
Is PageRank All You Need
for Scalable Graph Neural Networks?

Aleksandar Bojchevski
a.bojchevski@in.tum.de

Technical University of Munich

Johannes Klicpera
klicpera@in.tum.de

Technical University of Munich

Bryan Perozzi
bperozzi@acm.org

Google AI

Martin Blais
blais@google.com

Google AI

Amol Kapoor
ajkapoor@google.com

Google AI

Michal Lukasik
mlukasik@google.com

Google AI

Stephan Günnemann
guennemann@in.tum.de

Technical University of Munich

ABSTRACT
Graph neural networks (GNNs) have emerged as a powerful ap-
proach for solving many network mining tasks. However, efficiently
utilizing them on web-scale data remains a challenge despite related
advances in research. Most recently proposed scalable GNNs rely
on an expensive recursive message-passing procedure to propagate
information through the graph. We circumvent this limitation by
leveraging connections between GNNs and personalized PageRank
and we develop a model that incorporates multi-hop neighborhood
information in a single (non-recursive) step. Our work-in-progress
approach PPRGo is significantly faster than multi-hop models while
maintaining state-of-the-art prediction performance. We demon-
strate the strengths and scalability of our approach on graphs orders
of magnitude larger than typically considered in the literature.

ACM Reference Format:
Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Martin Blais,
Amol Kapoor, Michal Lukasik, and Stephan Günnemann. 2019. Is PageRank
All You Need for Scalable Graph Neural Networks?. In 15th International
Workshop on Mining and Learning with Graphs, August 05, 2019, Anchorage,
AK. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
Graphs are a natural way of representing a wide variety of real-life
data from sociology, biology, finance, and many other domains.
Recently, traditional graph mining techniques [9, 19] have given
way to approaches based on (deep) graph neural networks (GNNs)
[4, 6, 56, 61, 62] since these show superior performance on a wide
variety of network mining tasks including: semi-supervised node
classification [23, 28, 49], link prediction [5, 29, 60], community

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MLG ’19, August 05, 2019, Anchorage, AK
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

detection [12, 27, 45], graph classification/regression [20, 40, 57],
and graph-based recommendation [38, 59].

Following the success of GNNs on academic datasets, there has
been increasing interest in scaling up these methods to large graphs
[10, 11, 18, 23, 25, 43, 59]. While some advances towards scalable
GNNs have been made there are still many open questions. In par-
ticular, the scalability of most methods has been demonstrated on
graphs smaller than 250K nodes, while in practice we are interested
in graphs with (tens of) billions of nodes and edges. Ying et al. [59]
is the only work that demonstrates scalability on web-scale graphs
of such orders of magnitude. Their focus, however, is on using
GNNs for recommendation, while our focus is on scalable node
classification. To capture multi-hop neighborhood information their
model utilizes an expensive message-passing procedure which is
inherently less scalable compared to our approach. Moreover, their
model was run on a single machine, while our approach leverages
distributed training for further scalablity.

In this paper, we leverage connections between GNNs and per-
sonalized PageRank [1, 26] to develop a model that incorporates
important neighborhood information without explicit message-
passing. Xu et al. [58] and Li et al. [33] study some of these connec-
tions and show that the influence of a node i on all other nodes for
a k-layer GNN is proportional in expectation to a (modified) k-step
random walk distribution of random walks starting at node i . As
the number of layers k increases we lose focus of the local neigh-
borhood of a given node and in the limit of an infinitely deep GNN
we converge to the stationary distribution of the respective Markov
chain making the final representations identical for all nodes. Thus,
stacking many graph convolution layers leads to over-smoothing,
which makes the representations indistinguishable and prevents
learning. Note that in practice we observe the over-smoothing ef-
fect after only a few layers [30] as evidenced by the sharp decline in
performance with additional layers on common benchmark graphs.

The PPNP model proposed by Klicpera et al. [30] alleviates this
issue by utilizing a propagation scheme based on personalized
PageRank. Their approach is able to achieve state-of-the-art classi-
fication performance by balancing the preservation of information
from the local neighborhood and from the extended (multi-hop)
neighborhood of a given node. However, since they explicitly per-
form a variant of power iteration during both training and inference

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

MLG ’19, August 05, 2019, Anchorage, AK Bojchevski et al.

this approach does not easily scale to large graphs. The method we
propose here adapts the propagation scheme of PPNP and scales to
graphs with billions of nodes. Specifically, we utilize the (strong)
localization properties [21, 39] of personalized PageRank vectors
for real-world graphs which can be readily approximated with
sparse vectors and efficiently pre-computed in a distributed manner
[3]. Using these sparse pre-computed approximations we avoid ex-
plicitly performing the expensive power iteration procedure, while
maintaining the influence of the relevant nodesmultiple hops away.

