of training
and applying 10 fold cross-validation using the SVM over random
data splits with individual training restarts in all cases. The exact
setups of the experiments can be replicated using the experiment
replication code provided within the Github repository1.

Graph kernels:We start with an experiment suite based on the
substructure patterns alone, using the decomposition algorithms
to construct normalised bag-of-words frequency vectors for each
of the graphs. Table 2 records the mean and standard deviation of
randomly split 10 fold cross-validation using the SVM described
above. The results closely match that of the published methods in
[3, 11, 21, 27]. The fact that different substructure patterns excel
in classifying some datasets and do not perform as well in others

1https://github.com/paulmorio/geo2dr/tree/master/replication
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Table 2: Random-split 10 fold cross-validation performance of SVM using RBF kernel on bag-of-words vectors of normalised
frequencies of substructure patterns. Best scores or those within error of best are bolded. OOM denotes out-of-memory.

Substructure pattern MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M

WL Rooted Subgraphs 88.95 ± 7.96 56.33 ± 6.18 74.29 ± 2.55 83.94 ± 1.99 77.35 ± 4.35 48.60 ± 4.33
Shortest Paths 83.68 ± 7.24 41.67 ± 4.83 74.73 ± 2.04 70.95 ± 1.95 OOM 50.20 ± 3.84
Graphlets 83.16 ± 6.16 25.33 ± 3.48 70.36 ± 3.59 54.09 ± 7.61 78.25 ± 2.71 44.40 ± 4.17
Anonymous Walks 80.53 ± 6.68 27.33 ± 6.23 71.87 ± 2.05 66.08 ± 2.21 81.30 ± 2.49 38.20 ± 3.91

Table 3: Graph classification performance over random-split 10 fold cross-validation in each of the re-implemented methods
with standard deviation. Best scores or those within error of best are bolded. OOM denotes out-of-memory.

Method MUTAG ENZYMES PROTEINS NCI1 REDDIT-B IMDB-M

DGK-WL 88.42 ± 8.42 41.00 ± 1.83 72.08 ± 0.74 77.54 ± 3.91 OOM 47.82 ± 0.79
DGK-SP 84.03 ± 7.16 44.27 ± 2.26 76.93 ± 2.56 69.22 ± 5.29 OOM 49.71 ± 1.18
DGK-GK 84.21 ± 6.74 23.61 ± 3.14 69.77 ± 3.13 53.92 ± 4.81 78.32 ± 1.92 44.40 ± 4.18

Graph2Vec 84.91 ± 2.79 51.77 ± 1.75 74.05 ± 2.28 71.34 ± 2.12 81.25 ± 2.64 47.11 ± 1.42
AWE-DD 79.29 ± 2.92 23.76 ± 1.74 69.70 ± 1.29 63.54 ± 1.82 81.46 ± 1.75 40.53 ± 6.42

suggests that topological characteristics which are useful for char-
acterising graphs are not found in just one substructure pattern.
Making the study of other patterns and combinations thereof an
interesting avenue.

Deep graph kernels and graph embeddings:Most of our ex-
periments in Table 3 show a high reproducibility of the results
published by the original proposers. Some discrepancies are to
be expected due to the homogenised data setup, unpublished hy-
perparameter settings, and standardised neural architectures, but
best effort was made through consulting original source code and
communications with the authors. In particular, for AWE-DD, we
do not use edge-labels for homogeneity of the experiment evalua-
tion whilst the original paper used them if they provided a better
performance.

Runtime experiments and improvements in Geo2DR: Ta-
ble 4 contains the average total training times incurred over 100
epochs, performed ten times with one standard deviation on a sin-
gle quad-core Intel 4690 CPU. Comparison is drawn between the
original reference implementation made available by each of the
original papers and its re-implemented counterpart in Geo2DR.
All methods were trained and compared on the MUTAG dataset
as this was the only common dataset included in the reference
implementations. None of the original reference implementations
have scripts or tools to transform the publicly available datasets
they used into the proprietary formats used by their own imple-
mentations, making reproduction difficult. This is why we have
included data processing tools for popular public datasets directly
into the Geo2DR library within the data subpackage to address
this common limitation for the future.

