
SNAPSKETCH: Graph Representation Approach for Intrusion
Detection in a Streaming Graph

Ramesh Paudel
rpaudel42@students.tntech.edu

Tennessee Technological University
Cookeville, TN

William Eberle
weberle@tntech.edu

Tennessee Technological University
Cookeville, TN

ABSTRACT
In this paper, we propose a novel unsupervised graph represen-
tation approach in a graph stream called SNAPSKETCH that can be
used for anomaly detection. It first performs a fixed-length random
walk from each node in a network and constructs n-shingles from
a walk path. The top discriminative n-shingles identified using
a frequency measure are projected into a dimensional projection
vector chosen uniformly at random. Finally, a graph is sketched
into a low-dimensional sketch vector using a simplified hashing of
the projection vector and the cost of shingles. Using the learned
sketch vector, anomaly detection is done using the state-of-the-art
anomaly detection approach called RRCF [1]. SNAPSKETCHhas several
advantages, including fully unsupervised learning, constant mem-
ory space usage, entire-graph embedding, and real-time anomaly
detection.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection; • Networks
→ Denial-of-service attacks.

KEYWORDS
graph sketching, anomaly detection, graph stream

ACM Reference Format:
Ramesh Paudel and William Eberle. 2020. SNAPSKETCH: Graph Represen-
tation Approach for Intrusion Detection in a Streaming Graph. In MLG
’20: 16th International Workshop on Mining and Learning with Graphs, Aug
23-27, 2020, San Diego, California. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Learning problems like classification, link prediction, community
detection, role discovery, anomaly detection, visualization, etc.,
in graphs can be accomplished using standard machine learning
algorithms. However, the primary challenge is in the extraction
of informative, discriminating, and independent features that can
represent or encode a graph structure so that it can be used as
input to a machine learning model. For example, to predict the links

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG ’20, Aug 23-27, 2020 , San Diego, California
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

between two individuals in a social network, we might want to ex-
tract pairwise information that represents the relationship strength
between two individuals, like the number of common friends. Or
to classify a node, we might want to extract node properties like a
local neighborhood, global position in the graph, etc. Since there
is no common or simple way to encode or represent these high
dimensional graphs, the feature extraction in graphs is challenging.
One way is to map user-defined statistics, like degree, label, or
neighborhood statistics, into a feature vector. The disadvantage
of these kinds of approaches is that the feature vector transfor-
mation may lead to a loss in the topological information, feature
generation is time-consuming and expensive, and features gener-
ated beforehand cannot adapt during the learning process [16]. On
the other hand, a classical feature representation technique like
a graph kernel can evaluate the similarity between two graphs 𝐺
and𝐺 ′ by recursively decomposing them into atomic substructures
through random walks [12, 21], shortest paths [6], subgraphs [34],
subtrees [20, 32], etc., and define a similarity function over the
substructures (e.g., counting the number of common substructures
across 𝐺 and 𝐺 ′). However, most of these atomic substructures
in graphs are extracted using a well-defined function and when
used on large datasets of graphs, it leads to building very high
dimensional, sparse, and non-smooth representations yielding poor
generalization [16, 41].

Recently, a graph representation technique called graph em-
bedding has gained popularity. Graph embedding is an approach
that transforms nodes, edges, subgraphs, graphs and their fea-
tures into a low dimensional vector space whilst optimally pre-
serving their properties. Embedding techniques are categorized
into factorization-based [5, 29], random walk-based [14, 31], and
deep learning-based [22, 40] techniques. Though graph embedding
shows promising results among graph representation methods, the
computation cost is usually high. Also, most of the research on
graph embedding is focused on a node and edge embedding and
little work has been done for embedding the subgraphs or the com-
plete graphs. Furthermore, there is limited research when it comes
to embedding a streaming graph.

In streaming graphs, sketching techniques have been used as a
part of an efficient learning task [11, 19, 26]. Sketching is another
graph representation technique that projects the higher dimen-
sional object like graphs into a lower-dimensional feature vector.
In other words, sketching summarizes big and streaming graphs
while preserving their original properties like graph distances, cut,
and density. These approaches can handle streaming, heteroge-
neous graphs, with low space overhead and real-time processing
of the graph [3, 26]. In this work, we propose an unsupervised
general-purpose graph sketching technique called SNAPSKETCH that

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MLG ’20, Aug 23-27, 2020 , San Diego, California Paudel and Eberle

can represent a snapshot of a graph stream at any time 𝑡 into a
fixed-size sketch vector. SNAPSKETCH first performs a fixed-length
random walk from each node in a graph and constructs n-shingles
from a walk path. The top discriminative n-shingles are identified
using a frequency measure and are projected into a 𝑑−dimensional
projection vector ℎ [1,...,𝑑] = {1, 0} chosen uniformly at random
with probability 𝑟 . Finally, the graph is sketched into a low dimen-
sional sketch vector using a simplified hashing of the projection
vector and the cost of shingles. As a result, the obtained sketch vec-
tor can then be processed by standard machine learning algorithms
for anomaly detection.

The contributions of this work can be summarized as follows:

• We propose SNAPSKETCH , an unsupervised graph representa-
tion approach on a graph stream.
• We demonstrate the effectiveness of SNAPSKETCH on anoma-
lous hotspot detection in graph streams.
• SNAPSKETCH outperforms baseline graph stream anomaly de-
tection approaches on several large real-world graph streams.

2 RELATEDWORK
Our proposed graph representation techniquemaps graph-structured
data into a fixed-size sketch vector. This work closely resembles
three popular techniques of graph representation: graph kernel,
graph embeddings, and graph sketching.

A graph kernel recursively decomposes the graph into atomic
substructure like graphlet, subtree, random walk, etc., and repre-
sents a graph structure as a vector containing the counts of the
atomic substructures. The similarity of the two graphs can be mea-
sured using the inner product of such vectors. Kondor and Lafferty
[23] first proposed the idea of constructing kernels (called a diffu-
sion kernel) between the nodes of a single graph and it was later
extended by Smola and Kondor [37]. Graph kernels based on walks
and paths [12, 18, 21, 39], subgraph (or graphlet) [20, 34, 35], and
subtree [10, 32] are proposed by various researchers. Furthermore,
other graph kernels like Deep Divergence Graph Kernels (DDGK)
[4] measure the similarity between a pair of graphs by the diver-
gence in their structures. However, while graph kernels are defined
using a fixed set of substructures or patterns, their capacity to dis-
tinguish graphs of different classes does not adapt to the given data
distribution [24].