2 RELATEDWORK
2.1 (Scalable) Graph Neural Networks
Graph neural networks (GNNs) were first proposed in Gori et al.
[22] and Scarselli et al. [44] and have since emerged as a powerful
approach for solving many network mining tasks [7, 13, 14, 20,
23, 28, 32, 34, 44, 49]. Many of the proposed methods approach
the problem by defining a notion of a graph convolution and can
be roughly categorized into spectral- and spatial-based methods.
Spectral-based graph convolutional networks (GCNs) [7, 14, 28,
32] utilize variants of the graph Laplacian matrix, which captures
important properties of the graph and has been extensively studied
in the fields of spectral graph theory [7] and graph signal processing
[46]. On the other hand, spatial-based methods [13, 18, 20, 23, 37,
40, 44, 49] define the learnable filters in the domain of the nodes,
where the convolution takes the form of an aggregation (often
averaging) of the representations of a given central node and the
representations of its neighbors.

Most graph neural networks do not scale well to large graphs
since they typically need to perform a recursive neighborhood ex-
pansion to compute the hidden representations of a given node.
While several approaches have been proposed to improve the effi-
ciency of graph neural networks [10, 11, 18, 23, 25, 43, 55, 59], the
scalability of GNNs to massive (web-scale) graphs is still under-
studied. Ying et al. [59] is the only work that demonstrates an
approach that is applicable in practice, providing results on a graph
with 3 billion nodes and 18 billion edges. The largest graphs con-
sidered by most of the scalable approaches are several orders of
magnitude smaller (under 250K nodes).

Some scalability is achieved in Hamilton et al. [23] by sampling
a fixed number of nodes from the k-hop neighborhood of a given
node. Ying et al. [59] alleviate some limitations of this approach
(e.g. needing to store the entire graph) by creating a sub-graph that
contains only the given central nodes and their neighbors sampled
according to an importance score. This score can be seen as an
approximation of the standard (non-personalized) PageRank score,
however the number of random walks required to achieve a good
approximation is relatively high [16] making it a suboptimal choice
in practice. Similarly, other scalable approaches [18, 43, 59] utilize
a sampled sub-graph to tackle issues of limited (GPU) memory.

Gao et al. [18] collect the representations from a node’s neigh-
borhood into a matrix, sort independently along each column (each
feature), and use the k largest entries as input to a 1-dimensional
CNN. Chen et al. [10] directly sample the receptive field for each
layer using importance sampling. They assume that the nodes of
the input graph are i.i.d. samples of a possibly infinite graph under
a given probability distribution. Chen et al. [11] use the historical

activations of the nodes as a control variate and limit the recep-
tive field to the 1-hop neighborhood. Huang et al. [25] propose
an adaptive sampling strategy with a trainable sampler per layer.
Sato et al. [43] propose a constant time approximation algorithm
(independent of the number of nodes, edges, and neighbors) for
inference and gradient computation of a GNN and give theoretical
guarantees in terms of the approximation error. Nonetheless, all of
these approaches rely on a multi-hop message-passing procedure
which limits their scalability.

Buchnik and Cohen [8] propose (normalized Laplacian) feature
propagation which can be viewed as a simplified linearized GNN.
They perform graph-based smoothing as a preprocessing step (be-
fore learning) to obtain diffused node features which are then used
to learn a simple logistic regression classifier to predict the node
labels. Wu et al. [55] propose an equivalent simple graph convo-
lution (SGC) model and show that it scales to large graphs while
achieving performance comparable to less scalable state-of-the-art
GNNs. Specifically, the node features are diffused by multiplication
with the k-th power of the normalized adjacency matrix. However,
often the node features are high dimensional making the prepro-
cessing step computationally expensive. More importantly, while
the node features are typically sparse the obtained diffused features
become denser, which significantly reduces the efficiency of the
subsequent learning step. Both of these approaches are a special
case of the PPNP model [30] which experimentally shows higher
classification performance [15, 30].

2.2 (Approximate) Personalized PageRank
PageRank and its many variants [1, 26, 52] have been extensively
studied in the literature. In the context of this workwe are interested
in efficient and scalable algorithms for computing (an approxima-
tion) of personalized PageRank, and given the broad applicability
of PageRank many such algorithms have been developed. Ran-
dom walk sampling [16] is a common technique for approximating
(personalized) PageRank. While this method is simple to imple-
ment, unfortunately in order to guarantee at most ϵ absolute error
with probability of 1 − 1/n the number of random walks required
is O(lognϵ 2). Forward search [3] and backward search [2] can be
viewed as deterministic variants of the random walk sampling
method where given a starting configuration the PageRank scores
are updated by traversing the out-links (respectively, in-links) of
the nodes. The approach based on Gauss-Southwell used in Gleich
et al. [21] can also be considered as a variant of forward search.

