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ABSTRACT
We propose a fast approximate algorithm for k-median problem

on a graph, which is a problem of finding a set S of k vertices that

minimizes the length sum of the shortest paths from all the vertices

to their nearest vertex in S . Starting from an initial set S ofk vertices,

our algorithm iteratively updates S so as to improve the shortest-

path-length sum for S . In each iteration, the algorithm calculates

the shortest-path forest whose roots are vertices in S and replace

S with S ′ that are the centers of the component tree in the forest.

According to our experiments using pmed datasets, our algorithm is

significantly faster than CPLEX and achieves better approximation

ratio than the degree-centrality or betweenness-centrality based

methods.

CCS CONCEPTS
• Information systems→ Data mining; • Theory of computa-
tion → Shortest paths; Facility location and clustering;
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1 INTRODUCTION
There are many networks in the real world such as communication,

co-authorship, and social networks, and such networks can be

represented as weighted graphs that are composed of a vertex set,

an edge set and an edge weight function, where an edge is a related

pair of vertices and the edge weight function indicates strength of

the relationship between them. So, finding important vertices on

graphs is useful in many applications and a lot of studies on it have

been done so far.

The k-median problem is a problem to find k vertices in a graph

that are important in terms of the cost of transportation through

edges. It is a classical facility location problemwith no cost of facility
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building and generally defined as a problem in a metric space. But

the problem can be considered for connected graphs with positive

edge length because distance between two vertices provided by the

shortest path length between them satisfies the definition of metric.

Even for the graph version of k-median problem, it is well-known as

NP-hard. The k-median problem on a graph is a problem of finding

a set S of k vertices that minimizes the length sum of the shortest

paths from all the vertices to their nearest vertex in S . Since the
real world networks are becoming larger and larger, solving the

problem exactly for such networks is becoming more and more

difficult.

In this paper, we propose a fast approximate algorithm for k-
median problem on a graph using iterative method. This algorithm

initially selects a set S of k vertices at random and then iteratively

updates S so as to decrease the length sum of the shortest paths.

To update S efficiently, the algorithm calculates the shortest-path

forest F whose roots are vertices in S , then replaces S with S ′ which
are composed of the center of the component trees in F .

According to our experiments using pmed dataset, our algorithm

is significantly faster than the exact method using Warshall-Floyd

[8] and CPLEX
1
, and achieved better approximation ratio than the

method based on either degree centrality or betweenness centrality.

2 RELATEDWORK
The k-median problem on a graph was proved to be NP-hard by

Kariv and Hakimi [11]. By calculating the shortest path length

between every pair of vertices, this graph version problem can

be converted to the metric version problem, but the calculation

takes O(n3) time and O(n2) space using Warshall–Floyd algorithm

[8], where n is the number of vertices. Thus, for huge graphs, it

is hard to solve the graph version problem by converting to the

corresponding metric version problem.

The metric k-median problem can be formalized as a 0-1 inte-

ger programming problem, and as methods for calculating exact

solutions, branch-and-bound algorithms based on Lagrangian re-

laxation and subgradient optimizations [6, 13] were successfully

applied to small-sized problems.

The approximate algorithm with the best guaranteed approx-

imation ratio is the local search with swap [2] for which the ap-

proximation ratio of 3 + 2/p can be guaranteed while the running

time is O(np ), where p is the number of vertices to be swapped

simultaneously.

Approximate algorithms using metaheuristics such as simulated

annealing [5] and genetic algorithm [1] have been also developed,

but those algorithms are also computationally heavy because the

calculation of the length sum of the shortest path to the nearest

1
https://www.ibm.com/analytics/cplex-optimizer
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vertex in S , must be done for many k-sets S to decide the improved

next candidate.

Heuristic approximate algorithm developed by Maranzana [12]

repeats partitioning the set V of vertices into {V1, . . . ,Vk }, where
Vi is the set of vertices whose nearest vertex in the current k-set
S = {v1, . . . ,vk } is vi , and updating S to S ′ that is composed

of exact 1-medians v ′i of the graphs induced by Vi (i = 1, . . . ,k).
Our proposed algorithm is similar to but more efficient than this

algorithm by calculating not exact but approximate 1-median of

each subgraph.

