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ABSTRACT
Node embedding is faced with several important challenges. Practi-

cal node embedding methods are required to cope with real-world

graphs that arise from a variety of different domains, with inher-

ently diverse underlying processes and similarity structures. On

the other hand, much like PCA in the feature domain, node embed-

ding is an inherently unsupervised task; in lack of metadata used

for validation, practical methods may require standardization and

limiting the use of tunable hyperparameters. Finally, node embed-

ding methods are faced with maintaining scalability in the face

of large-scale real-world graphs of ever-increasing sizes. In the

present work, we propose an adaptive node embedding framework

that adjusts the embedding process to a given underlying graph, in

a fully unsupervised manner. To achieve this, we adopt the notion

of a tunable node similarity matrix that assigns weights on paths of

different length. The design of the multilength similarities ensures

that the resulting embeddings also inherit interpretable spectral

properties. An algorithmic scheme is proposed for training the

model parameters effieciently and in an unsupervised manner. We

perform extensive node classification, and clustering experiments

on many real world graphs from various domains, and compare

with state-of-the-art scalable and unsupervised node embedding

alternatives. The proposed method enjoys superior performance in

many cases, while also yielding interpretable information on the

underlying structure of the graph.
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1 INTRODUCTION
Unsupervised node embedding is an exciting field, in which a sig-

nificant ammount of progress has been made in recent years [10].

The task consists of mapping each node of a graph to a vector in

a low-dimensional Eucledian space. The main goal is to extract
features that can be utilized downstream in order to perform a va-

riety of unsupervised or semi-supervised learning tasks, i.e. node
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classification, link prediction, or clustering. In theory, the original

graph will contain at least as much information as the resulting

embedded vectors. Nevertheless, an appropriate embedding can

boost the performance of certain learning tasks by allowing us to

work with the more “friendly” and intuitive Eucledian represen-

tation, and deploy mature and widely implemented feature-based

algorithms such as SVMs, logistic regression, and K-means.

Early embedding work mostly focused on a structure-preserving

dimensionality reduction of feature vectors (instead of nodes); see

for instance [15–19]. In this context, graphs are constructed from

pairwise feature-vector relations and are treated as representations

of the manifold that data lie on; embedded vectors are then gen-

erated such that they preserve the corresponding pair-wise prox-

imities on the manifold. More recently, the task of embedding the

nodes of a graph has attracted considerable attention in different

fields, and is often posed as the factorization of a properly defined

node similarity matrix [20–27]. Efforts in this direction mostly fo-

cus on designing meaningful similarity metrics to factorize. While

some methods (e.g. [20, 22]) maintain scalability by factorizing

similarity matrices in an implicit manner (i.e., without explicitly

forming them) , others such as [23, 24] form and/or factorize dense

similarity matrices that scale poorly to large graphs. Another line

of work opts to gradually fit pairs of embedded vectors to existing

edges using stochastic optimization tools [28, 30]. Recently, stochas-

tic edge-fitting has been generalized to implicitly accommodate

long-range node similarities [29]. Meanwhile, other works have

approached node embeddings using random-walk-based tools and

concepts that originate in natural language processing [31–33]; see

also related works on embedding of knowledge graphs [34, 35].

Methods that rely on graph convolutional neural networks and

autoencoders have also been proposed for node embedding [38, 39].

Moreover, a gamut of related embedding tasks are gaining traction,

such as embedding based on structural roles of nodes [36, 37], super-

vised embeddings for classification [7], and inductive embedding

methods that utilize multiple graphs [6].

We identify the following challenges that need to be addressed in
order to design embedding methods that are applicable in practice:

• Diversity. Since graphs that arise from different domains are

generally characterized by a diverse set of properties, there

may not be a “one-size-fits-all” node embedding approach.

• No supervision. At the same time, node embedding may

need to be performed in a fully unsupervised manner, that

is, without extra information (node attributes, labels, or

groundtruth communities) to guide the parameter tuning

process with cross-validation.