Like graph kernels, a graph embedding represents the graph-
structured data into a vector space. Initially, a graph embedding
evolved as a dimensionality reduction technique where a graph
with𝐷−dimensions is embedded into a𝑑−dimensional vector space,
where 𝑑 << 𝐷 . Recently, the research has shifted towards gener-
ating a better representation of graphs. Factorization-based graph
embedding represents a graph in the form of a matrix (e.g., node
adjacency matrix, Laplacian matrix, node transition probability ma-
trix, etc.) and factorizes this matrix to obtain a node embedding.
GraRep [8] and HOPE [29] are examples of factorization-based
embedding. The problem with factorization-based methods is that
they are not capable of learning an arbitrary function, e.g., to ex-
plain network connectivity. Thus, unless explicitly included in their
objective function, they cannot learn structural equivalences [13].
Embedding techniques like DeepWalk [31], node2vec [14], HARP
[9], etc., are based on a random walk. But, the shallow models

based on random walk or a factorization method cannot capture
complex and highly non-linear network structures, resulting in
sub-optimal network representations [40]. However, deep learning-
based methods like Structural Deep Network Embedding (SDNE)
[40] and Graph Convolution Networks (GCNs) [22] can effectively
capture the highly non-linear network structure and preserve the
global and local structure of the network.

The embedding techniques discussed above focus on node em-
beddings. The application of such an embedding is limited to node
classification and edge prediction. Approaches like PATCHY-SAN
[28], graph2vec [27], Sub2vec [2], GAT2VEC [33], etc., propose the
embedding of the complete graph and are better suited for graph
classification. In a dynamic graph, an embedding technique like
GCN [22] is proposed. However, GCN [22] does not consider the
timing factors, which cannot be ignored in the dynamic graphs. Net-
Walk [42] learns a network representation in a dynamic network by
encoding the vertices of the dynamic network to vector representa-
tions by a clique embedding that can be updated dynamically as the
network evolves. AddGraph [44] uses an extended temporal GCN
with an attention model that can capture both long-term patterns
and the short-term patterns in dynamic graphs. The embedding
techniques are based on a neural network. Due to stacking multiple
layers of graph convolution or high complexity of backpropagation,
they do not scale well for large graphs. Also, the majority of graph
embedding techniques cannot handle dynamic and heterogeneous
graphs.

Sketching is a useful graph representation technique in a stream-
ing setting for summarizing graphs that can be implicitly stored
in a small space and constructed when required. Using sketching,
the summary of the entire graph can be computed without storing
the whole graph. gSketch [43], SpotLight [11], StreamSpot [26],
TCM [38], NetCondense [1], SBG-Sketch [19], GODIT [30], etc.,
are examples of sketching techniques in streaming graphs. In this
work, we propose a sketching approach in a graph stream called
SNAPSKETCH that uses a simplified hashing of the discriminative shin-
gles generated from a biased-random walk. The sketches generated
by SNAPSKETCH can then be used for anomaly detection in dynamic
graphs.

3 PROPOSED METHODOLOGY
3.1 Preliminaries
In this section, we formally define the problem and notations, and
introduce our streaming graph model.

3.1.1 Problem Setting. Let𝐺𝑠 ={𝐺1,𝐺2, ...,𝐺𝑡 , ...} be a graph stream
where each 𝐺𝑡 denotes a graph at time 𝑡 . We consider a graph
𝐺𝑡 = (𝑣, 𝑒, 𝑓) as a generic weighted (un)directed heterogeneous
graph. Whenever a new graph 𝐺𝑡 arrives in the stream, a biased-
random walk of a fixed length 𝑙 is performed from each node in 𝐺𝑡

extracting a walk path 𝑝𝐺𝑡
={𝑣1, 𝑣2, ..., 𝑣𝑙 }. The n-shingles are then

constructed from a walk path 𝑝𝐺𝑡
.

Definition 3.1. A shingle is a contiguous sub-sequence con-
tained in a walk path 𝑝𝐺𝑡

.

Definition 3.2. The n-shingle 𝑆 (𝑣, 𝑛) is a sub-sequence of size 𝑛
constructed from a random walk path 𝑝𝐺𝑡

.

SNAPSKETCH: Graph Representation Approach for Intrusion Detection in a Streaming Graph MLG ’20, Aug 23-27, 2020 , San Diego, California

The value of 𝑛 can be randomly chosen to be any constant. How-
ever, the lower value of 𝑛 might not represent any significant neigh-
borhood information. For example, if an 𝑛 = 2 shingle represents
the edge, it might not provide enough information about the neigh-
borhood beyond one hop (or one neighbor). On the other hand, a
larger value of 𝑛 will produce a more expressive local neighborhood
[26]. From the set of shingles (𝑆𝑡) present in a graph 𝐺𝑡 , the top 𝑘
discriminative shingles (𝑆𝑘𝑡) are determined, i.e., shingles with the
highest frequency values. Each of the top 𝑘 discriminative shingles
are then projected into a 𝑑−dimensional vector ℎ [1,...,𝑑] = {1, 0}
chosen uniformly at random with probability 𝑟 .

Definition 3.3. Sketching is the data representation technique
where the higher dimensional graph object𝐺𝑡 can be projected into
a lower-dimensional vector 𝑣𝐺𝑡

while preserving the properties of
the original object with high probability.

Definition 3.4. Cost vector 𝑐𝑡 is a vector of size |𝑆𝑘𝑡 | where each
element in 𝑐𝑡 holds the cost of a discriminative shingle 𝑆𝑘𝑡

Using a projection vector ℎ𝑑 and a cost vector 𝑐𝑡 , our goal is to
embed a graph𝐺𝑡 into a 𝑑−dimensional sketch 𝑣𝐺𝑡

. Such sketching
will preserve good approximations of the original properties of the
graph like graph proximity. In other words, if two graphs share
a common structure, they share a higher number of n-shingles,
therefore, their sketches 𝑣𝐺𝑡

are closely mapped. Intuitively, graph
proximity measures how many nodes, edges, and paths are shared
by two graphs [2]. The graph proximity can then be calculated
using similarity measures like Jaccard similarity, Cosine similarity,
Euclidean distance, etc., between the set of sketches 𝑣𝐺𝑡

. Give two
graphs𝐺1 = (𝑣1, 𝑒1) and𝐺2 = (𝑣2, 𝑒2), the graph proximity between
𝐺1 and𝐺2 is larger if the number of shared discriminative shingles
is larger. Note that using sketches of n-shingles (if 𝑛 > 2) for mea-
suring graph proximity is not just similarity measures like Jaccard,
Cosine, or Euclidean similarity measures of nodes or edges in the
two graphs, as it also takes the connections among the common
nodes into account.

