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ABSTRACT
This paper develops an algorithm that is able to discover the process

graph patterns of the information control nets from process enact-

ment event logs, implements the algorithm as a process graph min-

ing system, and carries out a couple of operational experiments with

process event log datasets. The core is the ρ-Algorithm that ought

to be a novel approach for rediscovering all the structured process

graph patterns, such as linear (sequential), disjunctive (selective-

OR), conjunctive (parallel-AND), and repetitive (iterative-LOOP)

process graph patterns, of the information control nets from an

XES-formatted process enactment event log dataset. We prove that

the proposed process graph pattern mining algorithm is able to

complete the information control net process rediscovery func-

tionalities successfully through fulfilling a series of experimental

studies. Additionally, we discuss those future issues of the pro-

cess graph pattern discovery and rediscovery in the workflow and

business process intelligence literature.
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1 INTRODUCTION
A workflow process

1
management system is able to support two

fundamental functionalities|modeling functionality and enacting

functionality. The modeling functionality allows modelers to de-

fine, analyze and maintain processes by hooking all the essential

entities, such as activities, roles, performers, relevant data and in-

voked applications, on the corresponding procedures, whereas the

enacting functionality supports performers to play the essential

roles of invoking, executing and monitoring all the instances of the

processes. As we all know, the logical foundation of such a process

management system is based upon its underlying process modeling

methodology, which implies that the system is able to automate defi-

nition, creation, execution, and management of processes according

to the internal principle and structure of the process graph patterns.

Until now, several process modeling methodologies [7][2] have

been proposed in the workflow and business process literature, and

almost all of them employ the five essential entity-types, such as

activity, role, performer, repository and application entity-types, to

represent organizational works and their procedural collaborations.

We turn our attention to the activity entities and their temporal

orderings with process graph patterns in this paper.

There possiblly exist two main branches of the research issues

on the process graph patterns and models. One is so-called discov-
ery [1] issues, the other is so-called rediscovery [6][10] issues. The

former is to discover a process graph model through analyzing and

mining activity entities and their temporal orderings from the spe-

cific event log histories of the legacy information systems, whereas

the latter is concerned with mining a process graph model from

the process enactment event log histories under the control of a

specific workflow and business process management system, the

topic of which is named as rediscovery. More specifically we would

differentiate the former from the latter; the former is to explore

process patterns and models as a process planning and defining

activity, while on the other hand the latter is to explore process

patterns and models as a reengineering and redesigning activity.

The paper is directly related with the process patterns and models

rediscovery issue, which means that the proposed algorithm is aim-

ing at mining a process graph model of information control nets

from a specific dataset of process enactment event log histories.

Conclusively, the purpose of this paper is to originate a fundamen-

tal mining and visualizing principle for rediscovering process graph

patterns and models from those datasets recorded as process enact-

ment event logs formatted in the IEEE XES [5] standardized XML

event streaming language.

1
In terms of the terminological usage, the term, workflow process, can be interchange-

ably used with the term, business process. We prefer to use the term, process, simply

in this paper.
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2 RELATEDWORKS
The main research challenge of this paper is to devise an algo-

rithmic process mining framework for rediscovering a model of

structured information control nets from a workflow process en-

actment event log dataset. Therefore, the literature surveys of the

challenge are summarized in this chapter of related works. The

most popular approaches of the theoretical modeling methodolo-

gies to formally define and graphically represent business process

models are the Petri-net process graph model [11] of process mod-

eling methodology and the information control net process graph

model [2] of process modeling methodology. Both of them are based

upon the mathematical representation and the graphical represen-

tation at the same time. The Petri-net process graph model has

a strong advantage in terms of the mathematical and analytical

power, whereas the information control net process graph model

has a much stronger merit in terms of the expressiveness of the

workflow process domain. So far, there have been several process

graphmining algorithms in the literature. One of the typical process

graph mining algorithms for rediscovering the Petri-net process

graph models is the α (alpha)-Algorithm [10], whereas the typical

process graph mining algorithm for rediscovering the information

control net process graph models is the σ (sigma)-Algorithm [6].

Note that the name of the process graph mining algorithm pro-

posed in the paper is the ρ(rho)-Algorithm, and the naming reason

of the ρ-Algorithm will be explained later. The crucial idea and

characteristics of these algorithms and their comparisons with the

ρ-Algorithm are arranged in this section.