More recent approaches [35, 50, 51] combine these basic tech-
niques to create algorithms with enhanced guarantees. For exam-
ple Wei et al. [54] propose the TopPPR algorithm combining the
strengths of random walks, forward search, and backward search
simultaneously. They are able to compute the top k entries of a
personalized PageRank vector up to a user specified precision using
a filter-refinement paradigm. Another family of approaches [17] are
based on the idea of maintaining upper and lower bounds on the
PageRank scores which are then used for early termination with cer-
tain guarantees. For this work we adapt the approach by Andersen
et al. [3] since it offers a good balance of scalability, approximation
guarantees and ease of (distributed) implementation.

Is PageRank All You Need for Scalable Graph Neural Networks? MLG ’19, August 05, 2019, Anchorage, AK

3 MODEL
3.1 GNNs and Message-Passing
Many proposed GNN models can be analyzed using the message-
passing framework proposed by Gilmer et al. [20] or other similar
frameworks [4, 56]. Typically, the computation is carried out in two
phases: (i) messages are propagated along the neighbors; and (ii)
the messages are aggregated to obtain the updated representations.
At each layer transformation of the input (e.g. linear projection plus
a non-linearity) is coupled with aggregation/propagation among
the neighbors (e.g. averaging). Crucially, computing the hidden
representation for a given node requires considering its neighbors,
and the neighbors in turn have to consider their own neighbors and
so on. This process leads to a recursive neighborhood expansion
growing with each additional layer.

Yet increasing the number of layers is desirable since: (i) it allows
the model to incorporate information from more distant neighbors;
and (ii) enables hierarchical feature extraction and thus learning
richer node representations. However, this has both computational
and modelling consequences. First, the recursive neighborhood
expansion at each layer coupled with the small diameter [53] of real-
world graphs means that to produce the output at the final layer for
a single node we have to propagate messages on almost the entire
graph. For large graphs necessarily stored (shared) on multiple
machines gathering the required neighboring information requires
many expensive remote procedure calls (RPCs). Second, it has been
shown [33, 58] that naively stacking multiple layers may lead to
over-smoothing, which results in poor predictive performance.

To tackle both of these challenges Klicpera et al. [30] suggest to
decouple the feature transformation from the propagation. Predic-
tions are first generated (e.g. with a neural network) for each node
utilizing only that node’s own features, and then propagated using
an adaptation of personalized PageRank. Specifically, the output of
their PPNP model is defined as:

Z = softmax
(
ΠsymH

)
, Hi ,: = fθ (xi) (1)

where Πsym = α(In − (1 − α)Ã)−1 is a symmetric propagation
matrix, Ã = D−1/2AD−1/2 is the normalized adjacency matrix with
added self-loops, α is a teleport (restart) probability, H collects the
individual per-node predictions for all nodes, and Z collects the
final predictions after propagation. The local per-node predictions
Hi ,: are generated by a neural fθ that processes the features xi of
every node i independently. The responsibility for learning good
representations is delegated to fθ , while Πsym ensures that the
representations are smoothly changing w.r.t. the graph.

Because directly calculating the dense propagation matrix Πsym

in Eq. 1 is inefficient, the authors propose to use a variant of power it-
eration to compute the final predictions instead. Unfortunately, even
a moderate number of power iteration evaluations (e.g. Klicpera
et al. [30] used K = 10 to achieve a good approximation) is prohibi-
tively expensive for large graphs. Moreover, despite the fact that Ã
is sparse, graphs beyond a certain size cannot be stored in memory.

3.2 Personalized PageRank and Localization
In contrast to PPNP our model uses the personalized PageRank
matrixΠppr = α(In−(1−α)D−1A)−1 to propagate information since
it is more amenable to efficient approximation [2, 3, 16, 17, 21, 35,

1

2

4

5

3
6

97

8

𝜋𝜖 2 :
𝜋𝜖 7 :

top k 𝑓𝜃

𝑥𝑖:

𝐻𝑖:

𝑧7: = ∗ ∗∗ ++

Distributed Computation:

PageRank Pipeline Training

Figure 1: An illustration of ourmodel PPRGo. For each node
i first we pre-compute an approximation of its personalized
PageRank vector π (ϵ)(i). The approximation is computed ef-
ficiently and in parallel using a distributed batch data pro-
cessing pipeline. The final prediction zi is then generated as
a weighed average of the local (per-node) predictions Hj ,: =
fθ (x j) for the top k nodes with largest personalized PageR-
ank score π (i)j . To train the model fθ (·) that maps node at-
tributes xi to local predictionsHi we only need the personal-
ized PageRank vectors of the training nodes and attributes
of the their respective top k nodes. The model is trained in a
distributed manner on multiple batches of data in parallel.