3.1.2 Problem Definition. Given the aforementioned setting, we
now formulate the problem that we aim to tackle in this work as
follows: Given a graph stream 𝐺𝑠 = {𝐺1,𝐺2, ...,𝐺𝑡 , ...}, our goal is
to learn a sketching function 𝑓 for each graph 𝐺𝑡 ∈ R |𝑣 |

2
such that

𝑓 : 𝐺𝑡 −→ 𝑣𝐺𝑡
∈ S𝑑 , 𝑑 << |𝑣 |2 while ensuring that the original

properties of the graph are well-preserved in such a 𝑑−dimensional
vector 𝑣𝐺𝑡

.
The framework of our proposed method, SNAPSKETCH , consists

of two key steps: (i) generating shingles using a biased random
walk, (ii) generating a fixed-sized 𝑑−dimensional sketch by hashing
discriminative shingles. We now discuss these two steps in detail.

3.2 Shingling using Biased RandomWalk
Random walks have been used as a similarity measure for a variety
of problems in graphs [2, 14, 31]. Random walk can also measure
the similarity between graphs by measuring the distance between
two nodes in the graphs, the number of shared paths, the number of
shared neighbors between nodes in the graphs, etc. Similarly, like a
𝑘−gram in a text document to construct vector representation [7], a
randomwalk path can be decomposed into a set of𝑛−shingles and a

Figure 1: Pictorial representation of node2vec random walk
[14]. The walk is at 𝑣 (previously at 𝑡) and is evaluating its
next step out of node 𝑣 . Search biases 𝛼 for each edges are
shown as a label.

vector representation can be constructed using frequencies (or cost
measures) of𝑛−shingles. The similarity between the two graphs can
then be defined on the similarity between their 𝑛−shingle. Hence,
using random walks and shingling techniques, we can effectively
capture the contexts in which graphs have high similarity.

For each node 𝑣𝑖 in graph𝐺𝑡 , the randomwalk of length 𝑙 starting
at node 𝑣𝑖 is simulated in such a way that each 𝑖th node in the walk
path (𝑤𝑖) is generated by the following distribution [14]:

𝑃 (𝑤𝑖 = 𝑥 |𝑤𝑖−1 = 𝑣) =
{
𝜋𝑣𝑥

𝑍
if (𝑣, 𝑥) ∈ 𝑒

0 otherwise

where 𝜋𝑣𝑥 is the non-normalized transition probability between
node 𝑣 and node 𝑥 , and 𝑍 is the normalizing constant. The non-
normalized transition probability can be calculated using edge
weights. The normalizing factor 𝑍 , in this case, can be the total
weight of all the edges between node 𝑣 and 𝑥 . We choose to do a
short random walk starting from each node instead of a single long
walk throughout the whole graph because if there is a disconnected
component in the graph, the single longer walk might not traverse
the disconnected part of the graph.

Neighborhood sampling using a breadth-first search (BFS) pro-
vides the structural information (like if the node is a bridge or a
hub) about the local neighborhood. On the other hand, a depth-first
search (DFS) can explore the global view of the graph and give
information beyond the 1-hop neighborhood. Using node2vec [14],
with a random walk we can smoothly interpolate between BFS and
DFS and gather information about both local and global information
of the node. The random walk can interpolate between BFS and
DFS using parameters 𝑝 and 𝑞. As shown in Figure 1, if a random
walk just traversed the edge (𝑡, 𝑣) and is currently at node 𝑣 , the
next step to the node 𝑥 leading from the current node 𝑣 on the walk
can be decided using transitional probability 𝜋𝑣𝑥 = 𝛼𝑝𝑞 (𝑡, 𝑥) .𝑤𝑣𝑥 ,
where𝑤𝑣𝑥 is the weight of the edge (𝑣, 𝑥) and

𝛼𝑝𝑞 (𝑡, 𝑥) =

1
𝑝 if 𝑑𝑡𝑥 = 0
1 if 𝑑𝑡𝑥 = 1
1
𝑞 if 𝑑𝑡𝑥 = 2

where 𝑑𝑡𝑥 is the shortest distance between nodes 𝑡 and 𝑥 . The
parameter 𝑝 controls the likelihood of revisiting an older node in
the walk while parameter 𝑞 allows differentiating between “inward"
and “outward" nodes. The high value of 𝑞 provides a walk with

MLG ’20, Aug 23-27, 2020 , San Diego, California Paudel and Eberle

1 2

1 0

2 1

3 1

0 2

0 1

c1 c2151

154

123

343

151

513

123

243

151

154

123

343

513

243

S
-1 -1

+1 . -1

-1 . +1

+1 . -1

-1 +1

+1 -1

hd =[1 … d]

!"# $% = $%. ℎ)

+1 +1

. .

+1 -1

*+, *-.

Figure 2: Hashing using shingle-frequency vector.

a local view (equivalent to BFS behavior) while a low value of 𝑞
provides a walk away from the current node (equivalent to DFS
behavior). Thus, we can get structural information efficiently (in
both time and space) from a graph using a biased random walk [14].
Finally, we generate 𝑆𝑡 , a set of n-shingles from the random walk
path 𝑝𝐺𝑡

.

3.3 Hashing Discriminative Shingle
Sketching techniques have been used as key features for repre-
senting graphs [3, 11, 26]. A graph 𝐺𝑡 can be sketched using a
frequency of n-shingles present in the graph. Let us take an ex-
ample as shown in Figure 2 where 𝑆 is the global shingle universe
that holds all unique shingles in 𝐺1 and 𝐺2, and 𝑐1 and 𝑐2 are the
shingle-frequency vector of size |𝑆 | that holds the frequency of each
n-shingle present in a graph. The similarity of graph 𝐺1 and 𝐺2
could then be measured using similarity measures between 𝑐1 and
𝑐2. However, in a real-time streaming scenario, whenever a newer
graph 𝐺𝑡+1 arrives in the stream, if the new n-shingle appears in
𝐺𝑡+1, then the number of dimensions for a sketch will increase (as
the size of shingle universe |𝑆 | increases). The sketch vector will
increase to the exponential number of dimensions and is infeasible
to compute or store in the long run. Hence, we propose a simpli-
fied hashing technique that composes a fixed-size graph sketch by
hashing the top 𝑘 discriminative n-shingles (instead of all shingles
present in the graph).