5 RELATEDWORK
Table 5 provides a summary of the core competencies of existing
graph learning libraries. To briefly elaborate, recent libraries for

Table 4: Total training run time (seconds) over 100 epochs on
MUTAG. Bold text refers to lowest time taken for training
or are within error bounds of being the fastest.

Method
Original
reference
implementation

Only Geo2DR
PyTorch modules

Geo2DR with
compatible libraries
Gensim/TensorFlow

DGK-WL 3.06 ± 0.15 3.33 ± 0.07 3.19 ± 0.08
DGK-SP 6.95 ± 0.23 6.86 ± 0.27 7.39 ± 0.08
DGK-GK 9.46 ± 0.69 19.41 ± 0.49 9.89 ± 0.74
Graph2Vec 8.86 ± 0.05 10.64 ± 0.11 8.88 ± 0.06
AWE-DD 1231.75 ± 21.81 314.84 ± 8.91 —

GCNN research such as GraphNets [1], DGL [26] and PyTorch Geo-
metric [7] are characterised by a composite construction style of
the message passing neural networks. Each method is constructed
through the composition of convolution or pooling layers in the
neural network and other preprocessing steps by the user. In con-
trast, graph kernel libraries such as GraKel [22] and GraphKernels
[23], are API-oriented, with single line calls to specific implementa-
tions, where GraKel specifically follows the usage style of SciKit
Learn [18] for compatibility. The recently released Karate Club
[20] (its paper released the same week as Geo2DR) is an excellent
API-oriented community detection and graph embedding library
which implements several methods for distributed representations
of graphs such as Graph2Vec and GL2Vec.

Geo2DR’s underpinning design philosophy around composition
of modules for method construction differentiates it from Karate
Club. As stated in Section 3, the core focus is on the flexible yet
rapid construction of methods with building blocks inspired by
method creation in PyTorch and recent GCNN libraries. It allows
a greater room for constructing novel methods in a modular fash-
ion to encourage research and exploration. Ultimately, each of the
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Table 5: This table is a simplified summary of core competencies of existing graph learning libraries. The column on method
construction notes the style in which methods can be created. Composite refers to the creation of methods via composition
of transformations, decompositions, neural network modules in the library by the user. On the other hand API refers to API-
oriented "single-line" calls to specific implementations of methods, architectures etc. Composite/API* refers to few libraries
exhibiting a composite design philosophy but have some single-line API calls to specific methods too popular to ignore such
as the inclusion of Node2Vec in GEM and PyTorch Geometric but not as comprehensive as Karate Club or Geo2DR.

Message passing
network models Graph Kernels

Distributed
Representations
of Graphs

Method Construction
Style

GraphNets [1] × × Composite
DGL [26] × × Composite
GEM [9] × ×* Composite/API*
Pytorch Geometric [7] × ×* Composite/API*
Grakel [22] × × API
Graphkernels [23] × × API
Karate Club [20] × × API
Geo2DR × Composite

libraries cover specific competencies with their own usage philoso-
phies, and we believe Geo2DR fills an important gap in supporting
research of methods capable of learning distributed representations
of graphs.

6 CONCLUSION
Through the characterisation of existing methods, and the repro-
duction of their results in Geo2DR, we have shown that the library
is a successful amalgamation of the various components that enable
learning distributed representations of graphs. Using the simple
design methodology, one can quickly re-implement existing models,
which is becoming an increasingly important part of reproducible
research and designing novel architectures. By exploiting the modu-
lar structure and compatibility with other software and libraries the
set of tools for constructing learning methods is broadened without
having to deal with different data formats, language paradigms
and workflows used by individual implementations. Using a host
of re-implemented methods also allows for more homogenised
experiment suites that can be used to more fairly compare exist-
ing and new methods in future research efforts. Geo2DR is now
available with detailed documentation and examples as a starting
point. The library will continue to evolve to add new components,
compatibility with other libraries, tutorials, and accommodate new
developments in the field.
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A BRIEF PRIMER ON LEARNING
DISTRIBUTED REPRESENTATIONS OF
GRAPHS

Here we provide a brief and simplified primer on learning dis-
tributed representations of graphs. This will not fully describe the
various intricacies of existing methods, but cover a conceptual
framework common to almost all distributed representations of
graphs particularly for learning representations of substructure pat-
terns and whole graphs. Figure 2 is a diagrammatic representations
of this conceptual framework.

