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Real-world applications often combine learning and optimization problems

on graphs. For instance, our objective may be to cluster the graph in order to

detect meaningful communities (or solve other common graph optimization

problems such as facility location, maxcut, and so on). However, graphs or

related attributes are often only partially observed, introducing learning

problems such as link prediction which must be solved prior to optimization.

We propose an approach to integrate a differentiable proxy for common

graph optimization problems into training of machine learning models for

tasks such as link prediction. This allows the model to focus specifically

on the downstream task that its predictions will be used for. Experimental

results show that our end-to-end system obtains better performance on

example optimization tasks than can be obtained by combining state of

the art link prediction methods with expert-designed graph optimization

algorithms.
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1 INTRODUCTION
While deep learning has proven enormously successful at a range of

tasks, an expanding area of interest concerns systems that can flexi-

bly combine learning with optimization. Examples include recent

attempts to solve combinatorial optimization problems using neural

architectures [Bello et al. 2016; Khalil et al. 2017; Kool et al. 2019;

Vinyals et al. 2015], as well as work which incorporates explicit

optimization algorithms into larger differentiable systems [Amos

and Kolter 2017; Donti et al. 2017; Wilder et al. 2019]. The ability

to combine learning and optimization promises improved perfor-

mance for real-world problems which require decisions to be made

on the basis of machine learning predictions by enabling end-to-end

training which focuses the learned model on the decision problem

at hand.
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We focus on graph optimization problems, an expansive subclass

of combinatorial optimization. While graph optimization is ubiqui-

tous across domains, complete applications must also solve machine

learning challenges. For instance, the input graph is usually incom-

plete; some edges may be unobserved or nodes may have attributes

that are only partially known. Recent work has introduced sophisti-

cated methods for tasks such as link prediction and semi-supervised

classification [Hamilton et al. 2017; Kipf and Welling 2017; Perozzi

et al. 2014; Schlichtkrull et al. 2018; Zhang and Chen 2018], but

these methods are developed in isolation of downstream optimiza-

tion tasks. Most current solutions use a two-stage approach which

first trains a model using a standard loss and then plugs the model’s

predictions into an optimization algorithm ([Bahulkar et al. 2018;

Berlusconi et al. 2016; Burgess et al. 2016; Tan et al. 2016; Yan and

Gregory 2012]). However, predictions which minimize a standard

loss function (e.g., cross-entropy) may be suboptimal for specific

optimization tasks, especially in difficult settings where even the

best model is imperfect.

A preferable approach is to directly incorporate the downstream

optimization problem into the training of the machine learning

model [Donti et al. 2017; Wilder et al. 2019], which requires a differ-

entiable layer that produces a solution to the optimization problem.

To date, there are two main approaches to differentiable optimiza-

tion. First, training a generic neural network to directly output a

solution to the optimization problem. This approach often requires a

large amount of data and results in suboptimal optimization perfor-

mance because the network needs to discover algorithmic structure

entirely from scratch. Second, hand-crafting a differentiable solver

for the particular optimization problem (using, e.g., the LP relax-

ation of an integral problem [Wilder et al. 2019]) and including this

solver as a layer in the network. This approach requires manual

effort to develop a differentiable solver for each particular problem

and often results in cumbersome systems that must, e.g, call a LP

solver in every forward pass.

We propose a new approach that gets the best of both worlds

by incorporating a more generic form of algorithmic structure into

the network, which can then be automatically fine-tuned to solve

a range of optimization tasks. In particular, we use a differentiable

version of k-means clustering. Clustering is motivated by the obser-

vation that graph neural networks embed nodes into a continuous

space, allowing us to approximate optimization over the discrete

graph with optimization in continuous embedding space. We then

interpret the cluster assignments as a solution to the discrete prob-

lem. We instantiate this approach for two classes of optimization

problems: those that require partitioning the graph (e.g., community

detection or maxcut), and those that require selecting a subset of K
nodes (facility location, influence maximization, immunization, etc).
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We don’t claim that clustering is the right algorithmic structure for

all tasks, but it is sufficient for many problems as shown in this

paper.

In short, we make three contributions. First, we introduce a gen-

eral framework for integrating graph learning and optimization,

with optimization in continuous space as a proxy for the discrete

problem. Second, we show how to differentiate through the clus-

tering layer, allowing it to be used in deep learning systems. Third,

we show experimental improvements over both two-stage baselines

as well as alternate end-to-end approaches on a range of example

datasets and optimization problems.