The essential goal of the paper is concerned with the concept

of process graph mining algorithm that is able to completely re-

discover a structured information control net process model with

process graph patterns from the process enactment event logs. For

the sake of eventually supporting the model-log comparison [4],

which is the process fidelity issue, the literature has produced so far

the two concepts and theories; one is the Petri-net process graph

modeling methodology and the other is the information control net

process graph modeling methodology. Also, the literature has pub-

lished the α-Algorithm [10] and the σ -Algorithm [6]for discovering

Petri-net process graph models and information control net pro-

cess graph models, respectively. However, all of these rediscovery

approaches have the limitations that they are able to deal with only

sequential, parallel and selective process graph patterns out of all

the types of the process graph patterns such as sequential, parallel,

selective and repetitive process graph patterns. In other words, both

of the rediscovery algorithms have a limitation in dealing with redis-

covering the repetitive-LOOP process graph patterns. Note that the

α-Algorithm is implicitly dealing with the repetitive-LOOP process

graph pattern as the selective process graph pattern. Conclusively

speaking, the algorithm (named as the ρ-Algorithm) proposed in

the paper is able to explicitly deal with rediscovering not only the

three types of the primitive process graph patterns supported by

the conventional algorithms but also the most challenging type of

the repetitive-LOOP process graph pattern.

3 THEORETICAL BACKGROUND: THE
PROCESS GRAPHMODEL OF STRUCTURED
INFORMATION CONTROL NETS

The theoretical background is the information control net method-

ology [7] that is a typical workflow modeling approach support-

ing graphical and formal representations. In defining a workflow

procedure, the methodology uses the basic workflow entity types–

activity, role, actor/performer, invoked application and transition

condition–to represent the procedural properties of workflow, such

as control-flow and data-flow, as well as the associative properties

of workflow such as activity-to-role, role-to-performer, activity-

to-condition/rule, and activity-to-application associations. In this

section, we define only the control-flow aspect of the information

control net of a workflow process model through the following [Def-
inition 3.1] for formally representing the process graph patterns

and models.

Definition 3.1. Information Control Net (ICN) for formally defin-

ing aworkflowmodel. A basic ICN is 8-tuple Γ = (δ , ρ, λ, ε,π ,κ, I,O)
over a set of A activities (including a set of group activities), a set

T of transition conditions, a set D of data repositories, a set G
of invoked application programs, a set R of roles, and a set P of

performers (including a set of performer groups), where

(1) External Data Properties

• I is a finite set of initial input repositories, which is as-

sumed to be loaded from some external workflow before

execution;

• O is a finite set of final output repositories, which is as-

sumed to be transferred to some external workflow after

execution;

(2) Procedural Properties

• δ = δi ∪ δo
where, δo : A −→ ℘(A)2 is a multi-valued function map-

ping an activity to its sets of (immediate) successors, and

δi : A −→ ℘(A) is a multi-valued function mapping an

activity to its sets of (immediate) predecessors;

• κ = κi ∪ κo
where κi :A −→ ℘(T) is a multi-valued function mapping

a set of control-transition conditions, T, on directed arcs,

(δi(α),α ∈ A) between δi(α) and α ; and κo :A −→ ℘(T) is
amulti-valued functionmapping a set of control-transition

conditions, T, on directed arcs, (α ∈ A,δo(α)) between α
and δo(α);

Starting and Terminating Event Nodes. Additionally, the execu-
tion of a workflow model commences with a single χ transition-

condition. So, we always assume without loss of generality that

there is a single starting event node (▽:αI ). At the commencement, it

is also assumed that all the input repositories in the set I have been
initialized with relevant data from its external workflow model:

∃αI ∈ A | δi (αI ) = {∅} ∧ κo (αI ) = {{χ }}.

The execution is terminated with any one λ output transition-

condition. Also we assume without loss of generality that there is a

2℘(A) is the powerset of A.
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Figure 1: Process Graph Patterns of Structured Information Control Net: the Library Book Acquisition Process Model

single terminating event node (△:αF ). A set of the output reposito-

ries O is a group of data holders that is transferred to the external

workflow model after after termination:

∃αF ∈ A | δo (αF ) = {∅} ∧ κi (αF ) = {{χ }}.