3 k-MEDIAN PROBLEM ON A GRAPH
We consider a connected undirected graph G = (V , E) which is

composed of the set of n vertices V = {v1, . . . ,vn }, and the set

of edges E ⊆ V × V . An Undirected edge is written as (u,v)
which is identical to (v,u). Let ℓ : E → (0,∞) denote an edge-

length function. A path between u and v is an edge sequence

(vi1 ,vi2 ), (vi2 ,vi3 ), · · · , (vih−1 ,vih )withvi1 = u andvih = v and its

length is defined as

∑h−1
j=1 ℓ((vi j ,vi j+1 )). The shortest path between

u and v is the path between them with the minimum length, and

its length is denoted by L(u,v). Note that L(u,u) = 0 for any u ∈ V .

For S ⊆ V , define the noncentrality NCG (S) of S in G as

NCG (S) =
∑
v ∈V

min

u ∈S
L(u,v).

Then k-median problem is defined as follows.

Problem 1. Given a connected undirected graph G = (V , E) with
length function ℓ : E → (0,∞), find the set of k vertices S(⊆ V ) which
minimizes its noncentrality NCG (S).

4 ALGORITHM
4.1 Algorithm IDNC

In this paper, we propose an approximate algorithm IDNC (Itera-

tively Decreasing NonCentrality) that iteratively decreases the non-

centrality of current vertex k-set S . The pseudocode of Algorithm
IDNC is shown in Algorithm 1. For a given connected undirected

graph G = (V , E) with edge length function ℓ : E → (0,∞), the
algorithm initially selects a set S of k vertices at random. Then in

each iteration, the set S is updated so as to decrease NCG (S) by the

following procedure.

First, the shortest path forest of G for the set of roots S =
{vi1 , . . . ,vik }, which is composed of k trees (V1, E1), . . . , (Vk , Ek ),
is calculated by Procedure SPF (Shortest Path Forest), where Vj is
the set of vertices inV whose nearest vertex in S isvi j , and Ei is the
set of edges in E that are contained in the shortest paths from vi to
all the vertices v in Vi . Note that SPF is Dijkstra’s algorithm [7] for

multiple roots. Then, for each component tree (Vj , Ej ) (j = 1, . . . ,k),
the algorithm calculates the vertexvi j amongv ∈ Vj that minimizes

the noncentrality NC(Vj ,Ej )({v}), that is, the algorithm solves 1-

median problem for tree (Vj , Ej ) with edge length function ℓ. The

1-median problem for a tree with n vertices is known to be solvable

in O(n) time by Goldman’s algorithm [10]. The algorithm stops

outputting S when the decrease of NCG (S) stops.
For a connected undirected graph with n vertices andm edges,

a shortest path forest can be calculated in O(m + n logn) time and

Algorithm 1 IDNC(G)

Input: G = (V , E): connected undirected graph

with length function ℓ : E → (0,∞)
Output: S : approximate solution of k-median problem

1: S ′ ← the set of randomly selected k vertices in V
2: repeat
3: S ← S ′

4: (V1, E1), . . . , (Vk , Ek ) ← SPF(G, S)
5: S ′ ← ∅
6: for j = 1 to k do
7: v ′i j ← argminv ∈Vj NC(Vj ,Ej )({v})

8: S ′ ← S ′ ∪ {v ′i j }

9: end for
10: until NCG (S) ≤ NCG (S

′)

11: return S

Procedure SPF(G, S)
Input: G = (V , E): connected undirected graph

with length function ℓ : E → (0,∞)
S = {vi1 , . . . ,vik } ⊆ V : set of roots

Output: (V1, E1), . . . , (Vk , Ek ): shortest path forest for G
with the set of roots S

1: LS (v) ← ∞ for all v ∈ V \ S
2: for j = 1 to k do
3: VS (vi j ) ← j, Vj ← {vi j }, Ej ← ∅
4: for v ∈ V with (vi j ,v) ∈ E do
5: if LS (v) > ℓ((vi j ,v)) then
6: LS (v) ← ℓ((vi j ,v)), P(v) ← vi j
7: end if
8: end for
9: end for
10: Q ← V \ S
11: while Q , ∅ do
12: u ← argminv ∈Q LS (v), Q ← Q \ {u}
13: j ← VS (P(u))
14: VS (u) ← j, Vj ← Vj ∪ {u}, Ej ← Ej ∪ {(P(u),u)}
15: for v ∈ Q with (u,v) ∈ E do
16: if LS (v) > LS (u) + ℓ((u,v)) then
17: LS (v) ← LS (u) + ℓ((u,v)), P(v) ← u
18: end if
19: end for
20: end while
21: return (V1, E1), . . . , (Vk , Ek )

O(m) space by Dijkstra’s algorithm, and the calculation of v ′i j at

Line 7 takes O(|Vj |) time and space for j = 1, . . . ,k by Goldman’s

algorithm, thus the Line 6-9 for-loop takes O(n) time and space,

where |Vj | is the number of vertices in Vj . Therefore, one iteration
of the Line 2-10 repeat-loop takes O(m + n logn) time and O(m)
space. So, Algorithm IDNC runs inO(r (m+n logn)) andO(m) space
if the number of executing the repeat-loop is at most r .