• Scalability. While some real world networks are of mod-

erate size, others may contain massive numbers of nodes

and edges. Thus, strict computational constrains need to be

incorporated into the design of node embedding methods.
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Targeting at the three aforementioned challenges, we propose a scal-

able node embedding framework that is based on jointly factorizing

and learning an adaptive node similarity matrix that places weights

on node proximities of different orders. The learning approach is

unsupervised, and uses only the graph structure. Experiments in-

dicate that the proposed similarity model is expressive enough to

effectively embed real-world graphs from diverse domains and with

different structures and properties.
2

2 PROBLEM STATEMENT AND MODELING
Given an undirected graph G := {V, E}, whereV is the set of N
nodes, and E ⊆ V × V is the set of edges, the task of node em-

bedding boils down to determining f (·) : V → Rd , where d ≪ N .

Thus, we seek for a functions that maps every node of the graph

to a vector in the d−dimensional Eucledian space; typically, the

embedding is low-dimensional with d being much smaller than the

number of nodes. Since the number of node on a graph is finite,

instead of finding a general f (·) (induction), one may pose the em-

bedding task in its most general form as the following minimization

problem wrt to the embedded vectors

{e∗i }i ∈V = arg min

{ei }i∈V

∑
i, j ∈V

ℓ
(
sG(vi ,vj ), sE (ei , ej )

)
, (1)

where ℓ(·, ·) : R×R→ R is a loss function; sG(·, ·) : V×V → R is a
similarity metric defined over every pair of nodes of the graph; and,
sE (·, ·) : R

d ×Rd → R is a similarity metric defined over every pair

of vectors in the d−dimensional Eucledian space. Thus, according to

(1), node embedding can be viewed as the design of vectors {ei ∈V }

that successfully “encode” a certain notion of pairwise similarities

between nodes.

2.1 Embedding as matrix factorization
Starting from the generalized framework in (1), one may arrive at

more concrete approaches by imposing specifications to sG(·, ·),
sE (·, ·), and ℓ(·, ·). Thus, let us specify the node similarity metric to

be symmetric, i.e. sG(vi ,vj ) = sG(vi ,vj ) ∀vi ,vj ∈ V . Furthermore,

let the loss function be quadratic ℓ(x ,x ′) = (x − x ′)2, and the vector
similarity be the inner product sE (ei , ej ) = eTi ej . Using the above
specifications, (1) becomes equivalent to the following symmetric

matrix factorization problem

E∗ = arg min

E∈RN×d
∥SG − EET ∥2F (2)

where SG ∈ RN×N
is the symmetric similaritymatrixwith

[
SG

]
i, j =[

SG
]
j,i = sG(vi ,vj ), and matrix E = [e1 . . . eN ]T concatenates all

the node embeddings as rows. A well known way to obtain an ana-

lytical solution to (2) is via the singular value decomposition (SVD)

of the similarity matrix, that is SG = UΣVT , where U and V are the

N × N unitary matrices containing the left and right singular vec-

tors, and Σ is diagonal with non-negative singular values sorted in

decreasing order; in our case, U = V since SG is symmetric. Given

the SVD of SG , it can be shown [13] that E∗ = Ud
√
Σd , where Σd

contains the d largest singular values and Ud the corresponding

singular vectors. Fortunately, Ud and Σd can be obtained directly,

2
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without computing the full SVD, via a process known as the trun-
cated SVD that has reduced complexity. Moreover, if SG is sparse,
(2) can be solved even more efficiently, with complexity that scales

with the number of edges. One example of such sparse similari-

ties is the adjacency matrix itself A, i.e., using SG = A. In general,

embeddings can achieve computational scalability by avoiding the

explicit construction of a dense SG . In fact, simply storing SG into

working memory becomes prohibitive even for graphs of moder-

ate sizes (N > 10
5
). In the following section, we design a family

of dense similarity matrices that (among other properties) can be

decomposed implicitly, at the cost of input sparsity.

2.2 Multi-length node similarities
Having reduced the node embedding problem to the one in (2), it

remains to specify the node similarity metric that gives rise to SG .
Towards this directions, and to maintain expressibility, we will aim

at designing a parametrized model for SG , where each pairwise

node similarity is given as

sG(ui ,vj ;θ ) =
K∑
k=1

θks(vi ,vj ,k), s.t. θ ∈ SK , (3)

where SK
:= {θ ∈ RK : θ ≥ 0,θT 1 = 1} is the K−th dimensional

probability simplex, and s(vi ,vj ,k) is a similarity function that

depends on all k−length paths (of possibly repeated nodes) that

start from vi and end in vj (or vice-versa). Thus, sG(·, ·;θ ) contains
all k−length (for k ≤ K) interactions between two nodes, each

weighted with a non-negative importance score θk .
Let S be any similarity matrix that is characterized by the same

sparsity pattern as the adjacency matrix, that is

Si, j =

{
si, j , (i, j) ∈ E

0, (i, j) < E
, (4)

where si, j ’s denote the generic non-negative values of entries that
correspond to edges of G. Maintaining the same sparsity pattern

as A allows for the (i, j) the k−th power Sk to be interpreted as

a measure of influence between vi and vj that depends on all

k−length paths that connect them; that is,

[
Sk

]
i, j
= s(v1,v2,k).