The n-shingles obtained from a random walk path 𝑝𝐺𝑡
can rep-

resent structural information of the graph. By effectively selecting
the 𝑘 most frequent n-shingles called discriminative shingles 𝑆𝑘𝑡 ,
we can summarize or illuminate a major part of the graph. If 𝑘 is
low, only a part of the graph might be represented (only a few key
neighborhoods will be summarized), while if 𝑘 is sufficient enough
most of the graph can be represented. The similarity between two
sets of discriminative shingles can then be approximated using
hashing such that:
• Hashing converts set of 𝑘−discriminative shingles into a
small sketch (or signature) using a hashing function 𝑓 , i.e.,
𝑓 : 𝑆𝑘𝑡 −→ 𝑣𝐺𝑡

• Sketch 𝑣𝐺𝑡
is small enough to fit in the memory.

• If similarity(𝑆𝑘𝑡 , 𝑆
𝑘
𝑡 ′) is high then Probability 𝑃 (𝑣𝐺𝑡

== 𝑣𝐺𝑡′)
is high.
• If similarity(𝑆𝑘𝑡 , 𝑆

𝑘
𝑡 ′) is low then Probability 𝑃 (𝑣𝐺𝑡

== 𝑣𝐺𝑡′)
is low.

3.3.1 Simplified Hashing. For a graph 𝐺𝑡 at time 𝑡 , the top 𝑘 dis-
criminative shingles 𝑆𝑘𝑡 are first instantiated with a 𝑑−dimensional

0 1 1 0

1 0 0 0

Hd= [1 … d]
151
515
123
543

.		
vG3vG2

vG4vG1

123
515
145
543

!" = 5 3 3 2

!# = 6 4 2 1

$%

$& 1 0 1 0

0 1 0 0
Hd= [1 … d]

'() = +,×ℎ/ .			.			.
'(0= 2 5 5 0

'(1= 6 1 6 0

2"3

2#3

Figure 3: An illustration of the SNAPSKETCH framework. The
input is a collection of graphs (left). Using a fixed-length ran-
dom walk, 𝑘−discriminative shingle 𝑆𝑘𝑡 are generated. Sim-
plified hash is used to generate the 𝑑−dimensional sketch
vector 𝑣𝐺𝑡

by multiplying cost vector 𝑐𝑡 with projection vec-
tor ℎ𝑑 (mid). The similar graph are mapped closer using
sketch vector (right).

projection vector ℎ𝑑 = {1, 0} chosen uniformly at random with
probability 𝑟 such that:

∀𝑘 ∈ 𝑆𝑘𝑡 , ℎ [1,...,𝑑] =
{
1 randomly chosen with probability r
0 randomly chosen with probability 1-r

Using a shingle projection vector ℎ𝑑 , a graph 𝐺𝑡 is embedded into
a 𝑑−dimensional sketch vector 𝑣𝐺𝑡

such that:

𝑣𝐺𝑡
= 𝑐𝑡 × ℎ𝑑

where ℎ𝑑 is the 𝑘 × 𝑑 dimensional projection vector of 𝑆𝑘𝑡 and 𝑐𝑡 is
the cost vector that holds the cost of 𝑘−discriminative shingles 𝑆𝑘𝑡
in graph 𝐺𝑡 such that:

𝑐𝑡 = [𝑐𝑠1 , ..., 𝑐𝑠𝑘], 𝑐𝑠𝑖 = 𝑤𝑠𝑖 × 𝑟𝑠𝑖
where𝑤𝑠𝑖 is the sum of edge weights in the shingle 𝑆𝑖 and 𝑟𝑠𝑖 is the
frequency of 𝑆𝑖 in𝐺𝑡 . The shingle itself represents the neighborhood
information while the cost will provide the structural information
of the graph as we take the weight of the edges into consideration.
Hence, a graph𝐺𝑡 ∈ 𝑅 |𝑣 |

2
can be represented by a fixed-size sketch

vector 𝑣𝐺𝑡
∈ 𝑆𝑑 such that 𝑑 << |𝑣 |2. The visual illustration of the

sketching technique is shown in Fig. 3. The pseudo-code of the
proposed algorithm is given in Algorithm 1. The hash functions
randomly project each discriminative shingle into a 𝑑−dimensional
projection vector ℎ𝑑 (line-12). The sketch vector 𝑣𝐺𝑡

for a graph
𝐺𝑡 is obtained by multiplying the cost vector 𝑐𝑡 with projection
vector ℎ𝑑 (line 19). Each projection dimension can be considered as
a snapshot that highlights and represents a key neighborhood of
the graph (represented by shingles). Provided that we have enough
snapshots, almost the entirety of the graph could be brought to
light. The sketch vector 𝑣𝐺𝑡

obtained using the above methodology
can be used as an input to any standard machine learning algorithm
for anomaly detection.

3.4 Complexity Analysis
In each time step 𝑡 , two key steps are involved: generating a walk
path using node2vec walk, and generating a sketch vector using
shingles. First, for a node2vec walk, we perform a fixed-length
walk from each node. Therefore, for a graph 𝐺𝑡 with 𝑣 nodes, the
computation complexity would be 𝑂 (𝑣𝑙) where 𝑙 is the length of

SNAPSKETCH: Graph Representation Approach for Intrusion Detection in a Streaming Graph MLG ’20, Aug 23-27, 2020 , San Diego, California

Algorithm 1: SNAPSKETCHAlgorithm
Input: Graph Stream 𝐺𝑠 ={𝐺1,𝐺2, ...,𝐺𝑡 , ...}
Parameters :𝑑 , 𝑘 , 𝑙 , 𝑛
Output: 𝐴𝑛𝑜𝑚_𝑠𝑐𝑜𝑟𝑒

1 Function Main(𝐺𝑠 , 𝑑 , 𝑝 , 𝑘 , 𝑙 , 𝑛):
2 while not end of stream do
3 𝑝𝐺𝑡

← node2vecWalk(𝐺𝑡, 𝑙)