Remark 1. The number of iterations r can be upper bounded by
nCk ≤ nk due to IDNC’s nonincreasing guarantee of noncentrality
(Theorem 4.1). Though this upper bound looks too large, r is expected
to be very small for real-world datasets. In fact, r is at most 15 for
pmed datasets according to our experiment.
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4.2 Guarantee for NC Nonincrease
In each iteration, a set S ′ of k vertices is calculated from the current

set S of k vertices. We can guarantee that NCG (S
′) is always at

most NCG (S).

Theorem 4.1. In the Line 2-10 repeat of Algorithm IDNC, Ineq.
NCG (S

′) ≤ NCG (S) always holds at the end of the repeat (Line 10).

Proof. Let S = {vi1 , . . . ,vik } and S ′ = {v ′i1 , . . . ,v
′
ik
} denote

the two sets S and S ′ at Line 10 of Algorithm IDNC. In the repeat,

NCG (S) =
∑k
j=1 NC(Vj ,Ej )({vi j }) holds for the shortest path forest

(V1, E1), . . . , (Vk , Ek ) ofG for the set S of roots, which is calculated

by SPF(G, S) at Line 4. Since v ′i j = argminv ∈Vj NC(Vj ,Ej )({v}) by

Line 7,NC(Vj ,Ej )({v
′
i j }) ≤ NC(Vj ,Ej )({vi j }) holds for j = 1, . . . ,k . It

is trivial thatNCG (S
′) ≤

∑k
i=1 NC(Vj ,Ej )({v

′
i j }) holds, soNCG (S

′) ≤

NCG (S) always holds. □

5 EXPERIMENT
5.1 Experimental Settings
We used the pmed dataset in OR-Library [4], which is a synthetic

dataset used in [3]. The dataset is composed of 40 undirected graphs

with n vertices and n2/50 edges generated by randomly connecting

pairs of different vertices for n = 100, 200, . . . , 900. The length

of each edge was uniformly generated from {1, 2, . . . , 100}. The

dataset contains the optimal (minimum) noncentrality of k-median

problem for each graph and specific k assigned to the graph, and we

can calculate approximation ratio using it. In our experiment, we

only use the 5 graphs (pmed16∼20) with 400 vertices and 9 graphs

(pmed1,6,11,16,21,26,31,35,38) whose assigned k is 5.

All the experiments were conducted using an Ubuntu 16.04.2 LTS

OS machine with a Intel(R) Core(TM)2 Quad CPU Q9550 2.83GHz

and 4GBmemory. We implemented IDNC andWarshall–Floyd (WF)

algorithms using the C++ language.

5.2 Results
5.2.1 Number of Iterations. The running time of Algorithm

IDNC depends on the number of executing the repeat-loop in Algo-

rithm 1, though a vertex with near optimal noncentrality can not

be expected for the case with too few iterations.

We conducted experiments to check frequency distribution of

the number of repeat-loop iterations using 5 pmed graphs with

400 vertices by running IDNC 1000 times with different seeds of

randomization. The results are shown in Table 1 and 2. The number

of the iterations is small: 3.78 ∼ 7.74 on average for k = 5 ∼ 133,

so Algorithm IDNC is practically fast. The number of the iterations

increases as k increases, but it does not change as the number of

vertices n increases.

5.2.2 Approximation Ratio. The approximation-ratio distribu-

tion of solutions outputted by Algorithm IDNC is checked by run-

ning the algorithm 1000 times with different seeds of randomiza-

tion for each of 5 graphs with 400 vertices and originally-assigned

k = 5, 10, 40, 80, 133.

The Box plot of the approximation ratio is shown in Figure 1.

In the Figure, the result for randomly selected k-set is also shown

Table 1: Frequency distributions of the number of repeat-
loop iterations over 1000 runs of Algorithm IDNC for each
of the 5 pmed graphs with 400 vertices.