2 RELATED WORK
We build on a recent work on decision-focused learning [Demirovic

et al. 2019; Donti et al. 2017; Wilder et al. 2019], which includes

a solver for an optimization problem into training in order to im-

prove performance on a downstream decision problem. Some work

in structured prediction also integrates differentiable solvers for

discrete problems (e.g., image segmentation [Djolonga and Krause

2017] or time series alignment [Mensch and Blondel 2018]). Our

work differs in two ways. First, we tackle more difficult optimiza-

tion problems. Previous work mostly focuses on convex problems

[Donti et al. 2017] or discrete problems with near-lossless convex

relations [Djolonga and Krause 2017; Wilder et al. 2019]. We focus

on highly combinatorial problems where the methods of choice

are hand-designed discrete algorithms. Second, in response to this

difficulty, we differ methodologically in that we do not attempt to

include a solver for the exact optimization problem at hand (or a

close relaxation of it). Instead, we include a more generic algorith-

mic skeleton that is automatically finetuned to the optimization

problem at hand.

There is also recent interest in training neural networks to solve

combinatorial optimization problems [Bello et al. 2016; Khalil et al.

2017; Kool et al. 2019; Vinyals et al. 2015]. While we focus mostly on

combining graph learning with optimization, our model can also be

trained just to solve an optimization problem given complete infor-

mation about the input. The main methodological difference is that

we include more structure via a differentiable k-means layer instead

of using more generic tools (e.g., feed-forward or attention layers).

Another difference is that prior work mostly trains via reinforce-

ment learning. By contrast, we use a differentiable approximation to

the objective which removes the need for a policy gradient estima-

tor. This is a benefit of our architecture, in which the final decision

is fully differentiable in terms of the model parameters instead of

requiring non-differentiable selection steps (as in [Bello et al. 2016;

Khalil et al. 2017; Kool et al. 2019]). We give our end-to-end base-

line (“GCN-e2e") the same advantage by training it with the same

differentiable decision loss as our own model instead of forcing it

to use noisier policy gradient estimates.

Finally, somework uses deep architectures as a part of a clustering

algorithm [Guo et al. 2017; Law et al. 2017; Shaham et al. 2018; Tian

et al. 2014], or includes a clustering step as a component of a deep

network [Greff et al. 2016, 2017]. While some techniques are similar,

the overall task we address and framework we propose are entirely

distinct. Our aim is not to cluster a Euclidean dataset (as in [Guo

et al. 2017; Law et al. 2017; Shaham et al. 2018; Tian et al. 2014]), or to

solve perceptual grouping problems (as in [Greff et al. 2016, 2017]).

Rather, we propose an approach for graph optimization problems.

Perhaps the closest of this work is Neural EM [Greff et al. 2017],

which uses an unrolled EM algorithm to learn representations of

visual objects. Rather than using EM to infer representations for

objects, we use k-means in graph embedding space to solve an

optimization problem. There is also some work which uses deep

networks for graph clustering [Xie et al. 2016; Yang et al. 2016].

However, none of this work includes an explicit clustering algorithm

in the network, and none consider our goal of integrating graph

learning and optimization.

3 SETTING
We consider settings that combine learning and optimization. The

input is a graph G = (V ,E), which is in some way partially ob-

served. We will formalize our problem in terms of link prediction

as an example, but our framework applies to other common graph

learning problems (e.g., semi-supervised classification). In link pre-

diction, the graph is not entirely known; instead, we observe only

training edges Etrain ⊂ E. Let A denote the adjacency matrix of

the graph and Atrain denote the adjacency matrix with only the

training edges. The learning task is to predict A from Atrain . In
domains we consider, the motivation for performing link prediction,

is to solve a decision problem for which the objective depends on the

full graph. Specifically, we have a decision variable x , objective func-
tion f (x ,A), and a feasible set X. We aim to solve the optimization

problem

max

x ∈X
f (x ,A). (1)

However,A is unobserved. We can also consider an inductive setting

in which we observe graphs A1, ...,Am as training examples and

then seek to predict edges for a partially observed graph from the

same distribution. The most common approach to either setting is

to train a model to reconstruct A from Atrain using a standard loss

function (e.g., cross-entropy), producing an estimate Â. The two-
stage approach plugs Â into an optimization algorithm for Problem

1, maximizing f (x , Â).
We propose end-to-end models which map from Atrain directly

to a feasible decision x . The model will be trained to maximize

f (x ,Atrain ), i.e., the quality of its decision evaluated on the training
data (instead of a loss ℓ(Â,Atrain ) that measures purely predictive

accuracy). One approach is to “learn away" the problem by training

a standard model (e.g., a GCN) to map directly from Atrain to x .
However, this forces the model to entirely rediscover algorithmic

concepts, while two-stage methods are able to exploit highly so-

phisticated optimization methods. We propose an alternative that

embeds algorithmic structure into the learned model, getting the

best of both worlds.

