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ABSTRACT
Finding the dense region in a graph is a crucial problem in network
analysis. Core decomposition and truss decomposition address this
problem from two different perspectives. The core decomposition
is a vertex-driven approach that gives each vertex a core number
based on the degree, while the truss decomposition is an edge-
driven approach that gives each edge a truss number based on
the triangles count. Some previous works explored the common
patterns in real-world networks through a vertex-driven approach.
Our ongoing research aims to explore the pervasive patterns and
anomalies in real-world networks from both the vertex and edge
perspective. We introduce an analysis of truss decomposition and
its relation to core decomposition in various types of real-world
networks. We first investigate the characteristics of the core and
truss degeneracy of real-world networks as well as random graphs
and check how the clique counts relate to those properties. Then
we analyze the interplay between core and truss decomposition
by checking the truss numbers (and triangle counts) of edges with
respect to the core numbers (and degrees) of their endpoints.
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1 INTRODUCTION
Network is an effective and intuitive model to address many real-
world problems. The structural and statistical characteristics of
networks provide great insight to real-world applications in many
fields. Vertices and edges are the two fundamental components of
networks, yet most of the research on network analysis aims to
explore the networks by interpreting the characteristics of vertices
whereas the patterns of edges are rarely addressed. In fact, the
analysis on edges reveals valuable information of networks. For
instance, in a road network, we can estimate the cost of detour
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due to the road construction, by evaluating the length of circle
containing the edge, which cannot be addressed by the vertex-
driven analysis.

Detecting the dense structures in various granularities and find-
ing the hierarchical relations among them is a fundamental problem
in graph mining. For instance, in a citation network, the hierar-
chical relations of dense parts in various granularities can reveal
how new research areas are initiated or which research subjects
became popular in time [15]. k-core [11, 16] and k-truss decomposi-
tions [4, 14, 21, 22] are effective ways to find many dense regions in
a graph and construct a hierarchy among them. k-core is based on
the vertices and their degrees and assigns core numbers to the ver-
tices, whereas k-truss relies on the edges and their triangle counts
and yields truss numbers on the edges. Core and truss numbers
can be considered as density pointers on vertices and edges that
indicate the cohesiveness around a given vertex/edge.

Our ongoing research aims to understand the characteristics of
core and truss decompositions on real-world networks and ran-
dom graphs. Here we explore various real-world networks and
investigate the interplay between core and truss numbers.

Outline.We first give some background on the core and truss
decompositions in Section 2. Then we introduce the real-world
datasets in Section 3. In Section 4, we present an analysis of core
and truss degeneracy of real-world networks and explore their
relations with the number of k-cliques for 2 ≤ k ≤ 10. Next, we in-
vestigate the interplay between core and truss numbers inSection 5
by looking at the truss numbers of edges and the core numbers of
their endpoints. We give the related work in Section 6 and conclude
our work in Section 7.

2 BACKGROUND
Our study explores the real-world networks which can be repre-
sented as an undirected unweighted graphG = (V ,E), where V is
the set of vertices and E is the set of edges. Here we remind the
core and truss decompositions.

2.1 Core decomposition
The k-core subgraph was introduced by Seidman [16] for social
networks analysis, and also by Matula and Beck [11] for cluster-
ing and graph coloring. The k -core is a connected, maximal
subgraph such that every node in the subgraph has degree
at least k within the subgraph, and the core number of a node
is the highest value of k such that the node belongs to a k-core.