50, 51, 54]. Here each row π (i) := Π
ppr
i ,: is equal to the personalized

(seeded) PageRank vector of node i . When the network is strongly
connected, π (i) is non-zero for all nodes. Nevertheless, we can
obtain a good approximation of π (i) by truncating small elements
to zero because of its (strong) localization behavior [3, 21, 39].

Gleich et al. [21] obtain a sparse approximation with accuracy
guarantees using theGauss-Southwell coordinate relaxationmethod.
Andersen et al. [3] show that π (i) can be weakly approximated with
a low number of non-zero entries using a scalable algorithm that
applies a series of push operations which can be executed in a dis-
tributed manner. Intuitively, the above results indicate that most
of the probability mass in the personalized PageRank vectors π (i)
is localized on a small number of nodes, and that we can approxi-
mate π (i) with a sparse vector, which in turn means that we can
approximate Πppr with a sparse matrix.

MLG ’19, August 05, 2019, Anchorage, AK Bojchevski et al.

3.3 The PPRGo Model
The definition of our model is motivated by: (i) the insights from
Sec. 3.1, namely that we can decouple the feature transformation
from the information propagation, and (ii) the insights from Sec.
3.2, namely that we can approximate Πppr with a sparse matrix.
Analogous to Eq. 1 we define the final predictions of the model (see
overview of the model in Fig. 1).:

Z = softmax
(
Π(ϵ)H

)
, Hi ,: = fθ (xi) (2)

where Π(ϵ) is a sparse approximation of Πppr, which we obtain by
adapting the push-flow algorithm described in Andersen et al. [3].
To enable further scalability we truncate Π(ϵ) to contain only the
top k largest entries for each row. That is, for each node i we only
consider the set of nodes with top k largest scores according to π (i).
Focusing on the predictions for a given node i we have:

zi = softmax
(∑
j ∈Nk (i)

π (ϵ)(i)jHj

)
(3)

where Nk (i) enumerates the indices of the top k largest non-zero
entries in π (ϵ)(i). Eq. 3 highlights that we only have to consider a
small number of other nodes to compute the final prediction for
a given node. Furthermore, this definition allows us to explicitly
trade-off scalability and performance by increasing/decreasing the
number of neighbors k we take into account. We can achieve a
similar trade-off by increasing/decreasing the threshold ϵ .

In contrast to the PPNP model, a big advantage of PPRGo is that
we can pre-compute the sparse matrix Π(ϵ) once before we start
training. During training and inference we can then compute the
predictions in O(k) time, where k ≪ N , and N is number of nodes.
Better still, since for training we only require the rows of Π(ϵ)

corresponding to the training nodes we can delay the computation
of remaining rows, and furthermore, we only need to compute the
predictions fθ (xi) of the training nodes’ top-k neighbors. More
importantly, our model lends itself nicely to batched computation.
E.g. for a batch of nodes of size b we have to load in memory the
features of at most b · k nodes. In practice, this number could also
be smaller than b · k since the nodes that appear in Nk (i) overlap
for the different nodes in the batch.

To compute the approximations of the personalized PageRank
vectors π (ϵ) we adapt the method proposed by Andersen et al.
[3]. Instead of carrying out push-flow iterations until convergence,
we perform a fixed number of iterations, and drop nodes whose
residual score is below a specified threshold ϵ in each iteration.
Additionally, we truncate nodes with a very large degree (≥ 10000)
by randomly sampling their neighbors. The above modifications
proved to be just as effective as Andersen et al. [3]’s method while
being significantly faster in terms of runtime.

3.4 Effective Neighborhood, α and k
From the definition of the personalized PageRank matrix Πppr =
α(In − (1 − α)D−1A)−1 we can observe that the hyper-parameter
α controls the amount of information we are incorporating from
the neighborhood of a node. Namely, for values of α close to 1 the
random walks return (teleport) to the node i more often and we are
therefore placing more importance on the immediate neighborhood

of the node. As the value of α decreases to 0 we instead give more
and more importance to the extended (multi-hop) neighborhood of
the node. Intuitively, the importance of the k-hop neighborhood is
proportional to (1 − α)k . Note that the importance that each node
assigns to itself (i.e. the value of π (i)i) is typically higher than the
importance it assigns to the rest of the nodes.