4 𝑆𝑡 ←
[
𝑝𝐺𝑡

[𝑖 : 𝑖 + 𝑛] for 𝑖 in range (len(𝑝𝐺𝑡)−(𝑛 − 1))
]

5 𝑆𝑘𝑡 ← 𝑆𝑡 .sort(reverse=True)[: 𝑘] //get

𝑘−discriminative shingles

6 ℎ𝑑 ←Hashing(𝑆𝑘𝑡 , 𝑑, 𝑟 = 0.2)
7 𝑣𝐺𝑡 ∪ Sketching(𝑆𝑘𝑡 , ℎ𝑑)

8 𝐴𝑛𝑜𝑚_𝑠𝑐𝑜𝑟𝑒 ← RRCF(𝑣𝐺𝑡)
9 end

10 Function Hashing(𝑆𝑘 , 𝑑 , 𝑟):
11 for 𝑆𝑖 = 𝑆𝑘 [1, ..., 𝑘] do
12 ℎ𝑑 ∪ random([0,1], d, p=[1-r, r])

13 end
14 return ℎ𝑑
15 Function Sketching(𝑆𝑘 , ℎ𝑑):
16 for 𝑆𝑖 = 𝑆𝑘 [1, ..., 𝑘] do
17 𝑐𝑡 ∪𝑤𝑠𝑖 × 𝑟𝑠𝑖
18 end
19 𝑣𝐺𝑡

= 𝑐𝑡 × ℎ𝑑
20 return 𝑣𝐺𝑡

the random walk. Second, to generate a sketch vector, 𝑘− discrimi-
native shingles are projected into a 𝑑−dimensional vector ℎ𝑑 that
takes 𝑂 (𝑘𝑑) time, and generating a sketch vector 𝑣𝐺𝑡

from the pro-
jection vector ℎ𝑑 and cost vector 𝑐𝑡 takes 𝑂 (𝑘2𝑑). Therefore, the
overall sketching time for a single graph with 𝑣 nodes is𝑂 (𝑣𝑙 +𝑘2𝑑).
Similarly, if there are 𝑛 graphs in a graph stream 𝐺𝑠 , it consumes
𝑂 (𝑛𝑑) space to store the sketch vector 𝑣𝐺𝑡

.

4 ANOMALY DETECTION
Let us consider 𝐺𝑡 = (𝑣, 𝑒, 𝑓) as a generic weighted graph at time 𝑡
such that ∀𝑒 , a function 𝑓 assigns a weight𝑤 to 𝑒 , i.e, 𝑓 :−→ 𝑒𝑥,𝑦 = 𝑤

where 𝑥 is the source node and 𝑦 is the destination node. The
neighborhood/region in the graph can be represented by the set
of n-shingles generated from a random walk path. The localized
regions/neighborhood of certain activities are called hotspots. The
graph 𝐺𝑡 is said to be anomalous if 𝐺𝑡 exhibits the following be-
havior:

(1) If there is a sudden (dis)appearance of edge(s) with high
weight. In other words,𝐺𝑡 is anomalous if ∃𝑒 ∈ (𝐺𝑡 ,𝐺𝑡−1)
∋ 𝑤𝑡 >> 𝑤𝑡−1 ∨𝑤𝑡−1 >> 𝑤𝑡 where𝑤𝑡 is the weight of 𝑒 in
𝐺𝑡 and𝑤𝑡−1 is the weight of 𝑒 in 𝐺𝑡−1.

(2) The sudden increase (or decrease) in incoming/outgoing
edges to/from a vertex. In other words, 𝐺𝑡 is anomalous if
∃𝑣 ∈ (𝐺𝑡 ,𝐺𝑡−1) ∋ 𝑁𝑡 (𝑣) >> 𝑁𝑡−1 (𝑣) ∨ 𝑁𝑡−1 (𝑣) >> 𝑁𝑡 (𝑣)
where 𝑁𝑡 (𝑣) is the number of neighbors of 𝑣 in 𝐺𝑡 and
𝑁𝑡−1 (𝑣) is the number of neighbors of 𝑣 in 𝐺𝑡−1.

To summarize, the graph 𝐺𝑡 is said to be anomalous if there is
a sudden change in the localized graph structures (or hotspots)

compared to the graphs {𝐺𝑡−1,𝐺𝑡−2, ...} from the past. The impor-
tant aspect of this definition is that the change in a hotspot should
be sudden rather than slowly evolving, because slowly evolving
communities are not a part of the anomalous hotspot. Detecting
such anomalies is useful in identifying cyber-attacks like a port
scan, denial of service attack, etc., in computer networks, unusual
road traffic patterns related to holidays, events, accidents, etc., or a
spammer in a social network that acts fast to increase their page
(or account) activities. Since our random walk traverses the entire
graph (a short walk from each node) and is biased toward the denser
edges, the discriminative shingle if chosen effectively can take a
snapshot of the significant portion of the hotspot in the graph.
Therefore, as our focus is on identifying anomalous hotspots in the
graph (like DoS attacks) we believe that the set of the most frequent
𝑘 shingles can effectively summarize the graph. To quantify the
effectiveness of a graph representation for an anomaly detection
task, the sketch vectors are tested using an unsupervised anomaly
detection algorithm.

4.1 Anomaly Detection Algorithm
The sketch vector obtained using SNAPSKETCH and comparison ap-
proaches is given as an input to an anomaly detection algorithm.
Anomaly detection is performed by using the state-of-the-art Ro-
bust Random Cut Forests (RRCF) [15]. RRCF algorithm is an unsu-
pervised ensemble method for detecting outliers in streaming data.
We initialize RRCF using 100 trees and 256 samples. RRCF initializes
the forest of 100 trees by using the sketch vector of the first 256
graphs. RRCF outputs the anomaly score of a graph as a collusive
displacement, which measures the change in model complexity
incurred by inserting or deleting a given graph. A score above the
90th percentile is marked as an anomaly. For a detailed description
of RRCF, the reader can refer to [15].

4.2 Baseline Approach
The comparison graph stream sketching technique methods used
in this work are StreamSpot [26] and SpotLight [11].