Core decomposition is the process of finding the core numbers
of nodes, which are used to locate all the k-core subgraphs. Batagelj
and Zaversnik introduced an efficient iterative peeling algorithm
that uses a bucket data structure to find the core numbers of nodes
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Figure 1: Examples for core (top) and truss (bottom) decom-
positions. On the left, core numbers are shown for each node
and red, blue, and orange regions show the 3-, 2-, and 1-cores.
They form a hierarchy by containment as denoted; 1-core
contains 2-core and 2-core subsumes 3-core. For the same
graph, trusses and truss numbers of edges are presented on
the right. Entire graph is a 0-truss and the five nodes on right
form a 1-truss. There are two 2-trusses and one of them is a
subset of the 1-truss, as denoted by the tree hierarchy.

inO(|E |) time [2]. Starting from the node with the minimum degree,
the peeling algorithm assigns the degree of a node as its core number
and remove it from the graph — thus decrementing the neighbor
degrees if larger. This process continues until the graph is empty.
k-core subgraph (for any k) is found by a traversal that visits all
reachable nodes whose core numbers are at least k . The nested
structure of k-cores reveals a hierarchy by containment. Figure 1
(top) presents a toy graph, core numbers of the nodes, all the k-core
subgraphs, and their hierarchy.

2.2 Truss Decomposition
Higher-order structures, also known as motifs or graphlets, have
been used to locate dense regions that cannot be detected otherwise
with edge-centric methods [3, 20]. Finding the frequency and distri-
bution of triangles and other small motifs in real-world networks
is a simple yet effective approach used in data analysis [1, 7, 12, 13].
The truss decomposition is inspired by the k-core and considers the
edges and the triangles they participate in [4, 14, 21, 22]. k -truss is
a connected, maximal subgraph such that every edge in the
subgraph participates in at least k triangles within the sub-
graph, and the truss number of an edge is the highestk such that the
edge is part of a k-truss. Similar to the core decomposition, finding
truss numbers has two phases; 1) Counting the triangles that each
edge participates in, 2) Peeling those counts by choosing the edge
with minimum count, assigning that as truss number, and decre-
ment triangle counts of neighbors. This requires O(

∑
v ∈V d(v)2)

time. k-trusses also exhibit a hierarchy by containment. Figure 1
(bottom) presents the truss numbers on edges, k-trusses, and their
hierarchy on the same toy graph.

3 DATASETS
In order to explore patterns in various types of real-world networks,
our datasets cover networks from five different categories: social

networks, router networks, citation networks, collaboration net-
works, and web graphs. The datasets are obtained from SNAP [9],
DBLP [10], and Konect [8] and the statistics are summarized in Ta-
ble 1 with details.

Social Networks. Catster is a network contains friendships be-
tween users of the website catster.com. Dogster is a friendship
network between users of the website dogster.com. Email is a email
network between employee of Enron Corporation. Flickr is a social
network of Flickr users and their friendship connections. Hamster
is a friendship networks between users of the website hamster-
ster.com. LiverJournal is a social network of LiveJournal. Orkut is
a social network of Orkut users and their connections. YouTube
is a friendship network between YouTube users. We also use the
Facebook 100 dataset [19] that contains the Facebook friendship
networks of 100 colleges (details are omitted for brevity).

Router Networks. As-733 is the router network contains 733
daily instances of an autonomous system. Caida is a network of
autonomous systems from the CAIDA project. Gnutella is a net-
work of Gnutella hosts. Oregon-2 is a network of autonomous
system inferred from Oregon route-views. Skitter is a network of
autonomous system on the Internet connected to each other, from
the Skitter project.

Citation Networks. CiteSeer is a citation network extracted
from the CiteSeer digital library. Cora is a citation network of
scientific papers. DBLP is a citation network of scientific papers
from DBLP computer science bibliography. HepTh is a network of
publications in the arXiv’s High Energy Physics – Theory (hep-th)
section. Patent is a citation network of patents registered with the
United States Patent and Trademark Office.

Collaboration Networks. DBLP-dbs is the co-authorship net-
work for the authors of top database conference papers (VLDB, SIG-
MOD, and ICDE) in last ten years DBLP-dm and DBLP-pp are simi-
lar where the former is for top data mining conferences (SIGKDD,
WWW, WSDM, ICDM, and SDM) and the latter is for the top par-
allel processing conferences (IPDPS, HPDC, SC, and ICS). All are
obtained from the DBLP computer science bibliography.