In contrast to the message-passing framework, where in order
to incorporate information from the extended neighborhood we
have to add additional layers – thereby significantly increasing the
computational complexity – in our model we can simply modify
the teleport probability α . In conjunction with α , we can modify
the number of k largest entries we consider to increase or decrease
the size of the effective neighborhood. Alternatively, instead of con-
sidering the top k nodes for a fixed value of k we could adaptively
choose k for every node i such that a given fraction of the probabil-
ity mass from π (i) (e.g. 90%) is accounted for. However, this would
prevent us from batching the computation for several nodes using
efficient matrix multiplication routines. Therefore, we use a fixed
value of k since it has computational benefits while maintaining
similar predictive performance to adaptive k .

3.5 Distributed Training
In contrast to most previously proposed methods [23, 55, 59] we
utilize distributed computing techniques which significantly re-
duces the overall runtime of our method. Our model is trained
in two stages: First, we pre-compute the approximated personal-
ized PageRank vectors, and second, we train the model parameters
with stochastic gradient descent. Both stages are implemented in
a distributed fashion. For the first stage we use an efficient batch
data processing pipeline [31] similar to MapReduce. Since we can
compute the PageRank vectors for every node in parallel our im-
plementation effortlessly scales to graphs with billions of nodes.
Moreover, we can a priori determine the number of iterations we
need for achieving a desired approximation accuracy [3, 21] which
in term means we can reliably estimate the runtime beforehand.

We implement PPRGo in Tensorflow and optimize the parame-
ters with distributed stochastic gradient descent. Specifically, the
model parameters are stored on a parameter server (or several pa-
rameter servers depending on the model size) and multiple workers
process the data in parallel. We use asynchronous training to avoid
the communication overhead between many workers. Each worker
fetches the most up-to-date parameters and computes the gradients
for a mini-batch of data independently of the other workers.

3.6 Homophily and Model Limitations
Recall that we compute the representation of a given node as a
weighted average of the representations of the nodes in its neighbor-
hood where the weights are non-negative and (mostly) decreasing
as we move away from the central node. This implies that the (final)
learned representations for a node and its neighbors will be similar.
This property of our model can be helpful or detrimental depend-
ing on whether the network exhibits homophily. The homophily
principle [36] – birds of a feather flock together – in the context of
node classification on graphs can be understood as the tendency
of nodes that belong to the same class to form edges. That is, the
higher the homophily in the network, the higher the ratio of edges

Is PageRank All You Need for Scalable Graph Neural Networks? MLG ’19, August 05, 2019, Anchorage, AK

between nodes of the same class. Therefore, in networks with high
homophily the learned representations will be tend to be similar
for nodes that belong to the same class making the classification
problem easier.

Alternatively, in networkswith heterophily nodes between differ-
ent classes tend to form edges. In this case, increasing the similarity
between the representations of a node and its neighbors makes the
classification problem more difficult. Fortunately, in most graphs
the edges are indeed formed based on the principle of homophily.
The homophily assumption is a limitation of our model. However,
pragmatically one could simply check whether this assumption
holds by estimating the rate of homophily using the labeled nodes.

4 EXPERIMENTS
Since this is a work-in-progress paper we present some initial ex-
periments that provide a proof-of-concept, validate the proposed
approach, and prompt us to further study PPRGo in the future.

4.1 Datasets
Most previously proposed approaches that focus on scalability and
tackle the semi-supervised node classification task are evaluated on
a small set of publicly available benchmark datasets [10, 11, 18, 23,
25, 43, 55]. The size of these common datasets in terms of number
of nodes and edges in the graph is relatively small, with the Reddit
graph (233K nodes, 11.6M edges) [23] being the largest.

In addition to the common benchmark datasets Wu et al. [55]
also evaluate their approach on two other larger graphs, namely the
Twitter user geolocation datasets: Twitter-US (0.45M nodes, 37.45M
edges, 0.26M node features) [42], and Twitter-World (1.39M nodes,
3.39M edges, 0.12M node features) [24, 41]. The task is to infer
the location of Twitter users based on the content of their Tweets
and the information from their neighbors in a semi-supervised
fashion given the ground-truth locations for some of the users.
The graphs were extracted by Rahimi et al. [41] such that two
users are connected if one mentions the other, or they co-mention
another user. The node features for each user are a bag-of-word
representation of the text in their tweets. Investigating the Twitter-
World dataset we notice that around 70% of the nodes in the graph
have only a self-loop and no other edges towards any other nodes.
This means that this dataset does not have any meaningful graph
structure and its usefulness for evaluating the performance of GNNs
is limited. Therefore, we evaluate our approach only on Twitter-US.