StreamSpot [26] StreamSpot introduces a similarity function
that compares two graphs based on the relative frequency of local
substructures represented as short strings. StreamSpot represents
each graph 𝐺 using a shingle-frequency vector 𝑧𝐺 . A k-shingle
𝑠 (𝑣, 𝑘) is constructed by traversing edges, in their temporal order,
in the 𝑘−hop neighborhood of node 𝑣 (also called Ordered 𝑘−hop
Breadth-First Traversal). It then uses locality-sensitive hashing
(LSH)-based similarly function to generate constant-space sketch
vector representation of a graph in a stream. The LSH-based similar-
ity function ensures that graph structures represented as a sketch
vector preserves graph similarity. For more details about this ap-
proach, refer to [26].

SpotLight [11] SpotLight is a randomized sketching-based ap-
proach that guarantees that an anomalous graph is mapped ‘far’
away from ‘normal’ instances in the sketch space with a high proba-
bility for an appropriate choice of parameters. SpotLight composes
a sketch containing total edge weights of 𝐾 specific directed query
subgraphs chosen independently and uniformly at random, ac-
cording to node sampling probabilities, 𝑝 for sources, and 𝑞 for

MLG ’20, Aug 23-27, 2020 , San Diego, California Paudel and Eberle

Table 1: Network traffic dataset for anomaly detection.

Dataset # of # of Edges Time
Graph Anomalies Unit

Smart Homes IoT 9,678 1,007 29,959,737 1 min
DARPA 1998 3,497 361 3,904,797 10 min

destinations. This leads to a (𝐾, 𝑝, 𝑞)−SpotLight graph sketching.
For more details about this approach, refer to [11].

4.3 Dataset
In this section, we evaluate the proposed methods using two pub-
licly available time-evolving graph datasets that contain known
anomalies. The datasets are related to network traffic and the anom-
alies are in the form of Denial of Service (DoS) attacks. A summary
of each of the data sets is shown in Table 1.

Smart Home IoT Traffic The smart home IoT traffic dataset
used in this study is collected from The University of New South
Wales Sydney (UNSW Sydney) smart home test-bed [17, 36]. A
real-life smart home environment was created with 28 different
IoT devices that include cameras, switches and triggers, hubs, air
quality sensors, electronics, healthcare devices, and light bulbs. For
our experimentation, one week of data spanning across October
1-7, 2018 is used. Each DoS attack in the dataset lasts for 10 minutes
and is launched with the maximum limit of 1, 10 or 100 packets per
second. Based on this ground truth, if an individual graph contains
at least 100 edges belonging to a DoS attack, the graph was labeled
anomalous. It should be noted that the anomaly detection algorithm
used is an unsupervised approach and the labeled dataset is only
used for performance evaluation. For more detail on the process of
data collection and data, the reader can refer to [36].

1998 DARPA Intrusion Detection Dataset [25] The DARPA
1998 datasets contain labeled data generated by simulating network
traffic for a medium-size U.S. Air Force base. The dataset contains
more than 300 instances of 38 different automated attacks in seven
weeks of training data and two weeks of test data. The dataset
contains denial of service (DoS) attacks designed to disrupt a host
or network service. Some DoS attacks (e.g., smurf) excessively load
a legitimate network service, others (e.g., teardrop, Ping of Death)
create malformed packets that are incorrectly handled by the victim
machine. For our experimentation, seven weeks of training data
are used which contains 3,904,797 network traffic communications
in the form of a TCP dump.

4.4 Data Preprocessing
A python-based script is created to parse the data. Network traf-
fic datasets contain network traffic communication which can be
mapped into a graph. A node in a graph represents network devices
like DNS, web server, workstation, internet, etc., while an edge
represents the unique communication between the devices. Each
individual graph represents the traffic flow corresponding to the
fixed time duration. One graph corresponds to 1 minute of traffic
in Smart Home traffic and 10 minutes of traffic in the DARPA 1998
dataset. The duration is decided by evaluating the density of the
traffic flow. If there are multiple communications between the same
set of source and destination devices, we sum them and assign it

as an edge weight. The edge weight will be used to calculate the
transition probability of the next node in the random walk path.
The higher the edge weight the higher the probability to go to
the next node in a random walk. Similarly, the edge weight will
be used to calculate the cost of the shingle in the graph. This is
particularly important in identifying the denser subgraph where
the attack device will be sending a high amount of traffic to the
victim machine and it can be reflected as an edge weight. Using the
aforementioned setting, a stream of 9,678 graphs for Smart Home
IoT Traffic and 3,497 graphs for DARPA 1998 are obtained.

4.5 Experimental Setup
To capture the feature from the anomalous hotspot region (like the
attack-victim device subgroup) of the graph, we interpolate our
random walk as a Breadth First Search (BFS) by setting 𝑞 higher
than 1. Interpolating the random walk as a BFS would provide the
local neighborhood information and the top 𝑘 shingles generated
from such a walk will constitute of a snapshot of the anomalous
(denser) hotspot. The sketch vector is given as input to a state-of-
the-art stream anomaly detection algorithm called Robust Random
Cut Forests (RRCF) [15]. By default, SpotLight uses 𝐾 = 50 sketch
dimensions and 𝑝 = 𝑞 = 0.2 source/destination sampling proba-
bilities. Similarly, StreamSpot uses the default chunk size = 24 for
generating graph sketches. For SNAPSKETCH , the length of random
walk 𝑙 is set to 50 and the size of shingle 𝑛 is set to 3. After empiri-
cal evaluation, we decided to use 𝑑 = 64, 𝑘 = 128 for the DARPA
dataset and 𝑑 = 32, 𝑘 = 256 for the Smart Home IoT dataset.

4.6 Results and Discussion
We now summarize the discoveries made by SNAPSKETCH and the
baseline approach.

4.6.1 Evaluation Metrics: The performance of the proposed ap-
proach and the baseline approaches is evaluated based on its effec-
tiveness in identifying the DoS attack traffic. The ground truth of
each dataset indicates that most of the DoS attacks are large (> 100
edges). Therefore, if a graph has a higher number of anomalous
edges then they are more anomalous. It is particularly important in
DoS attack scenarios where identifying the most anomalous graph
means being more effective in detecting severe DoS attacks. For
each graph in the stream, the number of anomalous edges is com-
puted. Sorting these in descending order, the top𝑚 most anomalous
graphs are identified. Each method is then evaluated on how well
they can identify the top𝑚 anomalous graphs. If there are a total 𝑁
anomalous graphs (graphs with DoS attack traffic), for every𝑚 we
compute 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑚 = 𝑇𝑃 (𝑚)/𝑚 and 𝑟𝑒𝑐𝑎𝑙𝑙@𝑚 = 𝑇𝑃 (𝑚)/𝑁 .