Process Graph Patterns with Gateway Activities: Temporal Order-
ings of Activities. Given a formal definition, the temporal ordering

of activities in a process graph model can be formally represented

as follows: For any activity α , in general

δ (α) = {
{β11, β12 , . . . , β1m(1)},

{β21, β22 , . . . , β2m(2)},

. . . ,

{βn1, βn2 , . . . , βnm(n)}

}

which can be interpreted as follows:

• Upon the completion of activity α with its single incoming

transition, it simultaneously initiates all of the activities βi1
through βim(i), then all the initiated transitions are called

parallel (conjunctive) transitions;

• After completion of activity α with its single incoming tran-

sition, only one value out of i (1 ≤ i ≤ n) is selected as the

result of a decisionmade, then the selected transition is called

a selective-decision (disjunctive or exclusive-OR) transition;

• After completion of activity α with its single incoming tran-

sition, if n = 1 ∧m(n) = 1, then neither decision nor parallel

is needed, and the transition is called a sequential transition;

• After completion of activity α with more than one incoming

transition, if n > 1 ∧m(n) = 1, then only one value out of i
(1 ≤ i ≤ n) is selected as the result of a decision made, then

the selected transition is called a loop-decision (repetitive)

transition;

• Additionally stating to make sure, if m(i) = 1 for all i, then
no parallel processing is initiated by completion of α .

Graphical Formation of the Process Graph Patterns.Based on the in-
terpretation, we graphically define these primitive open-transition

types. The conjunctive (or parallel) outgoing transitions are con-

nected by a solid dot(•) with a single incoming transition, the

disjunctive (or selective-decision) outgoing transitions are con-

nected by a hollow dot(◦) with a single incoming transition, and

the two repetitive incoming transitions are connected by a double-

hollow dot with a single outgoing transition. For the primitive

close-transition types, the graphical formations vice-versa. Besides,

these special types of nodes are called gateway activity nodes in

the workflow and business process literature. The starting and the

terminating event nodes are medium-sized circle with thin line

and medium-sized circle with thick line, respectively. Additionally,

the gateway activity nodes need to be formed in a matched pair of

open and close types. Also, multiple sets of the open-close gateway

nodes should be kept in a properly nested form for supporting

syntactically safeness and soundness. Summarily, Figure 1, as an

exemplary process graph model, depicts a structured information

control net of the Library Book Acquisition Workflow Procedure

firstly introduced in [2]. The left-hand side of the figure is the con-

trol flow aspect of the information control net that consists of a
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Figure 2: A Stepwise Representation of the Process Graph Patterns Mining Algorithm

starting node, a terminating node, 12 activities, a pair of open and

close parallel gateway nodes, a pair of open and close selective

decision gateway nodes, and a pair of open and close repetitive

gateway nodes.

4 A PROCESS GRAPH PATTERN MINING
ALGORITHM

The overall algorithmic approach, as illustrated in Figure 2, is a

stepwise mining procedure with the functional components to be

used for discovering all the types of the primitive process graph

patterns that constitute a structured information control net pro-

cess model. The approach is named as ρ-Algorithm and supported

by a series of stepwise transformation algorithms for discovering

structured information control net process models from the process

enactment event logs. The first transformation algorithm is to dis-

cover the enacted workcases from the event logs, each of which can

be modeled into a temporal workcase model. At the same time, it is

necessary to count the occurrence of each temporal workcase with

its activities. The second transformation algorithm is to discover an

activity-driven pattern graph by integrating all the members of the

adjacent-activity set and calculating the occurrences of the tempo-

ral workcases. In terms of discovering the structured information

control net process model from the corresponding activity-driven

pattern graph, we develop an algorithm that is able to deal with

an any combinational number of AND/OR/LOOP process graph

patterns. In this figure, we show only the Exclusive-OR (disjunctive

process graph pattern), as an example. Here, we start to formally

describe the process graph pattern mining algorithm from defining

a formal structure of the process enactment event logs as defined

in the following definitions of Definition 4.1 and Definition 4.2:

Definition 4.1. Workflow Process Workitem Enactment Event. Let
we = (α , pc , w f , wc , ac , p∗, t , s) be a workflow process workitem

enactment event stored as logs, where

• α is a workitem (activity instance) identifier,

• pc is a package identifier,
• w f is a workflow process identifier,

• wc is a workflow instance (workcase) identifier,

• ac is an activity identifier,

• p3 is a participant (or performer) identifier,

• t is a timestamp, and

• s is a workitem’s current state, which is one of the states

such as ready, assigned, reserved, running, completed, and
cancelled.