To facilitate the development of scalable graph neural networks
methods we create two new datasets. The first dataset is a citation
graph based on the Open Academic Graph (OAG) where the nodes
are papers and the edges denote references between them. The
node features correspond to a bag-of-words representation of their
abstracts. The OAG is generated by linking two large academic
graphs: Microsoft Academic Graph (MAG) [47] and AMiner [48].
Similarly, we create the second dataset which is a co-authorship
graph.We augmented both of these graph with "ground-truth" node
labels corresponding to the field of study of the papers/authors
respectively. We extract the node labels semi-automatically by first
mapping the publishing venues (conferences and journals) to a field
of study. The resulting graphs are few orders of magnitude larger
then the commonly used benchmark graphs. We will release these

2 4 8 16 32 64 128
number of neighbors k

0.3

0.4

ac
cu

ra
cy

@
16

1

Figure 2: The average change in accuracy@161 on the
Twitter-US dataset as we increase the number of neighbors
(topk largest entries inπ (ϵ)) we use to compute Eq.3. The dot-
ted line shows the performance of the previous SOTA [41].

datasets, including detailed description of the graph construction
and node labelling process, as well as performance evaluations of
PPRGo and other baselines in an updated version of the paper.

4.2 Scalability vs. Performance Trade-off
The number of top-k nodes we are considering when aggregating
the individual predictions for each node is an important hyper-
parameter (see Eq.3). To examine its effect on the performance of
PPRGo we train our model on the Twitter-US graph for different
values of k . We set the value of the teleport parameter α = 0.25,
and the approximation threshold ϵ = 10−5. We randomly sample
1% of the total number of nodes for training and additional 1%
of nodes for validation (in contrast to e.g. Wu et al. [55] which
use 95.5% of nodes for training and 2.2% for validation) since the
sparsely labelled scenario is more relevant in practice. We repeat
the experiment three times and report the average performance. As
in previous works [41, 55] we evaluate the accuracy@161 which
shows the accuracy of predicting the location of a user within
161km (or 100 miles) from the ground-truth location.

As we can see on Figure 2 the performance increases with k
but starts to plateau at around top-k = 64 neighbors and reaches
the previous state-of-the-art performance [41] indicated with the
dashed line. The reason for this behavior becomes more clear by
examining Figure 3. For each node i we calculate the sum of the
top-k largest scores in π (ϵ)(i) and we plot the average and the
standard deviation across all nodes. We see that by looking at very
few nodes – e.g. 64 out of 0.45 million – we are able to capture the
majority of the personalized PageRank scores on average (recall
that

∑
j π

(ϵ)(i)j ≤ 1). Interestingly, the curves in both Figure 2 and
Figure 3 plateau around the same value of k . These figures validate
our approach of approximating the dense personalized PageRank
vectors with their respective sparse top-k versions.

4.3 One-hop vs. Multi-hop
We aim to compare the performance of one-hop propagation us-
ing personalized PageRank and the traditional multi-hop message
passing propagation. To make sure that we observe differences that
are mostly due to the type of propagation and not other factors
we implement a simple 2-hop GNN [28] which is also trained in a
distributed manner using the same framework as PPRGo.

MLG ’19, August 05, 2019, Anchorage, AK Bojchevski et al.

1 2 4 8 16 32 64 128256512
number of neighbors k

0.2

0.4

0.6

0.8
su

m
 o

f t
op

-k
 sc

or
es

Figure 3: For each node i we calculate the sum of the top-
k largest scores in π (ϵ)(i) and we plot the average and the
standard deviation across all nodes.

Table 1 shows that our method PPRGo which performs propaga-
tion only once at the end using personalized PageRank can achieve
the same performance as expensive multi-hop message passing
methods. Specifically, we show the relative accuracy – i.e. the ac-
curacy of the best performing method is set to 100% and the rest
of the results are calculated relative to it. We show relative speed
improvement since the wall clock time depends on the number
of worker machines used for distributed training. Here we make
sure that both the 2-hop model and PPRGo are looking at the same
number of neighbors, i.e. if PPRGo uses top-k = 64 then the 2-hop
model uses information from 8× 8 = 64 nodes from its first and sec-
ond hop respectively. PPRGo is several orders of magnitude faster
than the 2-hop model while maintaining competitive performance.

Table 1: Relative performance in terms of runtime and ac-
curacy for a PPRGo and an equivalent 2-hop model using
distributed training.

Relative accuracy Speed improvement
2-hop model 100% –
PPRGo 97% 103

To further highlight the benefit of PPRGo we compare the run-
time and performance of several methods using a single machine.
Specifically, we run experiments on Nvidia 1080Ti GPUs using
CUDA and TensorFlow and on Intel CPUs (20 cores). For SGC [55]
we use the second power of the graph Laplacian (i.e. we have a
2-hop model). For GCN+H [41] we copy the result from the original
paper. We compute the overall runtime including the time needed
to pre-compute the propagation matrices for both PPRGo and SGC.
As we can see in Table 2, PPRGo is able to significantly reduce the
overall runtime while maintaining competitive accuracy.