WebNetworks. BerkStan is a hyperlink network of thewebsites
of the Universities in Berkley and Stanford. Blogs is a network
contains front-page hyperlinks between blogs in the context of the
2004 US election. Google is a hyperlink network released in 2002 by
Google as a part of the Google Programming Contest. NotreDame is
a network of hyperlinks between the web pages from the website of
the University of Notre Dame. Stanford is a network of the websites
of the Stanford University.

Others. Drug is a network of interactions between drugs, which
are approved by the U.S. Food and Drug Administration. PGP is
a interaction network of users of the Pretty Good Privacy (PGP)
algorithm. PowerGrid is a network contains information about the
power grid of the Western States of the United States of America.

To validate if the patterns are exclusive for real-world networks,
we generate two sets of random graphs based on Erdős-Rényi model
(E-R) and configuration model. For the E-R model, a graph is gen-
erated randomly giving the number of vertices n and the number
of edges m. For the configuration model, a graph is generated ran-
domly based on the number of vertices n and the degree sequence
of these vertices. For each model we generated 10 corresponding
random graphs for each of the real-world networks. We took the
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average clique count and degeneracy of these 10 graphs for further
validation. The core and truss degeneracy information of these
random graphs are summarized in the Table 1. The core degeneracy
of real-world networks ranges from 5 to 568, and the truss degen-
eracy ranges from 2 to 350. The degeneracy of social networks are
commonly higher than other types of networks.

4 DEGENERACY AND CLIQUE COUNTS
The maximum core number of a vertex in the graph is defined as
the (core) degeneracy [5]. It is a measure of sparseness and also
quantifies the resilience of the graph with respect to cohesiveness.
An equivalent definition in the context of truss decomposition is the
truss degeneracy, which is the maximum truss number of an edge in
the graph. Core and truss degeneracy concepts are closely related to
the abundance of cliques in a given graph; e.g., a maximum k-clique
in a graph implies a lower bound of k − 1 on core degeneracy and
of k − 2 on truss degeneracy.

4.1 Analysis on Real-World Graphs
Here we first explore the characteristics of core and truss degenera-
cies of real-world networks with respect to number of the cliques
(up to 10). We use 130 networks that includes 30 networks from
various domains (given in Table 1) and the Facebook100 dataset [19]
which has Facebook friendship networks of 100 colleges with the
number of nodes between 770-41K and number of edges in the
range of 16K-1.6M. We use the fast sampling algorithms proposed
by Jain and Seshadhri [6] to find the clique counts. We measure the
Spearman’s correlation coefficient [18] between the core degener-
acy numbers and the the number ofk-cliques for 2 ≤ k ≤ 10. Table 2
presents the results. We have the following observations:

Core degeneracy is best correlated with the number of 5-
cliques. We observe that the correlation coefficient (ρ) between
core degeneracy and number of 5-cliques is 0.895 (left part of Ta-
ble 2), and highest among all. Number of edges (|E |) yields the lowest
correlation, 0.703, and there is a significant difference between |E |

Category Name |V | |E |
Core degeneracy Truss degeneracy

Exact E-R Conf. Exact E-R Conf.

Citation

CiteSeer 384K 1.74M 15 6 11 11 1 2
Cora 23.2K 89.2K 13 5 7 9 1 2
DBLP 12.6K 49.6K 12 4 11 7 1 4
HepTh 27.7K 352K 37 18 24 28 1 8
Patent 3.78M 16.5M 64 6 8 34 1 1

Collaboration

DBLP_dbs 8.10K 23.0K 35 5 5 34 1 1
DBLP_dm 16.4K 33.9K 24 4 4 23 1 1
DBLP_pp 8.41K 22.9K 44 3 6 43 1 1
Erdos 5.10K 7.52K 7 2 8 6 1 2