For instance, selecting S = A is equivalent to using the k−step
similarity s(vi ,vj ,k) = |{k − length paths connectingvi tovj }| [8].

Similarly, if S = AD−1
where D = diag(1TA), then s(vi ,vj ,k) can

be interpreted as the probability that a random walk starting from

vj lands on vi after exactly k steps, e.g., [24]. Thus, for an appro-

priately selected S that follows (4), tunable multi-length similarity

metrics in (3) can be collected as matrix entries in the form of a

power series, that is

SG(θ ) =
K∑
k=1

θkS
k , s.t. θ ∈ SK

(5)

Upon, substituting (5) into (2) yields the tunable embeddings E∗(θ )
that depend on the choice of parameters θ . Moreover, from the SVD

S = UΣUT , and given that UTU = I, it readily follows that

Sk = UΣkUT , (6)

https://arxiv.org/pdf/1811.10797.pdf
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and by using (6) in (5) we obtain

SG(θ ) = U

( K∑
k=1

θkΣ
k

)
UT , s.t. θ ∈ SK . (7)

Furthermore, the truncated singular pairs of SG(θ ) conveniently
follows from that of S and thus only needs to be computed once.

Specifically, the truncated singular vectors and singular values are

given as Ud (θ ) = Ud and Σd (θ ) =
∑K
k=1 θkΣ

k
d respectively. Thus,

if S ∈ SymN the solution to (2) with SG parametrized by θ is simply

given as

E∗(θ ) = Ud
√
Σd (θ ) (8)

Note that this holds only for non-negative parameters, i.e. θk ≥

0 ∀k . If θk < 0 for at least onek ∈ [1,K], then the diagonal elements

of Σd (θ ) cannot be guaranteed to be non-negative and sorted in

decreasing order, which would cause (Ud (θ ), Σd (θ )) to not be a

valid SVD pair. Finally, having narrowed down SG to belong to the

parametrized family in (5), we arrive at selecting an appropriate

sparsity-preserving S in order to obtain a solid model.

2.3 Spectral multi-length embeddings
While any symmetric S that obeys (4) can be used for constructing

multi-length similarities (cf. (5)), certain desirable properties may

materialize by properly designing S. We begin by recalling the

following identity

S ∈ P+N ⇐⇒ S = UΣUT = UΛUT , (9)

where P+N denotes the space of N × N symmetric positive definite

(SPD) matrices, and Λ is the diagonal matrix that contains the

eigenvalues of S sorted in decreasing order. According to (9), for

SPD matrices, the SVD is identical to the eigenvalue decomposition

(EVD). Thus, if S ∈ P+N , the solution to (2) is also given as (cf.(8))

E∗(θ ) = Ud
√
Λd (θ ), (10)

whereUd are also the firstd eigenvectors of S, andΛd (θ ) =
∑K
k=1 θkΛ

k
d

is the K−order polynomial of its eigenvalues defined by θ .
Consider now that we specify S to be

S =
1

2

(
I + D−1/2AD−1/2

)
. (11)

Clearly, (11) is SPD; this follows upon recalling that λi
(
D−1/2AD−1/2

)
∈

[−1, 1] ∀ i , and from identity shifting and scaling, it readily follows

that λi (S) ∈ [0, 1] ∀ i . More importantly, it can easily be verified

that the first d eigenvectors of S are the same as the eigenvectors

that correspond to the d smallest eigenvalues of the symmetric

normalized Laplacian matrix

Lsym := I − D−1/2AD−1/2. (12)

The latter are known to contain useful information on cluster struc-

tures of different resolution levels, a key property that has been

succesfully used by spectral clustering [11]. Intuitively, assigning

weight θk to k−length paths in the node similarity in (5), is equiva-

lent (10) to shrinking the d−dimensional spectral node embeddings

(rows of Ud ) coordinates according to Λd (θ ). Interestingly, assign-
ing large weights to longer paths (K ≫ 1) is equivalent to fast

shrinking of the coordinates that correspond to small eigenvalues

and capture the fine-grained structures and local relations, and

leads to a coarse, high-level cluster description of the graph.