Table 2: Relative performance in terms of runtime and accu-
racy on a single machine.

accuracy@161 Runtime
GCN+H [41] 41.0 –
SGC [55] 14.3 2h 03m
PPRGo 41.5 0h 47m

5 CONCLUSION
In this work-in-progress paper we propose a graph neural network
for semi-supervised node classification that can scale effortlessly
to graphs with billions of nodes. In comparison to previous ap-
proaches our model does not rely on an expensive message-passing
procedure. Our formulation allows to explicitly trade-off scalability
and performance via a few intuitive hyper-parameters. Beyond the
initial experiments which validate the proposed approach we aim to
perform a thorough empirical evaluation in future work, including
evaluation on the two proposed large scale benchmark datasets.

REFERENCES
[1] 1998. The PageRank Citation Ranking: Bringing Order to the Web.
[2] Reid Andersen, Christian Borgs, Jennifer T. Chayes, John E. Hopcroft, Vahab S.

Mirrokni, and Shang-Hua Teng. 2008. Local Computation of PageRank Contribu-
tions. Internet Mathematics 5 (2008), 23–45.

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using
pagerank vectors. In null. IEEE, 475–486.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[5] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-
ding of Graphs: Unsupervised Inductive Learning via Ranking. (2018).

[6] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-
dergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE
Signal Processing Magazine 34, 4 (2017), 18–42.

[7] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. [n.d.]. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203 ([n. d.]).

[8] Eliav Buchnik and Edith Cohen. 2018. Bootstrapped graph diffusions: Exposing
the power of nonlinearity. In Abstracts of the 2018 ACM International Conference
on Measurement and Modeling of Computer Systems. ACM, 8–10.

[9] Deepayan Chakrabarti and Christos Faloutsos. 2006. Graph mining: Laws, gener-
ators, and algorithms. ACM computing surveys (CSUR) 38, 1 (2006), 2.

[10] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: fast learning with graph
convolutional networks via importance sampling. arXiv preprint arXiv:1801.10247
(2018).

[11] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction.. In ICML. 941–949.

[12] Zhengdao Chen, Lisha Li, and Joan Bruna. 2018. Supervised Community Detec-
tion with Line Graph Neural Networks. (2018).

[13] Hanjun Dai, Zornitsa Kozareva, Bo Dai, Alex Smola, and Le Song. 2018. Learning
Steady-States of Iterative Algorithms over Graphs. In International Conference on
Machine Learning. 1114–1122.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in Neural Information Processing Systems. 3844–3852.

[15] Matthias Fey and Jan Eric Lenssen. 2019. Fast Graph Representation Learning
with PyTorch Geometric. CoRR abs/1903.02428 (2019). arXiv:1903.02428 http:
//arxiv.org/abs/1903.02428

[16] Dániel Fogaras and Balázs Rácz. 2004. Towards Scaling Fully Personalized PageR-
ank. In WAW.

[17] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and
Makoto Onizuka. 2013. Fast and Exact Top-k Algorithm for PageRank. In AAAI.

[18] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable
graph convolutional networks. In Proceedings of the 24th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. ACM, 1416–1424.

[19] Lise Getoor and Christopher P Diehl. 2005. Link mining: a survey. Acm Sigkdd
Explorations Newsletter 7, 2 (2005), 3–12.

[20] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

[21] David F Gleich, Kyle Kloster, and Huda Nassar. 2015. Localization in Seeded
PageRank. arXiv preprint arXiv:1509.00016 (2015).

[22] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for
learning in graph domains. In Neural Networks, 2005. IJCNN’05. Proceedings. 2005
IEEE International Joint Conference on, Vol. 2. IEEE, 729–734.

[23] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[24] Bo Han, Paul Cook, and Timothy Baldwin. 2012. Geolocation prediction in social
media data by finding location indicative words. Proceedings of COLING 2012

http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1903.02428

Is PageRank All You Need for Scalable Graph Neural Networks? MLG ’19, August 05, 2019, Anchorage, AK

(2012), 1045–1062.
[25] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive

Sampling Towards Fast Graph Representation Learning. In Advances in Neural
Information Processing Systems. 4563–4572.

[26] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.
[27] Tatsuro Kawamoto, Masashi Tsubaki, and Tomoyuki Obuchi. 2018. Mean-field

theory of graph neural networks in graph partitioning. In NeurIPS.
[28] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).
[29] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv

preprint arXiv:1611.07308 (2016).
[30] Johannes Klicpera, Aleksandar Bojchevski, and Stephan GÃijnnemann. 2019.

Predict then Propagate: Graph Neural Networks meet Personalized PageRank. In
International Conference on Learning Representations. https://openreview.net/
forum?id=H1gL-2A9Ym

[31] SPT Krishnan and Jose L Ugia Gonzalez. 2015. Google cloud dataflow. In Building
Your Next Big Thing with Google Cloud Platform. Springer, 255–275.