4 APPROACH: CLUSTERNET
Our proposed ClusterNet system (Figure 1) merges two differen-

tiable components into a system that is trained end-to-end. First,

a graph embedding layer which uses Atrain and any node features

to embed the nodes of the graph into Rp . In our experiments, we
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Backward pass: update node embeddings to improve objective
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update (Eq. 2)
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ℓ( መ𝐴, 𝐴𝑡𝑟𝑎𝑖𝑛)

Optimize at test time

ClusterNet

Two-stage

Fig. 1. Top: ClusterNet, our proposed system. Bottom: a typical two-stage approach.

use GCNs [Kipf and Welling 2017]. Second, a layer that performs

differentiable optimization. This layer takes the continuous-space
embeddings as input and uses them to produce a solution x to the

graph optimization problem. Specifically, we propose to use a layer

that implements a differentiable version ofK-means clustering. This

layer produces a soft assignment of the nodes to clusters, along with

the cluster centers in embedding space.

The intuition is that cluster assignments can be interpreted as

the solution to many common graph optimization problems. For

instance, in community detection we can interpret the cluster assign-

ments as assigning the nodes to communities. Or, in maxcut, we can

use two clusters to assign nodes to either side of the cut. Another

example is maximum coverage and related problems, where we

attempt to select a set of K nodes which cover (are neighbors to) as

many other nodes as possible. This problem can be approximated by

clustering the nodes into K components and choosing nodes whose

embedding is close to the center of each cluster. We do not claim that

any of these problems is exactly reducible to K-means. Rather, the

idea is that including K-means as a layer in the network provides a

useful inductive bias. This algorithmic structure can be fine-tuned to

specific problems by training the first component, which produces

the embeddings, so that the learned representations induce clus-

terings with high objective value for the underlying downstream

optimization task. We now explain the optimization layer of our

system in greater detail. We start by detailing the forward and the

backward pass for the clustering procedure, and then explain how

the cluster assignments can be interpreted as solutions to the graph

optimization problem.

4.1 Forward pass
Let x j denote the embedding of node j and µk denote the center of

clusterk . r jk denotes the degree towhich node j is assigned to cluster
k . In traditional K-means, this is a binary quantity, but we will relax

it to a fractional value such that

∑
k r jk = 1 for all j. Specifically,

we take r jk =
exp(−β | |x j−µk | |)∑
ℓ exp(−β | |x j−µℓ | |)

, which is a soft-min assignment

of each point to the cluster centers based on distance. While our

architecture can be used with any norm | | · | |, we use the negative

cosine similarity due to its strong empirical performance. β is an

inverse-temperature hyperparameter; taking β → ∞ recovers the

standard k-means assignment. We can optimize the cluster centers

via an iterative process analogous to the typical k-means updates

by alternately setting

µk =

∑
j r jkx j∑
j r jk

∀k = 1...K (2)

r jk =
exp(−β | |x j − µk | |)∑
ℓ exp(−β | |x j − µℓ | |)

∀k = 1...K , j = 1...n. (3)

These iterates converge to a fixed point where µ remains the same

between successive updates [MacKay 2003].

4.2 Backward pass
We will use the implicit function theorem to analytically differenti-

ate through the fixed point that the forward pass k-means iterates

converge to, obtaining expressions for
∂µ
∂x and

∂r
∂x . Previous work

[Donti et al. 2017; Wilder et al. 2019] has used the implicit function

theorem to differentiate through the KKT conditions of optimization

problems; here we take a more direct approach that characterizes

the update process itself. Doing so allows us to backpropagate gra-

dients from the decision loss to the component that produced the

embeddings x . Define a function f : RKp → R as

fi, ℓ(µ,x) = µℓi −

∑
j r jkx

ℓ
j∑

j r jk
(4)

Now, (µ,x) are a fixed point of the iterates if f (µ,x) = 0. Applying

the implicit function theorem yields that
∂µ
∂x = −

[
∂f (µ,x )

∂µ

]−1 ∂f (µ,x )
∂x ,

from which
∂r
∂x can be easily obtained via the chain rule.