Given a set of graphs G = {G1,G2, ...G𝑛} one can induce dis-
crete substructure patterns such as shortest paths, rooted sub-
graphs, graphlets, etc. using side-effects of algorithms such as
the Floyd-Warshall or Weisfeiler-Lehman Graph Isomorphism test,
and so on. This can be used to produce pattern frequency vectors

X = {x1, x2, ..., x𝑛} describing the occurrence frequency of substruc-
ture patterns over a shared vocabulary V. V is the set of unique
substructure patterns induced across all of the graphs in the dataset
G.

Classically one may directly use these pattern frequency vectors
within standard machine learning methods using vector inputs to
perform some task. This is the approach taken by a variety of graph
kernels [24, 27]. Unvfortunately, as the graphs ofG and subtructure
patterns induced become more complex through size or specificity,
the number of induced patterns increases dramatically. This, in turn,
causes the pattern frequency vectors of X to be extremely sparse
and high-dimensional. The high specificity of the patterns and
the sparsity of the pattern frequency vectors cause a phenomenon
known as diagonal dominance across the kernel matrices wherein
each graph becomes more similar to itself and dissimilar from
others, degrading the classification performance [27].

To address this issue it is possible to learn dense and low dimen-
sional distributed representations of graphs that are inductively
biased to be similar when they contain similar substructure patterns
and dissimilar when they do not. To achieve this, the construction
of a corpus dataset D is required detailing the target-context rela-
tionship between a graph and its induced substructure as in our
example or a substructure pattern to other substructure patterns.
In the simplest form for graph-level representation learning one
can implement D as tuples of graphs and substructure pattern
(G𝑖 , 𝑝 𝑗 ) ∈ D if 𝑝 𝑗 ∈ V and 𝑝 𝑗 ∈ G𝑖 .

The corpus is utilised with a method that incorporates Harris’
distributive hypothesis [10] to learn the distributed representations
of graphs. skipgram, cbow, PV-DM, PV-DBOW [14, 16] are a few
examples of neural embedding methods that incorporate this in-
ductive bias and are all present in the Geo2DR library. In skipgram
with negative sampling, as used in Graph2Vec [17], the distributed
representations can be learned by optimizing

L =
∑
G𝑖 ∈G

∑
𝑝∈V

|{(G𝑖 , 𝑝) ∈ D}|(log𝜎 (Φ𝑖 · S𝑝 )

+𝑘 · E𝑝𝑁 ∈𝑃𝐷 [log𝜎 (−Φ𝑖 · 𝑝𝑁 )]

over the corpus observations where Φ ∈ R |G |×𝑑 is the 𝑑 dimen-
sional matrix of graph embeddings we desire of the graph dataset
G, and Φ𝑖 is embedding for G𝑖 ∈ G. Similarly, S ∈ R |V |×𝑑 are
the 𝑑 dimensional embeddings of the substructure patterns in the
vocabulary V so S𝑝 represents the vector embedding correspond-
ing to substructure pattern 𝑝 . The embeddings of the substructure
patterns are also tuned but ultimately not used, as we are interested
in the graph embeddings in Φ. 𝑘 is the number of negative samples
with 𝑡𝑁 being the sampled context pattern, drawn according to the
empirical unigram distribution 𝑃𝐷 (𝑝) = | {𝑝 |∀𝐺𝑖 ∈G,(𝐺𝑖 ,𝑝) ∈D} |

|𝐷 | .
The optimization of the above utility function creates the desired

distributed representations of the targets inΦ, in this the case graph-
level embeddings. These may be used as input for any downstream
machine learning task and method that take vector inputs. The
distributed representations benefit from having lower dimension-
ality than the pattern frequency vectors, in other words |V| >> 𝑑 ,
being non-sparse, and being inductively biased via the distributive
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Figure 2: A conceptual framework for howmethods for learning distributed representations of graphs are constructed, which
guides the method design principles in Geo2DR.

hypothesis in an unsupervised manner. For more in-depth reading
we recommend [10, 14, 16, 17, 27].