3 UNSUPERVISED SIMILARITY LEARNING
For a given graph, we must select a specific θ ∈ SK

without super-

vision. Let us begin by assuming that for a given set of nodes, an

adjacency matrix A is generated according to a distribution fA(A)
defined over the space of all possible adjacency matrices. We define

the “true” underlying similarity between nodes vi and vj to be

s∗(vi ,vj ) := Pr{(i, j) ∈ E} = EfA
[
Ai, j

]
,

which is the probability that the two nodes are connected. The

“true” similarity matrix is thus given as the expected adjacency

matrix S∗ := EfA [A]. Since SG(θ ) = SG(A;θ ) essentially acts as an

estimate of S∗ from one graph realization (A), one is motivated to

fit the parameters θ , ideally by minimizing an expected cost as

θ∗ = arg min

θ ∈SK
EfA

[
ℓ
(
S∗, SG(A;θ )

) ]
(13)

Unfortunately, we only have one realizationA of fA(·)which means

that, in the absence of some prior knowledge, the best approxima-

tion of S∗ that we can obtain is the adjacency matrix itself, that is

S∗ ≈ A. Using this approximation yields

min

θ ∈SK
ℓ
(
A, SG(A;θ )

)
. (14)

While straightforward, (14) yields embeddings with limited gen-

eralization capability. Simply put, regardless of the choice of ℓ(·),

solving (14) amounts to predicting a set of edges by tuning a simi-

larity metric that is generated by the same set of edges.
To mitigate overfitting and promote generalization of the similar-

ity metric, and of the resulting embeddings, we explore the folowing

idea. Assume that we are given a pair A1,A2 of adjacency matrices

both drawn independently from fA(·). In that case, we would be

able to use one as approximation of S∗ ≈ A1, and the other to form

the multilength similarity matrix SG(A2;θ ); parameters θ can then

be learned by solving

min

θ ∈SK
ℓ
(
A1, SG(A2;θ )

)
. (15)

Since separate samples are not available, we approximate the above

process by randomly extracting part of A and approaching (15) as

min

θ ∈SK
ℓS

(
A, SG(A ∗ Sc ;θ )

)
, (16)

where S ∈ {1, . . . ,N }2 is a subset of all possible pairs of nodes

with |S| = Ns , and Sc is an N × N binary section matrix with

Sci, j = 0 if {i, j} ∈ S and Sci, j = 1 otherwise; furthermore, ℓS(·, ·) in

(16) denotes cost ℓ(·, ·) applied selectively only for the entries of the

matrix variables that belong to S. Here, such that S = S+ ∪ S−
,

with S+ ∈ E being as subset of the edges and S− ∈ {1, . . . ,N }2 \E

a subset of node index tuples that are not connected (non-edges).

To balance the influence of existing and non-existing edges, we use

subsets of equal cardinality, that is |S+ | = |S− | = Ns/2.

To arrive from the unsupervised similarity learning framework

(16) to an applicable method, it remains to specify two modular sub-

systems: one responsible for sampling edges, and one that specifies

ℓ(·, ·) and finds θ∗ by solving (16).



KDD19 (MLG Workshop), August 2019, Alaska, USA Berberidis and Giannakis

3.1 Edge sampling
The choice of sampling scheme for S plays an important role in the

overall performance of the proposed adaptive embedding frame-

work. Ideally, edge sampling should satisfy the following criteria

• Sample S+ should be representative of the graph.

• Edge removal should inflict minimal perturbation.

• Edge removal should avoid isolating nodes.

• Simplicity and scalability.