[32] Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. 2017.
Cayleynets: Graph convolutional neural networks with complex rational spectral
filters. arXiv preprint arXiv:1705.07664 (2017).

[33] Qimai Li, Zhichao Han, and Xiao-Ming Wu. 2018. Deeper Insights into
Graph Convolutional Networks for Semi-Supervised Learning. arXiv preprint
arXiv:1801.07606 (2018).

[34] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).

[35] Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. 2016. Personalized PageR-
ank Estimation and Search: A Bidirectional Approach. In WSDM.

[36] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[37] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
andMichael M Bronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model CNNs. In Proc. CVPR, Vol. 1. 3.

[38] Federico Monti, Michael M. Bronstein, and Xavier Bresson. 2017. Geometric
Matrix Completion with Recurrent Multi-Graph Neural Networks. In NIPS.

[39] Huda Nassar, Kyle Kloster, and David F Gleich. 2015. Strong localization in
personalized PageRank vectors. In International Workshop on Algorithms and
Models for the Web-Graph. Springer, 190–202.

[40] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In International conference on machine
learning. 2014–2023.

[41] Afshin Rahimi, Trevor Cohn, and Tim Baldwin. 2018. Semi-supervised user
geolocation via graph convolutional networks. arXiv preprint arXiv:1804.08049
(2018).

[42] Stephen Roller, Michael Speriosu, Sarat Rallapalli, Benjamin Wing, and Jason
Baldridge. 2012. Supervised text-based geolocation using language models on an
adaptive grid. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learning.
Association for Computational Linguistics, 1500–1510.

[43] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. 2019. Constant Time Graph
Neural Networks. arXiv preprint arXiv:1901.07868 (2019).

[44] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2009. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[45] Uri Shaham, Kelly Stanton, Henry Li, Boaz Nadler, Ronen Basri, and Yuval Kluger.
2018. SpectralNet: Spectral Clustering using Deep Neural Networks. arXiv
preprint arXiv:1801.01587 (2018).

[46] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine 30, 3 (2013), 83–98.

[47] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Paul Hsu,
and Kuansan Wang. 2015. An Overview of Microsoft Academic Service (MAS)
and Applications. In WWW 2015.

[48] Jie Tang, Jing Zhang, Limin Yao, Juan-Zi Li, Li Zhang, and Zhong Su. 2008.
ArnetMiner: extraction and mining of academic social networks. In KDD.

[49] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 1, 2 (2017).

[50] SiboWang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. HubPPR:
Effective Indexing for Approximate Personalized PageRank. PVLDB 10 (2016),
205–216.

[51] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:
Simple and Effective Approximate Single-Source Personalized PageRank. InKDD.

[52] Xuanhui Wang, Azadeh Shakery, and Tao Tao. 2005. Dirichlet PageRank. In
SIGIR.

[53] Duncan J. Watts. 1999. Networks , Dynamics , and the Small-World Phenomenon.

[54] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong
Wen. 2018. TopPPR: Top-k Personalized PageRank Queries with Precision Guar-
antees on Large Graphs. In SIGMOD Conference.

[55] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao
Yu, and Kilian Q Weinberger. 2019. Simplifying Graph Convolutional Networks.
arXiv preprint arXiv:1902.07153 (2019).

[56] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

[57] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks? arXiv preprint arXiv:1810.00826 (2018).

[58] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. arXiv preprint arXiv:1806.03536 (2018).

[59] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale
Recommender Systems. arXiv preprint arXiv:1806.01973 (2018).

[60] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural
Networks. arXiv preprint arXiv:1802.09691 (2018).

[61] Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2018. Deep Learning on Graphs: A
Survey. CoRR abs/1812.04202 (2018).

[62] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. 2018. Graph Neural Networks: A Review of Methods and Applications.
arXiv preprint arXiv:1812.08434 (2018).

https://openreview.net/forum?id=H1gL-2A9Ym
https://openreview.net/forum?id=H1gL-2A9Ym

	Abstract
	1 Introduction
	2 Related work
	2.1 (Scalable) Graph Neural Networks
	2.2 (Approximate) Personalized PageRank

	3 Model
	3.1 GNNs and Message-Passing
	3.2 Personalized PageRank and Localization
	3.3 The PPRGo Model
	3.4 Effective Neighborhood, and k
	3.5 Distributed Training
	3.6 Homophily and Model Limitations

	4 Experiments
	4.1 Datasets
	4.2 Scalability vs. Performance Trade-off
	4.3 One-hop vs. Multi-hop

	5 Conclusion
	References