B CODE EXAMPLE
We present a construction of a simplified Graph2Vec model and
training it to produce 32 dimensional distributed vector embeddings
of the MUTAG graphs using Geo2DR modules. To start we need to
download a dataset to study. We will use the well known MUTAG
[5] downloaded from the TU Dortmund Graph Kernel Benchmark
website [12]. Assume we have unpacked and saved the data into a
directory called org_data/ so the dataset as downloaded will be
within the directory as org_data/MUTAG/.

Geo2DR uses the GEXF (Graph Exchange XML Format) as the
permanent storage format for the graphs in a dataset. This is be-
cause it is compatible with network analysis software such as Gephi
and NetworkX, and it is often useful to be able to study each graph
individually; identified by a single file. Due to this design choice
we need to transform the format of the downloaded dataset using
tools available within the data subpackage as in the code sample
below.

1 from geome t r i c 2d r . data import DortmundGexf
2
3 g e x i f i e r = DortmundGexf ( "MUTAG" , " o rg_da ta / " , " data / " )
4 g e x i f i e r . f o rma t _da t a s e t ( )

Listing 1: Formatting the downloaded dataset into GEXF
format

This will result in the following dataset format:

• data/MUTAG/ : a directory containing individual .gexf files
of each graph. A graph will be denoted by the graph IDs
used in the original data. In this case graph 0 would be
data/MUTAG/0.gexf

• data/MUTAG.Labels : a plain-text file with each line con-
taining a graph’s file path and its classification label.

Given the preprocessed data we can now induce substructure
patterns across the graph files. Here we will induce rooted sub-
graphs up to depth 2 using the Weisfeiler-Lehman node relabeling
algorithm outlined in Shervashidze et al. [21].

1 from geome t r i c 2d r . decompos i t i on . w e i s f e i l e r _ l e hman _p a t t e r n s import
wl_corpus

2 import geome t r i c 2d r . embedding_methods . u t i l s as u t i l s
3
4 da t a s e t _pa th = " data /MUTAG"
5 g r a p h _ f i l e s = u t i l s . g e t _ f i l e s ( da ta se t_pa th , " . g e x f " )
6
7 wl_depth = 2
8 wl_corpus ( g r a p h _ f i l e s , wl_depth )

Listing 2: Inducing rooted subgraphs across the graphs of
the dataset

The wl_corpus() function induces rooted subgraph patterns
across the list of .gexf files in graph_files, and builds a docu-
ment for each graph describing the induced patterns within. These
documents will have a special extension specific to each decom-
position algorithm or can be set by the user. In this example the
extension will be .d2wl to denote a Weisfeiler-Lehman decomposi-
tion to depth 2. Generating permanent files as a side effect of the
graph decomposition process is useful for later study and also if
we want to use the same induced patterns in the upcoming step of
learning distributed representations of the graphs.

To learn distributed representations we need to construct a new
target-context dataset. In Graph2Vec a graph is contextualised by
the substructure patterns within it, and uses the PV-DBOW ar-
chitecture with negative sampling to directly learn graph-level
embeddings. Hence we use the PVDBOWInMemoryCorpus which is
a extension of a standard torch.utils.data.dataset class. This
can interface with a standard PyTorch dataloader to load the data
into a embedding_methods.skipgram class that we train in a loop
using a simple and recognizable torch.nn workflow.