To strike a good balance between the above objectives, we popu-

late S+ by sampling edges according to the following procedure:

first, a node v1 is sampled uniformly at random from V; then, a

second node v2 is sampled uniformly from the neighborhood set

NG(v1) of v1. The selected edge is removed only if both adjacent

nodes have degree larger than one. Non-edges S−
are obtained by

uniform sampling without replacement over {1, . . . ,N }2 \ E. The

overall procedure is summarized in Algorithm 2. For Ns ≪ N , sam-

pling probabilities remain approximately unchanged despite the re-

movals, since the probability of selecting the same node is relatively

small. Thus, one may approximate Pr{et = (i, j)} ≈ Pr{e0 = (i, j)},
and assuming for simplicity that di > 1∀i , it follows that

Pr{e0 = (i, j)} = Pr{v1 = i,v2 = j} + Pr{v1 = j,v2 = i}

= Pr{v2 = i |v1 = j} Pr{v1 = j}

+ Pr{v2 = j |v1 = i} Pr{v1 = i}

=
1

dj

1

N
+

1

di

1

N
∝
di + dj

didj
, (17)

meaning that edge e = (i, j) is removed with probability that is

proportional to the harmonic mean of the degrees of the nodes

that it connects. As shown in [9], the perturbation that the removal

of edge e = (i, j) inflicts on the spectrum of an undirected graph

is proportional to didj ; that is, removing edges that connect high-

degree nodes leads to higher perturbation. Thus, Algorithm 2 tends

to inflict minimal perturbation by sampling with probability that

is inversely proportional to didj for di , dj ≫ 1; this follows the

fact that the denominator of (17) dominates its numerator for large

degrees. On the other hand, for smaller di and dj , the numerator

ensures relatively high probabilities for moderate-degree nodes.

The combination of the two effects produces edge samples that are

fairly representative of the graph, while inflicting low perturbation

when removed.

3.2 Parameter training
Subsequently, for a given sample S, we can obtain the correspond-

ing optimal parameters as (cf. (16))

θ∗
S
= arg min

θ ∈SK

∑
i, j ∈S

ℓ
(
Ai, j , sG− (ui ,vj ;θ )

)
(18)

where G− =
(
V, E \ S+

)
is the original graph with the randomly

sampled subset S+ of edges removed.

Instead, we will rely on the fact that the proposed embeddings

are smooth and differentiable wrt toθ (cf. (10)), to develop a solution

Algorithm 1 Adaptive Similarity Embedding

Input: G Output: E

// Training phase

Θ = ∅

while |Θ| < Ts do
G−

, S+, S− = Sample Edges( G )

θ∗
S
= Train Parameters( G−,S+,S−

)

Θ = Θ ∪ θ∗
S

end while
θ∗ = T−1

s
∑
θ ∈Θ θ

// Embedding phase

S = 1

2

(
I + D−1/2AD−1/2

)
S = UdΣdUTd
Σd (θ

∗) =
∑K
k=1 θ

∗
kΣ

k
d

return E = Ud
√
Σd (θ

∗)

Algorithm 2 Sample Edges

Input: G Output: G−,S+,S−

// Sample edges

S+ = ∅, G− = G

while |S+ | < Ns/2 do
Sample v1 ∼ Unif (V)

if |NG− (v1)| > 1 then
Sample v2 ∼ Unif

(
NG− (v1)

)
if |NG− (v2)| > 1 then

S+ = S+ ∪ (v1,v2)
G− = G− \ (v1,v2)

end if
end if

end while

// Sample non-edges

S− = ∅

while |S− | < Ns/2 do
Sample (v1,v2) ∼ Unif (V ×V)

if (v1,v2) < E then
S− = S− ∪ (v1,v2)

end if
end while
return G−

, S+, S−

Algorithm 3 Train Parameters

Input: G, S+, S− Output: θ∗
S

S = 1

2

(
I + D−1/2AD−1/2

)
S = UdΣdUTd
S = S+ ∪ S−

Form XS = {x(i, j)}(i, j)∈S as in (20)

return θ∗
S
= SimplexSVM( XS ,S

+,S−
)
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that allows for selecting arbitrarily large Ns , using the approxima-

tion

sG− (ui ,vj ;θ ) ≈ sE (e−i (θ , e
−
j (θ )) =

(
e−i (θ )

)T e−j (θ )

=
(√

Σ−d (θ ) u
−
i

)T √
Σ−d (θ ) u

−
j

=
(
u−i

)T Σ−d (θ )u
−
j = xTi, j θ (19)

where

xi, j =
(
u−i ∗ u−j

)T
ΣKd , (20)

and

ΣKd =


σ1 σ 2

1
· · · σK

1

...
...

. . .
...

σd−1 σ 2

d−1 · · · σKd−1
σd σ 2

d · · · σKd


.