Definition 4.2. Temporal Workcase Model. A temporal workcase

model is formally defined through 3-tupleTWCM = (ω, Fcr ,T
c
o ) over

a set A of activity trace-nodes, ∀ητ [.ϕ]α , on a temporal workcase,

TWC(c), of a workflow instance (workcase), c, and a species K
(= {s, e,u,o}) of the timestamp-origins, where

• Fcr is an activity or an activity-group linked from an external

temporal workcase model;

• T co is an activity or an activity-group linked to an external

temporal workcase model;

• ω = ωi ∪ ωo on ∀ητ [.ϕ]α ∈ A,
– ωo : A −→ ℘(A) is a single-valued mapping function of

an activity trace-node, η
τ [.ϕ]
α = we

τ [.ϕ]
α ∧ ϕ ∈ K, to its

(immediate) successor in a temporal workcase;

– ωi : A −→ ℘(A) is a single-valued mapping function of

an activity trace-node, η
τ [.ϕ]
α = we

τ [.ϕ]
α ∧ ϕ ∈ K, to its

(immediate) predecessors in a temporal workcase.

• The species of temporal workcase models: TWCMϕ

– ScheduledTime Temporal Workcase Model: ϕ = ‘s‘ in

∀ητ .ϕα of a temporal workcase model

3
Note that * indicates multiplicity.
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– AssessedTime TemporalWorkcaseModel:ϕ = ‘e‘ in ∀ητ .ϕα
of a temporal workcase model

– StartedTime Temporal Workcase Model: ϕ = ‘u‘ in ∀ητ .ϕα
of a temporal workcase model

– CompletedTime Temporal Workcase Model: ϕ = ‘o‘ in

∀ητ .ϕα of a temporal workcase model

STEP-1: Groups of Temporally Ordered Adjacent-Activity Pairs.
From now on, the first step of the ρ-Algorithm is to mine a group

of temporally ordered adjacent-activities pairs from temporal work-

cases (Definition 4.2) of the process instance event logs (Definition
4.1). Also, each of the temporal workcases is formally represented

by one of the workcase model types introduced in the previous

section. That is, a temporal workcase represents an ordered en-

actment sequence of activity event logs, each of which is formed

with its activity identifier and its time-stamp extracted from its

corresponding process enactment event log. The extracted tem-

poral workcase is used for formally defining its workcase model

(TWCM1), fromwhich the STEP-1 algorithm is able to mine a group

(AAG1) of temporally ordered adjacent-activity pairs belonging to

a corresponding process instance event trace.

STEP-2: Weighted Adjacent-Activity Set and Activity-Driven Pat-
tern Graph. The STEP-2 of the ρ-Algorithm is to build all th groups

of temporally ordered adjacent-activity pairs, each of which cor-

responds to a process instance event trace. The eventual output

of this algorithm is a weighted adjacent-activity set named as ad-

jacencyList β . This set is built from all the groups of temporally

ordered adjacent-activity pairs through an internal transformation

procedure. Especially, the concept of weight on an edge with its

connected activities of each pair implies the number of occurrences

of the corresponding pair and its connected activities. Also, the

set is used to produce an activity-driven pattern graph with all the

edges’ weights and their activities’ weights through an internal

transformation algorithm.

STEP-3: Discovering Process Graph Patterns of Structured Informa-
tion Control Nets. The final step (STEP-3) of the ρ-Algorithm is to

discover a process pattern graph of a structured information control

net process model from the activity-driven pattern graph mined

from all the groups of temporally ordered adjacent-activity pairs.

The eventual goal of the ρ-Algorithm is accomplished through this

step. Note that the structured information control net process model

must be satisfied with the proper nesting as well as the matched

pairing properties in forming gateway activities in each process

graph pattern. Therefore, the STEP-3 algorithm is able to completely

transform from an activity-driven pattern graph as the outcome of

the STEP-2 algorithm to a structured information control net model

with the occurrences on every branch of the associated gateway

activities. The Algorithm 1 is the pseudo codes of the STEP-3 of

the ρ-Algorithm. The STEP-3 algorithm performs two essential

functions. One (STEP-3.1) is a graphical visualization function to

visualize the activity-driven pattern graph in a form of graphical

viewer using the Graph Stream Library. The other (STEP-3.2) is

a visual transformation function to transform the activity-driven

pattern graph into a graphical viewer of the structured information

control net process model formed by a certain combination of the

four types of process graph patterns. As described in the previous

step, the activity-driven pattern graph is built by performing the

internal transformations from adjacencyList β . In terms of visual-

izing the activity-driven patterns and its information control nets,

the Graph Stream Library is used. The core part of the ρ-Algorithm
is the STEP-3.2 function that decides open-gateways and close-

gateways of each process graph pattern in the graph by using the

concept of rho (ρ)4.
Summarily, the eventual goal of the ρ-Algorithm proposed in

this paper is to discover structured information control net process

model being composed of a certain combination of all the process

graph patterns from a dataset of process enactment event logs

through deploying the ρ-Algorithm with a series of concepts and

their related algorithms like STEP-1, STEP-2 and STEP-3 algorithms.