Router

As-733 6.47K 12.6K 12 3 12 8 1 9
Caida 26.5K 53.4K 22 3 25 14 1 18

Gnutella 62.6K 148K 6 3 6 2 1 1
Oregon-2 10.9K 31.2K 31 4 21 23 1 13
Skitter 1.70M 11.1M 111 9 146 66 1 104

Social

Catster 150K 5.45M 419 57 279 205 1 132
Dogster 427K 8.54M 248 29 256 91 1 145
Email 36.7K 184K 43 7 35 20 1 15
Flickr 1.72M 15.6M 568 21 271 276 1 54

Hamster 1.86K 12.5K 20 9 16 7 1 5
LiveJournal 4.00M 34.7M 360 20 28 350 1 3

Orkut 3.07M 117M 253 60 69 76 1 22
YouTube 1.13M 2.99M 51 4 65 17 1 33

Web

BerkStan 685K 6.65M 201 15 162 199 1 92
Blogs 1.22K 16.7K 36 23 29 23 2 8
Google 876K 4.32M 44 8 43 42 1 25

NotreDame 326K 1.09M 155 6 40 153 1 20
Stanford 282K 1.99M 71 11 82 60 1 60

Other
Drug 1.51K 48.5K 65 50 55 36 3 14
PGP 10.7K 24.3K 31 3 7 25 1 2

PowerGrid 4.94K 6.59K 5 2 2 4 1 1
Table 1: Statistics of the networks (FB100 dataset is not shown due to space). Last six columns show the core degeneracy and
truss degeneracy numbers. In each group, ‘Exact’ shows the core and truss degeneracy numbers. ‘E-R’ and ‘Conf.’ give the same
numbers in the random graphs generated for each network with respect to Erdos-Renyi (same |V | and |E |) and configuration
models (same degree sequence).
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Core degeneracy Truss degeneracy
ρ slope ρ slope

Edges 0.703 0.278 0.775 0.280
Triangles 0.845 0.277 0.863 0.274
4-Cliques 0.893 0.213 0.919 0.217
5-Cliques 0.895 0.173 0.946 0.179
6-Cliques 0.887 0.141 0.961 0.149
7-Cliques 0.865 0.117 0.970 0.130
8-Cliques 0.848 0.099 0.976 0.112
9-Cliques 0.833 0.083 0.980 0.098
10-Cliques 0.818 0.070 0.984 0.085

Table 2: Correlation between the core/truss degeneracy and
the number of k-cliques for 2 ≤ k ≤ 10 for all networks
in Table 1. Spearman’s correlation coefficient (ρ) and the
slope of the regression line in log-log comparison (see Fig. 2
and Fig. 3) are given for each comparison.

and larger clique counts (≥ 3) in terms of their correlation with
the core degeneracy. As the clique size increases, the correlation
decreases (Fig. 2c and Fig. 2d).In a previous work by Shin et al. [17],
it is observed that the number of triangles has a strong correlation
with the core degeneracy. Our extensive experimental evaluation
on a larger (and more diverse) dataset suggests that the number of
5-cliques (and 4-cliques) is a stronger indicator (with ρ = 0.895 and
ρ = 0.893) for the core degeneracy than the number of triangles
(ρ = 0.845). Note that the maximum k-cores in our networks are
not cliques (except 3 collaboration networks). Another observation
we make is on the slope of relationships between clique counts
and core degeneracy (Fig. 2). Shin et al. [17] propose that there is
a 3-to-1 power law (log-log line slope) between the triangle count
and core degeneracy, which we also observe as shown in Fig. 2a. In
our evaluation, we also observe that the core degeneracy seems to
have around 6-to-1 log-log line ratio with the number of 5-cliques,
which is presented in Fig. 2b.