1 import t o r ch
2 import t o r ch . optim as optim
3 from to r ch . u t i l s . data import DataLoader
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4 from geome t r i c 2d r . embedding_methods . pvdbow_data_reader import
PVDBOWInMemoryCorpus

5 from geome t r i c 2d r . embedding_methods . sk ipgram import Skipgram
6
7 # I n s t a n t i a t e co rpus da ta se t , d a t a l o ad e r and skipgram
8 # a r c h i t e c t u r e
9 co rpus = PVDBOWCorpus ( da ta se t_pa th , " . d2wl " )
10 da t a l o ad e r = DataLoader ( corpus , b a t c h _ s i z e =1000 , s h u f f l e = Fa l s e ,

c o l l a t e _ f n = corpus . c o l l a t e )
11 sk ipgram = Skipgram ( num_targets = corpus . num_graphs , v o c a b _ s i z e =

corpus . num_subgraphs , emb_dimension =32 )
12
13 op t im i z e r = optim . SGD( skipgram . paramete r s ( ) , l r = 0 . 1 )
14 f o r epoch in range ( 1 0 0 ) :
15 f o r i , sample_batched in enumerate ( d a t a l o ad e r ) :
16 i f l e n ( sample_batched [ 0 ] ) > 1 :
17 po s _ t a r g e t = sample_batched [ 0 ]
18 pos_ con t e x t = sample_batched [ 1 ]
19 neg_con tex t = sample_batched [ 2 ]
20
21 op t im i z e r . z e ro_g rad ( )
22 l o s s = skipgram . forward ( po s_ t a r ge t , pos_contex t , neg_con tex t )
23 l o s s . backward ( )
24 op t im i z e r . s t ep ( )
25
26 f i na l _g raph_embedd ings = skipgram . ta rge t_embedd ings . weight

Listing 3: Creating a target-context dataset then attaching a
dataloader that feeds the corpus data into a skipgrammodel
and training it.

The completion of the training provides the final graph embed-
dings. As this is such a common proces, Geo2DR also comes with a
number of Trainer classes which build corpus datasets, loaders,
train neural language models, and save their outputs. All of the
code above can be replaced with this short trainer.

1 from geome t r i c 2d r . embedding_methods . pvdbow_t ra ine r import
InMemoryTrainer

2
3 t r a i n e r = InMemoryTrainer ( c o r pu s _d i r = da ta se t_pa th , e x t e n s i o n = " . d2wl

" , ou tpu t_ fh = " graph_embeddings . j s on " , emb_dimension =32 ,
b a t c h _ s i z e =1000 , epochs =100 , i n i t i a l _ l r = 0 . 1 , min_count =0 )

4 t r a i n e r . t r a i n ( )
5 f i na l _g raph_embedd ings = t r a i n e r . sk ipgram . g i v e_ t a r ge t _ embedd ing s ( )

Listing 4: Trainer example of performing all of listing 1.3

C SUPPLEMENTARY: DATASET DETAILS
Table 6 contains descriptive information about each of the datasets
as they were used within the empirical evaluation described in
Section 4 of the main paper. All of the datasets are commonly
used benchmark datasets downloaded from Kersting et al.’s [12]
repository2. After downloading the datasets they were processed
into the format used by Geo2DRwith the included data formatter. In
each of the datasets the discrete node labels are exposed, but not the
edge labels. For unlabelled datasets such as REDDIT-B and IMDB-M,
the nodes are labelled by their degree as in Shervashidze et al. [21]
to enable methods such as the WL rooted subgraph decomposition
to induce patterns in the graphs. This was also applied to methods
which can directly handle unlabelled graphs for conformity.

The graphs come from a variety of contexts and domains. MU-
TAG, ENZYMES and PROTEINS are datasets which have their
roots in bioinformatics research. The graphs within them repre-
sent molecules with nodes representing atoms and edges denot-
ing chemical bonds or spatial proximity between different atoms.

2ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

Graph labels describe different properties of the molecules such as
mutagenicity or whether a protein is an enzyme. NCI1 is a chemoin-
formatics dataset describing compounds screened for their ability
to surpress or inhibit the growth of a panel of human tumor cell
lines. REDDIT-B and IMDB-M are social network based datasets. In
REDDIT-B each graph corresponds to an online discussion thread
where nodes correspond to users, and there is an edge between the
nodes if at least one responded to another’s comment. IMDB-M is
a movie collaboration dataset where each graph corresponds to an
ego-network of an actor or actress.