4.6.2 Results. Anomaly detection results on all three datasets are
shown in Table 2. Precision and recall are reported for the top
100, 200, and 300 anomalous graphs. There are a total of 1,007
ground truth anomalies in the Smart Home IoT dataset. Ground
truth values indicate the ideal score of precision and recall for each
𝑚. As shown in Table 2, our approach has better precision and
recall compared against the baseline approaches for each value of
𝑚 in the Smart Home IoT and DARPA datasets. Figure 4 plots the
ground truth (blue plot) and the anomaly score (red plot) of all
methods in the smart home IoT traffic from 𝑡 = 300 to 𝑡 = 1200.

SNAPSKETCH: Graph Representation Approach for Intrusion Detection in a Streaming Graph MLG ’20, Aug 23-27, 2020 , San Diego, California

Table 2: Performance comparison between SNAPSKETCH , Spot-
Light, and StreamSpot on top−𝑚 anomalous graphs.

Algorithm Precision (top−𝑚) Recall (top−𝑚)
100 200 300 100 200 300

Smart Home IOT Dataset
Ground Truth 1.0 1.0 1.0 .099 .198 .298
SNAPSKETCH .94 .86 .80 .093 .170 .239
SpotLight .77 .73 .63 .076 .145 .190
StreamSpot .69 .57 .54 .068 .114 .161

DARPA Dataset
Ground Truth 1.0 1.0 1.0 .277 .554 .831
SNAPSKETCH .83 .52 .34 .229 .288 .288
SpotLight .80 .51 .34 .221 .282 .282
StreamSpot .49 .29 .20 .135 .160 .163

0

50

100
SnapSketch

0

50

100
SpotLight

300 400 500 600 700 800 900 1000 1100 1200
Time

0

50

100

An
om

al
y

Sc
or

e

StreamSpot

Figure 4: Anomaly score reported on smart home IoT traffic.
Blue plot indicates the ground truth anomalies. Spike in red
plots indicates the reported anomaly score.

The higher the spike on the blue plot the more anomalous is the
graph. As shown, SNAPSKETCHwas able to identify most of the DoS
attack spikes with better precision (red plot). Spotlight has fewer
false alarms (on the left side of the plot) while the StreamSpot
approach is missing several instances of DoS attacks. Similarly,
SNAPSKETCH consistently performs better than both SpotLight and
StreamSpot for each value of 𝑚 in the DARPA dataset. Figure 5
plots the ground truth (blue plot) and the anomaly score (red plot)
reported by RRCF during the period 𝑡 = 1200 to 𝑡 = 2600 of the
DARPA graph stream. Our approach was able to identify most of
the attacks and had fewer false alarms. Like with the smart home
IoT traffic, SpotLight has several false alarms and the StreamSpot
approach misses several instances of attacks making SNAPSKETCH a
better approach in identifying intrusions in the DARPA dataset.

4.6.3 Discussion: Like SNAPSKETCH , StreamSpot also involves hash-
ing 𝑛−shingles. However, the shingles are generated from the walk
path of an ordered k-hop breadth-first traversal rather than a biased-
random walk. The performance of sketches given by StreamSpot
on anomaly detection is persistently low on both datasets because

0

50

100

150

200
SnapSketch

0

50

100

150

200
SpotLight

1200 1400 1600 1800 2000 2200 2400 2600
Time

0

50

100

150

200

An
om

al
y

Sc
or

e

StreamSpot

Figure 5: Anomaly score reported on DARPA dataset.

it was designed to detect anomalies in the form of host-level ad-
vanced persistent threats (APT) in security where system logs are
used to construct an information flow graph. The anomalies in such
scenarios are the deviation in system behavior rather than sudden
(or significant) changes in the graph topology (or hotspot regions).
Hence, it was unable to capture a DoS attack where the anom-
alies constitute a sudden change in the hotspot (burst of traffic in
attack-victim subgraph regions). SpotLight is specifically designed
to detect anomalies that constitute the sudden appearance or dis-
appearance of dense subgraphs (like found in a DoS attack), and
thus performs better than StreamSpot. SpotLight uses a 𝐾 query
subgraph for each graph by sampling source and destination nodes
with probability 𝑝 and 𝑞 and sketches the graph into a 𝐾 dimen-
sional sketch vector. Each sketch dimension is called a "spotlight",
where the anomalies would be brought to light by at least one of
these spotlights. However, SNAPSKETCH is able to outperform Spot-
Light. In SNAPSKETCH , the random walk to generate shingles (also
called the "snapshot" of the graph) is guided toward the denser
edges (i.e., edges with higher edge weight have higher transitional
probability) and are rendered like a breadth first search to capture
enough of the local neighborhood. Using this strategy, sketches of
SNAPSKETCH can capture the sudden changes in the hotspot region. In
summary, these results demonstrate the advantages of SNAPSKETCH in
identifying the DoS attack in network traffic.

5 CONCLUSION AND FUTUREWORK
In this work, we presented a graph representation technique called
SNAPSKETCH that can effectively represent graphs into a feature vector
over time with efficient memory use. It first uses a biased random
walk to generate shingles. The top discriminative shingles are then
hashed into a 𝑑−dimensional projection vector ℎ𝑑 . Using the cost
of the shingles and the projection vector, a graph is represented
as a low dimensional sketch vector that is memory efficient and
preserves the original properties of the graph. The learned sketches
are then used for anomaly detection. Comprehensive experimenta-
tion of anomaly detection problems on well-known network traffic
datasets demonstrates the meaningful and effective representations
learned by our method. SNAPSKETCHwas able to outperform both
baseline anomaly detection approaches while employed to detect
network anomalies on streaming graphs.

MLG ’20, Aug 23-27, 2020 , San Diego, California Paudel and Eberle

SNAPSKETCH performed better in identifying the severe type of
DoS attacks, while the performance degraded when the attack
strength is lessened (see Table 2). In the future, we would like to
investigate a way to improve the performance when the attack
strength is low. The biased random walk we used for traversing
the graph provides the neighborhood information to calculate local
and global neighborhoods, but the structure of the graph (number
of neighbors, degree, etc.) is omitted. We would like to investigate
an approach to integrate this structural information in our sketch
vector. The learned graph representation was used for anomaly
detection applications. In the future, we would like to test for other
applications like graph classification, community detection, etc.