Truss degeneracy is best correlated with the number of
10-cliques. Our evaluation suggests that the truss degeneracy has
a stronger correlation with the number of k-cliques (2 ≤ k ≤ 10)
than the core degeneracy, as shown in Table 1. In addition, the
correlation gets stronger with the larger k values, reaching up to
0.984 for 10-cliques. In general, we observe that the maximum truss
subgraphs are denser than the maximum cores and consequently
larger truss degeneracy implies the existence of more cliques of
large size. We also observe that truss degeneracy numbers are
always smaller than the core degeneracies, 36% less on average, and
the difference is usually more than one meaning that the maximum
trusses and cores are different subgraphs. Regarding the slope of log-
log regression lines (Fig. 3), we observe ratios 4-to-1 with respect
to the number of triangles (Fig. 3a) to 12-to-1 with respect to the
number of 10-cliques (Fig. 3b).

4.2 Analysis on Erdős-Renyi and configuration
models

Next we investigate the core and truss degeneracy characteristics
of two random graph models: Erdős-Renyi (E-R) and configuration
model. For each network in our dataset, we generate 10 E-R graphs

that has the same number of nodes and edges, and 10 random net-
works that has the same degree distribution. We find the core/truss
degeneracy numbers in each random network. We observe the
following:

Core degeneracy numbers can be approximated to some
extent by both models. Configuration model, in particular, can
yield similar core degeneracy results for several networks, such
as As-733, Gnutella, Dogster, and Google. For 17 (of 30) networks,
random graphs that follow the same degree sequence yields less
than 20% error margin for the core degeneracy. For some networks
such as LiveJournal and Orkut, however, configuration model fails
to provide good estimates: 28 vs. 360 and 69 vs. 253.

Truss degeneracy is a more distinctive characteristic for
real-world networks as it cannot be simulated by neither
random graph model. E-R model fails to provide any meaningful
estimate for the truss degeneracy. Configuration model provides
good approximations for only a few networks and fails on the most.

5 EDGE DISTRIBUTION
From a local perspective, real-world networks contain interesting
characteristics bound to the edges. To reveal these characteristics,
we explore the interplay between core and truss numbers by check-
ing the edge distribution of real-world networks with respect to the
two endpoints. The information lies in the edges are represented by
the average truss number or triangle count, while the information
lies in vertices are represented by the core number or degree. We
proposed four representations of edge distribution regarding the
four different combinations of edge information and vertex infor-
mation. In Fig. 4, each edge is represented as a point in the scatter
plot, with coordinates representing the degree or core number of
the two endpoints. Without loss of generality, the smaller degree
or core number of the two is denoted on the x-axis and the larger
is denoted on the y-axis. The color of the point gives the truss
number or triangle count information of the edge. For multiple
edges with the same core/degree information on its vertices, we
aggregate the edge charateristics by taking the average of truss
numbers or triangle counts. Among the four charts, the upper left
chart shows the truss number and core number relations, the upper
right denotes the truss number and degree relations, the bottom
left presents the triangle count and core number relations, and the
bottom right gives the triangle count and degree relations. We have
the following observations:

The truss number of an edge infers the core numbers of its
two endpoints, and the triangle count of an edge infers the
degree of the two endpoints. We observe that the truss number
of edge is consistent with the core numbers of the its two endpoints.
As shown in the upper left charts, edges with large truss numbers
(deep red) are connecting vertices with larger core numbers (located
on upper right), and vice versa. The consistency stays true for the
case of triangle count and degree, as shown in the bottom right
charts. For most of the real-world networks, the truss number can
also infer the degree of the two endpoints, as well as the triangle
count can infer the core numbers. It indicates that edges between
vertices with large degrees or core numbers are likely to have
large truss numbers and triangle counts. The deviation from this
pattern occurs particularly in the citation networks. As shown in
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(a) Core degeneracy vs. triangles (ρ = 0.845, slope is 0.277) (b) Core degeneracy vs. 5-cliques (ρ = 0.895, slope is 0.173)

(c) Core degeneracy vs. 8-cliques (ρ = 0.848, slope is 0.099) (d) Core degeneracy vs. 10-cliques (ρ = 0.818, slope is 0.070)

Figure 2: The correlations between core degeneracy and the number of k-cliques for k = 3, 5, 8, and 10. Each point in the charts
represents a real-world network and is shape coded for the categories. Regression lines for the data points are shown in blue.

the distribution of Patent network (Figure 4d), there is an obvious
mismatch in dense-color region between the distributions of core
number and degree. It indicates that the edges with highest truss
number are connecting to two vertices with large core number but
relatively low degree. Similar deviations have been discovered in
HepTh network and CiteSeer network, as shown in Figure 4e and
4f.