Exact backward pass: We now examine the process of calculat-

ing
∂µ
∂x . Both

∂f (µ,x )
∂x and

∂f (µ,x )
∂µ can be easily calculated in closed

form (see appendix
1
). Computing the former requires timeO(nKp2).

Computing the latter requires O(npK2) time, after which it must

be inverted (or else iterative methods must be used to compute the

1
https://arxiv.org/abs/1905.13732

https://arxiv.org/abs/1905.13732
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product with its inverse). This requires time O(K3p3) since it is a
matrix of size (Kp) × (Kp). While the exact backward pass may be

feasible for some problems, it quickly becomes burdensome for large

instances. We now propose a fast approximation.

Approximate backward pass: We start from the observation

that
∂f
∂µ will often be dominated by its diagonal terms (the identity

matrix). The off-diagonal entries capture the extent to which updates

to one entry of µ indirectly impact other entries via changes to the

cluster assignments r . However, when the cluster assignments are

relatively firm, r will not be highly sensitive to small changes to

the cluster centers. We find to be typical empirically, especially

since the optimal choice of the parameter β (which controls the

hardness of the cluster assignments) is typically fairly high. Under

these conditions, we can approximate
∂f
∂µ by its diagonal,

∂f
∂µ ≈ I .

This in turn gives
∂µ
∂x ≈ −

∂f
∂x .

We can formally justify this approximation when the clusters

are relatively balanced and well-separated. More precisely, define

c(j) = argmaxi r ji to be the closest cluster to point j. Proposition
1 (proved in the appendix) shows that the quality of the diagonal

approximation improves exponentially quickly in the product of

two terms: β , the hardness of the cluster assignments, and δ , which
measures how well separated the clusters are. α (defined below)

measures the balance of the cluster sizes.We assume for convenience

that the input is scaled so | |x j | |1 ≤ 1∀j.
Proposition 1. Suppose that for all points j, | |x j − µi | | − | |x j −

µc(j) | | ≥ δ for all i , c(j) and that for all clusters i ,
∑n
j=1 r ji ≥ αn.

Moreover, suppose that βδ > log
2βK 2

α . Then,�������� ∂ f∂µ − I

��������
1

≤ exp(−δβ)

(
K2β

1

2
α − K2β exp(−δβ)

)
where | | · | |1 is the operator 1-norm.

We now show that the approximate gradient obtained by taking

∂f
∂µ = I can be calculated by unrolling a single iteration of the

forward-pass updates from Equation 2 at convergence. Examining

Equation 4, we see that the first term (µℓi ) is constant with respect

to x , since here µ is a fixed value. Hence,

−
∂ fk
∂x
=
∂

∂x

∑
j r jkx j∑
j r jk

which is just the update equation for µk . Since the forward-pass
updates are written entirely in terms of differentiable functions, we

can automatically compute the approximate backward pass with

respect to x (i.e., compute products with our approximations to

∂µ
∂x and

∂r
∂x ) by applying standard autodifferentiation tools to the

final update of the forward pass. Compared to computing the exact

analytical gradients, this avoids the need to explicitly reason about

or invert
∂f
∂µ . The final iteration (the one which is differentiated

through) requires time O(npK), linear in the size of the data.

Compared to differentiating by unrolling the entire sequence

of updates in the computational graph (as has been suggested for

other problems [Andrychowicz et al. 2016; Domke 2012; Zheng et al.

2015]), our approach has two key advantages. First, it avoids storing

the entire history of updates and backpropagating through all of

them. The runtime for our approximation is independent of the

number of updates needed to reach convergence. Second, we can
in fact use entirely non-differentiable operations to arrive at the fixed
point, e.g., heuristics for the K-means problem, stochastic methods

which only examine subsets of the data, etc. This allows the forward

pass to scale to larger datasets since we can use the best algorithmic

tools available, not just those that can be explicitly encoded in the

autodifferentiation tool’s computational graph.

4.3 Obtaining solutions to the optimization problem
Having obtained the cluster assignments r , along with the centers

µ, in a differentiable manner, we need a way to (1) differentiably
interpret the clustering as a soft solution to the optimization prob-

lem, (2) differentiate a relaxation of the objective value of the graph

optimization problem in terms of that solution, and then (3) round
to a discrete solution at test time. We give a generic means of ac-

complishing these three steps for two broad classes of problems:

those that involve partitioning the graph into K disjoint components,
and those that that involve selecting a subset of K nodes.