REFERENCES
[1] Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B Aditya Prakash. 2017.

Condensing temporal networks using propagation. In Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 417–425.

[2] Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. 2017.
Distributed representations of subgraphs. In 2017 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 111–117.

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches:
sparsification, spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-
SIGACT-SIGAI symposium on Principles of Database Systems. ACM, 5–14.

[4] Rami Al-Rfou, Bryan Perozzi, and Dustin Zelle. 2019. Ddgk: Learning graph
representations for deep divergence graph kernels. In The World Wide Web
Conference. 37–48.

[5] Mikhail Belkin and Partha Niyogi. 2002. Laplacian eigenmaps and spectral
techniques for embedding and clustering. In Advances in neural information
processing systems. 585–591.

[6] Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on
graphs. In Fifth IEEE international conference on data mining (ICDM’05). IEEE,
8–pp.

[7] Andrei Z Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No. 97TB100171).
IEEE, 21–29.

[8] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM
international on conference on information and knowledge management. ACM,
891–900.

[9] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. Harp: Hierar-
chical representation learning for networks. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[10] Giovanni Da San Martino, Nicolo Navarin, and Alessandro Sperduti. 2012. A
memory efficient graph kernel. In The 2012 International Joint Conference on
Neural Networks (IJCNN). IEEE, 1–7.

[11] Dhivya Eswaran, Christos Faloutsos, Sudipto Guha, and Nina Mishra. 2018. Spot-
light: Detecting anomalies in streaming graphs. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM,
1378–1386.

[12] Thomas Gärtner, Peter Flach, and Stefan Wrobel. 2003. On graph kernels: Hard-
ness results and efficient alternatives. In Learning theory and kernel machines.
Springer, 129–143.

[13] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,
and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[14] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[15] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. 2016. Robust
random cut forest based anomaly detection on streams. In International conference
on machine learning. 2712–2721.

[16] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[17] Ayyoob Hamza, Hassan Habibi Gharakheili, Theophilus A Benson, and Vijay
Sivaraman. 2019. Detecting Volumetric Attacks on loT Devices via SDN-Based
Monitoring of MUD Activity. In Proceedings of the 2019 ACM Symposium on SDN
Research. ACM, 36–48.

[18] Zaïd Harchaoui and Francis Bach. 2007. Image classification with segmentation
graph kernels. In 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 1–8.

[19] Mohamed S Hassan, Bruno Ribeiro, and Walid G Aref. 2018. SBG-sketch: a self-
balanced sketch for labeled-graph stream summarization. In Proceedings of the
30th International Conference on Scientific and Statistical Database Management.

ACM, 3.
[20] Tamás Horváth, Thomas Gärtner, and StefanWrobel. 2004. Cyclic pattern kernels

for predictive graphmining. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 158–167.

[21] Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. 2003. Marginalized kernels
between labeled graphs. In Proceedings of the 20th international conference on
machine learning (ICML-03). 321–328.

[22] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[23] Risi Imre Kondor and John Lafferty. 2002. Diffusion kernels on graphs and other
discrete structures. In Proceedings of the 19th international conference on machine
learning, Vol. 2002. 315–322.

[24] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. 2019. A Survey on
Graph Kernels. arXiv preprint arXiv:1903.11835 (2019).

[25] Richard Lippmann, Robert K Cunningham, David J Fried, Isaac Graf, Kris R
Kendall, Seth E Webster, and Marc A Zissman. 1999. Results of the DARPA 1998
Offline Intrusion Detection Evaluation.. In Recent advances in intrusion detection,
Vol. 99. 829–835.

[26] Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. 2016. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 1035–1044.

[27] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed
representations of graphs. arXiv preprint arXiv:1707.05005 (2017).

[28] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014–2023.

[29] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. 2016. Asym-
metric transitivity preserving graph embedding. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM,
1105–1114.

[30] Ramesh Paudel, Timothy Muncy, and William Eberle. 2019. Detecting DoS
Attack in Smart Home IoT Devices Using a Graph-Based Approach. In 2019 IEEE
International Conference on Big Data (Big Data). IEEE, 5249–5258.

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[32] Jan Ramon and Thomas Gärtner. 2003. Expressivity versus efficiency of graph
kernels. In Proceedings of the first international workshop on mining graphs, trees
and sequences. 65–74.

[33] Nasrullah Sheikh, Zekarias Kefato, and Alberto Montresor. 2019. gat2vec: repre-
sentation learning for attributed graphs. Computing 101, 3 (2019), 187–209.

[34] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[35] Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten
Borgwardt. 2009. Efficient graphlet kernels for large graph comparison. In
Artificial Intelligence and Statistics. 488–495.

[36] Arunan Sivanathan, Hassan Habibi Gharakheili, Franco Loi, Adam Radford,
Chamith Wijenayake, Arun Vishwanath, and Vijay Sivaraman. 2018. Classifying
IoT Devices in Smart Environments Using Network Traffic Characteristics. IEEE
Transactions on Mobile Computing (2018).

[37] Alexander J Smola and Risi Kondor. 2003. Kernels and regularization on graphs.
In Learning theory and kernel machines. Springer, 144–158.

[38] Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph stream summarization:
From big bang to big crunch. In Proceedings of the 2016 International Conference
on Management of Data. ACM, 1481–1496.

[39] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M
Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11, Apr
(2010), 1201–1242.

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network em-
bedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 1225–1234.

[41] Pinar Yanardag and SVN Vishwanathan. 2015. Deep graph kernels. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 1365–1374.

[42] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei
Wang. 2018. Netwalk: A flexible deep embedding approach for anomaly detection
in dynamic networks. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. ACM, 2672–2681.

[43] Peixiang Zhao, Charu C Aggarwal, and Min Wang. 2011. gSketch: on query
estimation in graph streams. Proceedings of the VLDB Endowment 5, 3 (2011),
193–204.

[44] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. 2019. Addgraph: anomaly
detection in dynamic graph using attention-based temporal GCN. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence. AAAI Press,
4419–4425.

	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Preliminaries
	3.2 Shingling using Biased Random Walk
	3.3 Hashing Discriminative Shingle
	3.4 Complexity Analysis

	4 Anomaly Detection
	4.1 Anomaly Detection Algorithm
	4.2 Baseline Approach
	4.3 Dataset
	4.4 Data Preprocessing
	4.5 Experimental Setup
	4.6 Results and Discussion

	5 Conclusion and Future Work
	References