#Iteration

k = 5 k = 10 k = 40 k = 80 k = 133

pmed16 pmed17 pmed18 pmed19 pmed20

1 4 0 0 0 0

2 151 38 0 0 0

3 335 220 17 3 0

4 256 304 138 34 14

5 136 222 220 146 70

6 80 114 266 226 169

7 24 55 174 219 229

8 9 24 113 198 215

9 5 13 41 86 152

10 0 8 18 51 78

11 0 2 7 27 44

12 0 0 3 7 16

13 0 0 3 3 9

14 0 0 0 0 2

15 0 0 0 0 2

Ave. 3.78 4.542 6.122 7.052 7.742

Table 2: Frequency distributions of the number of repeat-
loop iterations over 1000 runs of Algorithm IDNC for 5-
median problem using each of the 9 pmed graphs.

Graph

n = 100 n = 200 n = 300 n = 400

pmed1 pmed6 pmed11 pmed16

Ave. #Ite. 3.737 3.285 3.779 3.78

n = 500 n = 600 n = 700 n = 800 n = 900

pmed21 pmed26 pmed31 pmed35 pmed38

3.539 3.568 3.691 3.549 3.638

k=5 k=10 k=40 k=80 k=133
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Figure 1: Box plot of the approximation ratio for each of the
5 pmed graphs with 400 vertices over 1000 runs

for comparison. IDNC works properly since the randomly selected

k-set can be considered as its initial k-set.
We also compared IDNC performance with those of Degree and

BC, which are the methods that select the k vertices with the top
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Table 3: Running time averaged over 1000 runs for 5-median problem using each of the 9 pmed graphs. OOM means that the
algorithm cannot output a solution due to CPLEX’s out-of-memory error.

Graph

n = 100 n = 200 n = 300 n = 400 n = 500 n = 600 n = 700 n = 800 n = 900

pmed1 pmed6 pmed11 pmed16 pmed21 pmed26 pmed31 pmed35 pmed38

IDNC 0.001336 0.004496 0.011487 0.020563 0.030748 0.045127 0.064287 0.082286 0.107724

Degree 0.000177 0.000576 0.001223 0.002495 0.003556 0.005104 0.017607 0.029295 0.031605

BC 0.000177 0.050645 0.051632 0.092465 0.184076 0.304972 0.457461 0.579401 0.833501

WF+CPLEX 0.450000 8.100000 21.890000 75.000000 39.600000 320.230000 1433.420000 OOM OOM

WF 0.014334 0.100239 0.329614 0.779646 1.516490 2.613990 4.140870 6.175410 8.785920
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Figure 2: Approximation ratio averaged over 1000 runs for
each of the 5 pmed graphs with 400 vertices

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900

ru
nn

ni
ng

 t
im

e(
se

c)

Number of vertices

IDNC

BC

Degree

WF+CPLEX

WF

Figure 3: Curve of the running time averaged over 1000 runs
for 5-median problem. Note that the y-axis is log-scaled.

scores in terms of simple centrality measures, degree centrality
(degree centrality of v: the number of vertices having an edge

connected to v) and betweenness centrality (betweenness centrality

of v: the number of vertex pairs between which the shortest path

passesv) [9]. The results are shown in Figure 2. We can see that the

approximation ratio achieved by IDNC is significantly better than

those achieved by the above two methods using simple centrality

measures. The superiority of IDNC seems caused by taking account

of edge lengths, which are considered in neither Degree nor BC.

5.2.3 Running time. The running time of IDNC was also demon-

strated for 5-median problem by running IDNC 1000 times for each

of the 9 graphs with different number of vertices. For comparison,

we also executed the exact algorithm WF+CPLEX, and the two

simple algorithms used in Sec. 5.2.2 (Degree and BC). To know

the conversion time from edge-weighted graph to 0-1 integer pro-

gramming problem, the running time of WF alone was measured,

too.

The results are shown in Figure 3 and Table 3. The algorithm for

exact solutions, WF+CPLEX is too slow to solve the problem for

large-sized graphs. Even WF algorithm alone cannot be used for

large-sized problems. Algorithm IDNC is faster than BC but slower

than Degree, both of which achieved the approximate ratio worse

than IDNC.

6 CONCLUSION
We proposed an efficient approximate algorithm for k-median prob-

lem on a graph and demonstrated its effectiveness in computation

time and approximation ratio using the pmed dataset. Checking

effectiveness for large real-world networks is our future work.
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