Conveniently, xi, j ’s act as features over every possible pair of nodes,
which when linearly combined with weights θ to produce similari-

ties; this allows us to approach (18) using well-understood learning

and optimization tools. For instance, let us define ℓ(·) to be the

Hinge loss ℓ(y, f ) := max(0, ϵ − y f ), and, upon defining targets

yi, j = 2 ∗Ai, j − 1 such that yi, j ∈ {−1, 1}, (18) can be equivalently

expressed as

θ∗
S
= arg min

θ ∈SK

∑
i, j ∈S

max(0, ϵ − yi, jxTi, j θ ) + λ∥θ ∥
2

2
(21)

where λ ≥ 0 is the regularization parameter of the ℓ2 regularization

typically used to improve the generalization of SVMs. To solve

our variant of simplex-constrained SVM’s (cf. (21)), we employ

the projected-gradient descent [3] approach where projection onto

SK
is performed with O(K logK) complexity as described in [14].

The overall parameter learning procedure for a given sample is

summarized in Algorithm 3.

In general, if the runtime or computational budget allows, the

sampling and training process described in the last two sections

can be repeated for Ts times to obtain different θ∗
S
’s, which can

then be averaged in order to reduce their variance. In practice,

this may not be necessary if Ns is large enough, which will yield

a near-deterministic θ . The overall proposed adaptive-similarity

embedding (ASE) framework is summarized in Algorithm 1.

Complexity. The computational complexity of ASE is dominated

by the cost of performing the truncated SVD of S in the training

as well as testing phaze of Algorithm 1. Relying on the sparsity

(|E | ≪ N 2
) and symmetricity of S, the Lanczos algorithm followed

by EVD of a tridiagonal matrix yield the truncated SVD in a very

efficient manner. Provided that d ≪ N , the decomposition can

be achieved in O(|E|d) time and using O(Nd) memory. Therefore,

for the Ts ≥ 1 training rounds and single embedding round in

Algorithm 1, the total complexity is O((Ts + 1)|E |d).

4 EXPERIMENTAL EVALUATION
The present section reports extensive experimental results on a

variety of real-world networks
3
. The aim of the experimentation

was twofold. First, to determine and quantify the quality of the

3
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Table 1: Network Characteristics

Graph |V| |E | |Y| Density

PPI (H. Sapiens) 3,890 76,584 50 10
−2

Wikipedia 4,733 184,182 40 1.6 × 10
−2

BlogCatalog 10,312 333,983 39 6.2 × 10
−3

ca-CondMat 23,133 93,497 - 3.5 × 10
−4

email-Enron 36,692 183,831 - 2.7 × 10
−4

CoCit 44,312 195,362 15 2 × 10
−4

com-Amazon 334,863 925,872 - 1.7 × 10
−5

proposed ASE embeddings for different downstream learning tasks.

Second, to analyze and interpret the resulting embedding parame-

ters for different networks.

Methods. Experiments were run using the following unsupervised
and scalable embedding methods: a) ASE. Our proposed adaptive

similarity embedding. Based on observations made in Sections 3,

and to retain optimization stability, we set the maximum number

of steps to K = 10. We also use the default SVM regularizer λ = 1,

and sampling Ns/2 = 1000 allowed for a single learning round

Ts = 1 since parameters are learned with small enough variance.

We made our implementation of ASE freely available
4
. b) VERSE

[29]. This is a scalable framework for generating node embeddings

according to a similarity function by minimizing s KL-divergence-

objective via stochastic optimization. We used the default version

with similarity (PPR with α = 0.85), as implemented by the code
5

provided by the authors. c) Deepwalk [32]. This approach learns

an embedding by sampling random walks from each node, apply-

ing word2vec-based learning on those walks. We use the default

parameters described in the paper, i.e., walk length t = 80, number

of walks per node γ = 80, and window sizew = 10, and the scalable

C++ implementation
6
provided in [29]. d) HOPE [22]. This SVD-

based approach approximates high-order proximities and leverages

directed edges. We report the results obtained with the default

parameters, i.e, Katz similarity as the similarity measure with β
inversely proportional to the spectral radius. e) LINE [28]. This ap-

proach learns a d−dimensional embedding in two steps, both using

adjacency similarity. First, it learnsd/2 dimensions using first-order

proximity; then, it learns another d/2 features using second-order

proximity. Last, the two halves are normalized and concatenated.