Core Decomposition leads to a concentration of the edge
distribution.We identified a common pattern in the edge distribu-
tion, showing as an concentration from the degree to core number
(from right charts to left charts). This pattern indicates that the non-
trivial edges can be better inferred from the core numbers rather
than degrees. However, the concentration process breaks especially
for web graphs. As shown in Figure 4b, in the BerkStan web graph,
there is an obvious break in transition from degree to core number.
We can infer the existence of three clusters having the highest truss
number but different degrees (max degree of 2,000; max degree of

7,000; and max degree of 20,000). There is another cluster with high-
est truss number but low degree (around 100), which might be the
small cluster connecting the three big clusters. In the NotreDame
web graphs (Figure 4c), we distinguished three clusters having the
highest truss number but different degrees (max degree of 1,000;
max degree of 3,000; and max degree of 10,000).There is another
cluster with highest truss number but low degree (around 100),
which is a small cluster connecting the three big cluster.

6 RELATEDWORK
Previous works on real-world network analysis mostly focus on
patterns related to the vertices. Our ongoing work describe the
real-world network from an edge perspective, which uncover the
interesting information lies in the connections.

For clique counting, we used the clique number estimation al-
gorithm called Turan-shadow, proposed by Jain and Seshadhri [6].
Their algorithm has better accuracy and efficiency for large size
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(a) Truss degeneracy vs. triangles (ρ = 0.863, slope is 0.274) (b) Truss degeneracy vs. 5-cliques (ρ = 0.946, slope is 0.179)

(c) Truss degeneracy vs. 8-cliques (ρ = 0.976, slope is 0.112) (d) Truss degeneracy vs. 10-cliques (ρ = 0.984, slope is 0.085)

Figure 3: The correlations between truss degeneracy and the number of k-cliques for k = 3, 5, 8, and 10. Each point in the charts
represents a real-world network and is shape coded for the categories. Regression lines for the data points are shown in blue.

clique counting than other sampling algorithms. In our work, we
computed the clique counts based on this estimating algorithm.

One of the most related research is done by Shin et al [17]. Their
study on the degeneracy pattern is limited to the correlation be-
tween core-degeneracy and triangles count. Our study explore the
correlation between both core and truss degeneracy with cliques
count from 2-cliques to 10-cliques, and we compared the signifi-
cance of these correlations. Since their research was mostly focus
on the vertices, they considered the truss number as a supplemen-
tary information for vertex analysis. We utilized the truss number
for analysis on edge itself. In addition, we designed the analysis
on both vertices and edges, using both core numbers and truss
numbers.

7 CONCLUSION
In this paper, we studied the the pervasive patterns and interesting
anomalies of both core and truss decompositions on a large variety
of real-world network. We first analyzed the networks from a global

perspectives, and validated our findings on two random graph
models. The global pattern discovered by our approach reveals the
nature of real-world networks regarding the graph degeneracy and
cliques number. We also investigated the local interplay between
core and truss decompositions regarding the truss numbers (and
triangle counts) of edges and the core numbers (and degrees) of
their endpoints. Interestingly, we observed very distinct patterns
for different type of networks.

In our future work, we intend to discover other random graph
models to approximate the degeneracy characteristics of real-world
networks. In addition, we plan to explain our findings on the local
interplay by investigating the hierarchical structures of core and
truss decompositions.
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