Until now, the paper has simply described those conceptual and

procedural formal definitions, such as the group of temporally

ordered adjacent-activity pairs, the weighted adjacent-activity set,

the activity-driven pattern graph and the structured information

control net process model. Therefore, it is necessary to summarily

show that the two goals of the paper have been achieved by not only

discovering a structured information control net process model as

one goal of the process graph mining aspect but also discovering

its enactment occurrences on each of the process graph patterns as

the other goal of the process-aware knowledge discovery aspect.

5 EXPERIMENTAL STUDIES
In this section, we carry out a couple of experimental analyses to

verify the correctness of the process graph pattern mining algo-

rithm based upon the implemented ρ-Algorithm. In the previous

research [8], the authors’ research group fulfilled a feasibility anal-

ysis of the proposed algorithm by applying the algorithmic steps

to the exemplary dataset of very large scale process event logs.

Through the operational feasibility analysis, we had shown that

the functional correctness of the ρ-Algorithm ought to be reason-

able and applicable. However, it is necessary for us to carry out

an additional experimental analysis for the specialized dataset of a

real process event logs and traces not only to verify the correctness

of theρ-Algorithm, but also to see how the ρ-Algorithm operates

and works on the specialized dataset. Due to the page limitation,

we won’t describe the details of the implemented process graph

pattern mining system of the ρ-Algorithm.

(1) Preparation of the Process Event Log Dataset. According as a
process instance is executed, the logging and auditing component

of the process enactment engine records its workitem execution

events on a log repository, and those logged events are arranged in

a form of the temporal sequence of events. This execution sequence

of a process instance is forming a process instance event trace, from

which we can extract the process instance’s workitem event trace

and its formal representation is specified by a concept of temporal

workcases and its workcasemodel as defined in the previous section.

We already implemented the event trace mining algorithm (the

STEP-2 algorithm of the ρ-Algorithm) by considering a formal

structure of the process activity enactment (workitem) event log. In

general, the log formats for the process enactment event log used to

4
In the ρ-Algorithm, the symbol and name of rho (ρ ) comes from the A programming

language (APL) firstly released in 1960’s. The function rho, coded like ρX in APL,

implies that it gives the number of elements in X, from which the concept of mass
comes. The central idea of the discovery algorithm of the framework is exactly same

to the implication of the APL function, rho (ρ ).
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Algorithm 1 ρ-ALGORITHM

Require: An Activity-Driven Pattern Graph - G
Ensure: A Structured Information Control Net Process Graph - GSICN

1: procedure ρ-Main(G) ▷ Mining the structured information control net process model

2: G.removePhantomEdge(); ▷ Removing the phantom edges on G
3: for ∀α ∈ G do ▷ α is a member node of the node-set in G.
4: α .listEdgeOutGoing← G.getEdgeOutGoing(α );
5: if α .listEdgeOutGoing.size() > 1 then
6: Gopen ← ProcessForTheOpenGate(G, α , α .listEdgeOutGoing); ▷ Discovering the open-gateways in G
7: end if
8: α .listEdgeInComing← G.getEdgeInComing(α );
9: if α .listEdgeInComing.size() > 1 then
10: Gclose ← ProcessForTheCloseGate(G, α , α .listEdgeInComing); ▷ Discovering the close-gateways in G
11: end if
12: end for
13: GSICN ← ProcessForTheLoopGate(Gopen

, Gclose
); ▷ Discovering the loop-gateways from Gopen

and Gclose

14: return GSICN ▷ Discovered a structured information control net process model, GSICN

15: end procedure

be a tag-based language like XWELL [9], BPAF, and XES. In recent,

IEEE released a standard tag-based language, XES [5], whose aim

is to provide designers of information systems with a unified and

extensible methodology for capturing systems’ behaviors by means

of event logs and event streams. Conclusively, as the format of the

process enactment event log structure, those event history files

used the IEEE XES Schema describing the structure of an XES event

log/stream and the XES extension describing the structure of an

extension of such a log/stream. Based upon the format of the IEEE

XES schema, the STEP-2 algorithm was developed, implemented

and applied to all those event history data-sets. For the sake of the

experimental study, we prepare a couple of process enactment event

log datasets that are available in the 4TU.Centre for Research Data

[3] and that are well-fitted and appropriate for carrying out the

experimental study. First of all, it is necessary for the ρ-Algorithm to

be checked up on the correctness of the basic discovery functionality

supporting the primitive types of process graph patterns such as

linear (sequential), disjunctive (exclusive-OR), conjunctive (parallel-

AND), and repetitive (iterative-LOOP) process patterns.