We obtained a copy of the code
7
and run experiments with total

T = 10
10

(although T = 10
9
yielded the same accuracy for smaller

graphs) samples and s = 5 negative samples, as described in the

paper. f) Spectral. This the first d eigenvectors of D−1/2AD−1/2
.

This baseline was developed for clustering [11], and has also been

run as a benchmark for node embeddings [33]. In our case, spec-

tral embedding is of particular interest since it can be obtained by

column-wise normalization of the embeddings generated by the pro-

posed method. We excluded comparisons with Node2vec [33] and

AROPE [8] because they use cross-validation for hyper-parameter

4
https://github.com/DimBer/ASE-project

5
https://github.com/xgfs/verse

6
https://github.com/xgfs/deepwalk-c

7
https://github.com/tangjianpku/LINE

https://snap.stanford.edu/data/index.html
https://github.com/DimBer/ASE-project
https://github.com/xgfs/verse
https://github.com/xgfs/deepwalk-c
https://github.com/tangjianpku/LINE
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Table 2: Inferred parameters and interpretation

Graph θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 range strength

PPI (H. Sapiens) 0.00 0.14 0.31 0.29 0.21 0.04 0.00 0.00 0.00 0.00 medium medium

Wikipedia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.37 0.62 long strong

BlogCatalog 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short very strong

ca-CondMat 0.55 0.33 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong

email-Enron 0.24 0.25 0.18 0.14 0.1 0.06 0.02 0.00 0.00 0.00 medium weak

CoCit 0.61 0.33 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 short strong

com-Amazon 0.10 0.10 0.10 0.10 0.09 0.09 0.09 0.09 0.09 0.09 short very weak
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Figure 1: Micro (blue) and Macro (orange) F1 scores for the four labeled graphs, when the “pure” k−order Sk is used for embed-
ding, given as a function of k . Red shade denotes the k’s where ASE assigned non-zero θk ’s; see also Table 2.

selection. Thus comparing Node2vec and AROPE to methods such

as LINE, Deepwalk, HOPE, VERSE, and EMB that all operate with

fixed hyperparameters in a fully unsupervised manner would be

unfair. We also excluded comparisons with GraRep [24] and M-

NMF [23] due to their limited scalability ( O(N 2d) computational

and O(N 2) memory complexity). Our experiment setting follows

the one in [29]. All methods are set to embed nodes to dimension

d = 100. Using the resulting embeddings as feature vectors, we

evaluated their performance in terms of node classification and link

prediction accuracy, and clustering quality. All experiments were

repeated 10 times and reported are the averaged results.

Interpretation of results. One interesting aspect of the proposed
ASE method, is that the inferred parameters θ∗ from the first phase

of Algorithm 1 can be used to characterise the underlying similarity

structure of the graph, and the way that nodes “interact” over dif-

ferent path lengths (short, medium and long range). The “strength”

of interactions is inferred by how uniform the coefficients of θ∗ are
and depend on the value of λ. Since the default value was λ = 1

for all graphs, the results can be interepreted as relative interac-

tion strengths between them. The resulting θ∗’s for all graphs are
collected in Table 2. It can immediatly be observed that the type

of node interactions varies significantly among different graphs,

with similar behavior for graphs that belong to the same domain.

Specifically, ca-CondMat, and CoCit that belong to the citation/co-

authorship domain all show relatively strong interactions of short

range. BlogCatalog shows very strong short-range similarities of

only one-hop neighborhood interactions among bloggers. On the

other hand,the Wikipedia word cooccurrence network shows a

strong tendency for long-range interactions; other graphs, such as

the PPI protein interaction network stay on the medium range.

Node classification. Graphs with labeled nodes are frequently

used to measure the ability of embedding methods to produce

features suitable for classification. For each experiment, nodes were

randomly split to a training set and a test set. Similar to other works,

and to copewithmulti-label targets, we fed the training features and

labels into the one-vs-the-rest configuration of logistic regression

classifier provided by the sklearn Python library. In the testing

phase, we sorted the predicted class probabilities for each node in

decreasing order, and extracted the top-ki ranking labels, were ki is
the true number of labels of node vi . We then computed the Micro-

and Macro-averaged F1 scores of the predicted labels. Apart from

comparisons to alternative embedding methods, node classification

can reveal whether available node labels (metadata) are distributed

in a manner that matches the node relations – interactions that are

inferred by ASE. To reveal this information, we obtain embeddings

for every length k ∈ [1, 10] by ignoring the training phase and

“forcing” θ∗ = ek in Algorithm 1, and then using each embedding

for classification with 10% labeling rate. Figure 1 plots Micro and

Macro F1 for all labeled graphs as a function of k , while red shade

is placed on the lengths where the unsupervised ASE parameters

θ∗ are non-zero (cf. Table 1). As seen in Fig. 1, the accuracy on the

four labeled graphs evolves with k in a markedly different manner.