D SUPPLEMENTARY: HYPERPARAMETER
SELECTIONS OF RE-IMPLEMENTED
METHODS

For each of the methods described in Section 4 we prescribed a grid
search over the following hyper-parameter settings inspired by the
settings of the original papers:

D.1 Graph Kernels
• WL Rooted Subgraphs: Rooted subgraphs up to depth 2
induced.

• Shortest Paths: Shortest paths of all pairs of nodes induced.
• Graphlets:Graphlets of size 7 induced, sampling 100 graphlets
per graph.

• Anonymous Walks: Anonymous walks of length 10 in-
duced exhaustively from each node in the graph.

D.2 Deep Graph Kernels and Graph
Embeddings

• DGK-WL:Rooted subgraphs of up to depth 2 induced. Trained
Skipgram model with negative sampling using 10 negative
samples with an Adam optimiser for 5 and 100 epochs us-
ing batch sizes of 10000 and 1000 with an initial learning
rate of 0.1 and 0.01 adjusted by a cosine annealing scheme.
Substructure embedding sizes of 2, 5, 10, 25, 50 dimensions
were generated. Graph kernels were constructed using the
formulation described in Yanardag and Vishwanathan [27].

• DGK-SP: Shortest paths of all pairs of nodes induced. Trained
Skipgram model with negative sampling using 10 negative
samples with an Adam optimiser for 5 and 100 epochs us-
ing batch sizes of 10000 and 1000 with an initial learning
rate of 0.1 and 0.01 adjusted by a cosine annealing scheme.
Substructure embedding sizes of 2, 5, 10, 25, 50 dimensions
were generated. Graph kernels were constructed using the
formulation described in Yanardag and Vishwanathan [27].

• DGK-GK: Graphlets of size 7 induced, sampling 2, 5, 10, 25,
and 50 graphlets for each graph. Trained Skipgram model
with negative sampling using 10 negative samples with an
Adam optimiser for 5 and 100 epochs using batch sizes of
10000 and 1000 with an initial learning rate of 0.1 and 0.01
adjusted by a cosine annealing scheme. Substructure embed-
dings of 2, 5, 10, 25, 50 dimensions were generated. Graph
kernels were constructed using the formulation described in
Yanardag and Vishwanathan [27].
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Table 6: Descriptive information about datasets used in the experimental evaluation. N refers the number of graphs in the
datasets. C is the number of graph classification labels. Avg. Nodes and Avg. Edges denote the average number of nodes and
edges found in the graphs of the dataset respectively. Finally Node Labels indicates whether the nodes are discretely labelled.
The * refers to datasets which originally do not have node labels, but are subsequently labelled by their degree as described in
Shervashidze et al. [21]

Dataset N C Avg. Nodes Avg. Edges Node Labels

MUTAG [5] 188 2 17.93 19.79 Yes
ENZYMES [4] 600 6 32.63 62.14 Yes
PROTEINS [4] 1113 2 39.06 72.82 Yes
NCI1 [25] 4110 2 29.87 32.3 Yes
REDDIT-B [27] 2000 2 429.63 497.75 No*
IMDB-M [27] 1500 3 13 65.94 No*

• Graph2Vec: Rooted subgraphs of up to depth 2 induced.
Trained over PV-DBOW (Skipgram) model with negative
sampling using 10 negative samples with an Adam optimiser
for 25, 50, 100 epochs and batch sizes of 512, 1024, 2048,
10000 with an initial learning rate of 0.1 adjusted by a co-
sine annealing scheme. Graph embeddings of 128 and 1024
dimensions were learned.

• AWE-DD: Anonymous walks of length 10 induced exhaus-
tively. Trained over PV-DM architecture with negative sam-
pling using 10 negative samples with an Adagrad optimiser
(as in reference implementation) for 100 epochs with batch
sizes 100, 500, 1000, 5000, 10000 with an initial learning rate
of 0.1. Window-sizes of 4, 8, 16 were used to extract context
anonymous walks around the target anonymous walk in the
PV-DM architecture.
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