(2) Linear and Exclusive-OR Process Graph Pattern Discovery. Fig-
ure 3 shows the 3 captured-screens of the experimental results be-

ing produced from the dataset of ETM-Configuration2.xes [3]. The

dataset contains the total 70 process instance event traces (instance

event traces, and the following) and the total 7 associated-activities

in the underlying process model. The 3 captured-screens corre-

spond to the Groups of Adjacent-Activity Pairs and Weights in the

Adjacent-Activity Set, Activity-driven Pattern Graph, Structured

Information Control Net Process Model with a matched pair of

exclusive-OR open-gateway node and exclusive-OR close-gateway

node, respectively.

(3) Iterative-LOOP Process Graph Pattern Discovery. Figure 4 shows
a single captured-screen of the experimental results being produced

from the dataset of Review-Example-Large.xes [3]. This experiment

deploys the implemented system to only a single instance event

trace of the dataset. It also verifies that the ρ-Algorithm is able to

discover a structured information control net process model from

not all the instance event traces but only a single instance event

trace. The two captured-screens are overlapped and correspond to

the Group of Adjacent-Activity Pairs for the instance event trace

and the ultimate discovery result, a Structured Information Control

Net Process Model of process graph patterns with 5 matched pairs

of iterative-LOOP gateway-nodes, respectively.

(4) Parallel-AND Process Graph Pattern Discovery. Figure 5 shows
the 4 captured-screens of the experimental results being produced

from the dataset of ETM-Configuration1.xes [3]. The dataset con-

tains the total 100 instance event traces and the total 7 associated-

activities in the underlying business process model. The 4 captured-

screens correspond to the Groups of Adjacent-Activity Pairs and

Weights Adjacent-Activity Set, Activity-driven Pattern Graph after

eliminating the phantom pairs, and Structured Information Control

Net Process Model with nested and matched pairs of parallel-AND

gateway-nodes and exclusive-OR gateway-nodes, respectively.

6 CONCLUSION
So far, this paper has proposed the process graph pattern mining

algorithm and performed a series of experimental analyses based

upon the real process enactment event log datasets. The theoretical

background of the proposed algorithm stems from the conceptual

rediscovery approach of rediscovering the process graph patterns

such as linear, disjunctive, conjunctive and repetitive process pat-

terns from the process-aware warehouses and datasets, whereas the

implementable background of the proposed algorithm is supported

by the algorithmic rediscovery approach of the STEP-1, STEP-2 and

STEP-3 algorithms, named as the ρ-Algorithm, by discovering the

structured information control net process models from the process

enactment event log datasets. Based upon these theoretical and algo-

rithmic approaches, the paper devised, implemented and developed

these concepts, algorithms and systems, respectively. Based upon

these implemented algorithms, the paper carried practically out a

series of experimental studies by deploying them onto a series of

process enactment event log data-sets provided by the 4TU.Centre

for Research Data. As the future research of the paper, the process
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A Graph from the Group of the Adjacent-Activity Pairs and Weights

A Rediscovered with Linear and Exclusive-OR Process Graph Patterns of
the Structured Information Control Net Process Model

An Activity-driven Pattern Graph from the Weighted Adjacent-Activity Set

Figure 3: An Experimental Result (Sequential and Selective Process Graph Patterns) of the Process Graph Patterns Mining
Algorithm

A Structured ICN Process Model with 5 LOOP Process Graph Patterns
Rediscovered from a Single Event Trace (Trace No. 0)
of The Review Example Large Process Model by the ρ-Algorithm

A Group of Adjacent-Activity Pairs
From a Single Event Trace

Figure 4: An An Experimental Result (Repetitive Process Graph Patterns) of the Process Graph Patterns Mining Algorithm
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A Rediscovered Structured Information Control Net Process Model
With Disjunctive and Conjunctive Process Graph Patterns
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Figure 5: An An Experimental Result (Parallel Process Graph Patterns) of the Process Graph Patterns Mining Algorithm

graph pattern mining algorithm will be extended to discover all the

work transference graph patterns of the performers’ involvements,

which will be especially the future research challenge of the paper.
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