Nevertheless, ASE identifies the trends and tends to assign non-

zero weights to lengths that yield a good trade-off between Micro

and Macro F1. This is rather remarkable considering the fact that

θ∗ depends only on the graph, since ASE does not use labels for
training or validation.
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Figure 2: Micro (upper row) and Macro (lower row) F1 scores that different embeddings + logistic regression yield on labeled
graphs, as a function of the labeling rated (percentage of training data)
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Figure 3: Average conductance of different embeddings used
by kmeans for clustering, w.r.t number of clusters.

We also compared the classification accuracy of ASE embed-

dings with those of the alternative embedding approaches, with

results plotted in Fig. 2. The plots for some method-graph pairs are

not visible due to values being too low. While performance varies

among graphs, ASE adapts to each graph and yields consistently

reliable embeddings, with accuracy that in most cases reaches or

surpasses that of state-of-the-art methods, especially in terms of

Macro F1. The two exceptions are the Macro F1 in CoCit, and Micro

F1 in Wikipedia, where VERSE and HOPE being more accurate
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10
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u
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t
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LINE

Figure 4: Runtime of various embeddingmethods across dif-
ferent graphs

respectively. Interestingly, HOPE achieving high Micro F1 and low

Macro F1 in Wikipedia is in agreement with the findings in Fig. 1,

combined with the fact that HOPE focuses on longer paths.

Node clustering. Finally, the embedded vectors were used to clus-

ter the nodes into different communities, using the sklearn library
K-means with the default K-means++ initialization [12]. We evalu-

ate the quality of node clustering with conductance, a well-known

metric for measuring the goodness of a community [5]; conduc-

tance is minimized for large, well connected communities that are

also well separated from the rest of the graph. Each plot in Fig. 3

gives the average conductance across communities, as a function

of the total number of clusters. Results indicate that the proposed

ASE as well as the spectral clustering benchmark yield much lower

conductance compared to other embeddings. Apparently, since ASE

builds on the same basis of eigenvectors used by normalized spec-

tral clustering, it inherits the property of the latter to approximately

minimize the normalized-cut metric [11], which is very similar to

conductance. A closer look at the resulting clusters, reveals that
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clustering beased on VERSE, Deepwalk, LINE, and HOPE splits

graphs into very large communities of roughly equal size, cutting

a large number of edges in the process. This is an indication that

these methods are subject to a resolution limit, which is the inabil-

ity to detect well-separated communities that are bellow a certain

size [1]. On the other hand, Spectral (and the proposed ASE) sep-

arate the graph into a large-core component, and many smaller

well-separated communities, a structure that many large-scale in-

formation networks have been observed to have [5]. Indeed, the

conductance gap is smaller for BlogCatalog which is relatively

small and with less pronounced communities.

Runtime. Finally, we compared different embedding methods in

terms of runtime. Results for all graphs are reported in Fig. 4. All

experiments were run on a personal workstation with a quad-core

i5 processor, and 16 GB of RAM. For our proposed ASE, we provide

a light-weight yet highly portable implementation that uses the

SVDLIBC [41] library for sparse SVD. We also developed a more

scalable implementation that relies on (and requires installation of)

the SLEPc package [40]; this scalable version can perform large-

scale sparse SVD on multiple processes and distributed memory

environments using the message-passing interface (MPI). We used

the high-performance implementation for the five larger graphs,

and the portable-one for the five smallest ones. Evidently, ASE

and HOPE that are SVD-based are orders of magnitudes faster

than VERSE, Deepwalk, and LINE. The main factor that seems to

slow the latter down seems to be the large number of stochastic-

optimization iterations that these methods need to perform in order

to reach accurate embeddings. Nevertheless, it should be noted that

sampling based methods enjoy nearly-full parallelization and could

thus benefit more from highly multi-threaded environments. On the

other hand, methods that rely on SVD (and EVD) can benefit from

decades of research on efficiently performing the decomposition,

and a suite of stable and highly optimized software tools.
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