Partitioning: (1) We can naturally interpret the cluster as-

signments r as a soft partitioning of the graph. (2) One generic

continuous objective function (defined on soft partitions) follows

from the random process of assigning each node j to a partition

with probabilities given by r j , repeating this process independently

across all nodes. This gives the expected training decision loss

ℓ = Erhard∼r [f (r
hard ,Atrain )], where rhard ∼ r denotes this ran-

dom assignment. ℓ is now differentiable in terms of r , and can be

computed in closed form via standard autodifferentiation tools for

many problems of interest (see Section 5). (3)At test time, we simply

apply a hard maximum to r to obtain each node’s assignment.

Subset selection: (1) Here, it is less obvious how to obtain a

subset of K nodes from the cluster assignments. Our continuous

solution will be a vector x , 0 ≤ x ≤ 1, where | |x | |1 = K . Intuitively,
x j is the probability of including x j in the solution. Our approach

obtains x j by placing greater probability mass on nodes that are

near the cluster centers. Specifically, each center µi is endowed
with one unit of probability mass, which it allocates to the points

x by as ai j = softmin(η | |x − µi | |)j . The total probability allocated

to node j is bj =
∑K
i=1 ai j . Since we may have bj > 1, we pass

b through a sigmoid function to cap the entries at 1; specifically,

we take x = 2 ∗ σ (γb) − 0.5 where γ is a tunable parameter. If the

resulting x exceeds the budget constraint (| |x | |1 > K), we output
Kx
| |x | |1

.

(2)We interpret this solution in terms of the objective similarly

as above. Specifically, we consider the result of drawing a discrete

solution xhard ∼ x where every node j is included (i.e., set to 1)

independently with probability x j from the end of step (1). The
training objective is then Exhard∼x [f (x

hard ,Atrain )]. For many

problems, this can again be computed and differentiated through in

closed form (see Section 5).

(3) At test time, we need a feasible discrete vector x ; note that
independently rounding the individual entries may produce a vector

with more than K ones. Here, we apply a fairly generic approach
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based on pipage rounding [Ageev and Sviridenko 2004], a random-

ized rounding scheme which has been applied to many problems

(particularly those with submodular objectives). Pipage rounding

can be implemented to produce a random feasible solution in time

O(n) [Karimi et al. 2017]; in practice we round several times and

take the solution with the best decision loss on the observed edges.

While pipage rounding has theoretical guarantees only for specific

classes of functions, we find it to work well even in other domains

(e.g., facility location). However, more domain-specific rounding

methods can be applied if available.

5 EXPERIMENTAL RESULTS
We now show experiments on domains that combine link prediction

with optimization.

Learning problem: In link prediction, we observe a partial graph
and aim to infer which unobserved edges are present. In each of

the experiments, we hold out 60% of the edges in the graph, with

40% observed during training. We used a graph dataset which is

not included in our results to set our method’s hyperparameters,

which were kept constant across datasets (see appendix for details).

The learning task is to use the training edges to predict whether

the remaining edges are present, after which we will solve an opti-

mization problem on the predicted graph. The objective is to find

a solution with high objective value measured on the entire graph,
not just the training edges.

Optimization problems: We consider two optimization tasks,

one from each of the broad classes introduced above. First, commu-
nity detection aims to partition the nodes of the graph intoK distinct

subgroups which are dense internally, but with few edges across

groups. Formally, the objective is to find a partition maximizing the

modularity [Newman 2006b], defined as

1

2m

∑
u,v ∈V

K∑
k=1

[
Auv −

dudv
2m

]
rukrvk

. Here, dv is the degree of node v , and rvk is 1 if node v is as-

signed to community k and zero otherwise. This measures the

number of edges within communities compared to the expected

number if edges were placed randomly. Our clustering module has

one cluster for each of the K communities. Defining B to be the

modularity matrix with entries Buv = Auv −
dudv
2m , our training

objective (the expected value of a partition sampled according to r )
is

1

2mTr

[
r⊤Btrainr

]
.

Second, facility location, where the decision problem is to select a

subset ofK nodes from the graph, minimizing themaximumdistance

from any node to a facility (selected node). Letting d(v, S) be the
shortest path length from a vertex v to a set of vertices S , the objec-
tive is f (S) = min |S | ≤k maxv ∈V d(v, S). To obtain the training loss,

we take two steps. First, we replace d(v, S) by ES∼x [d(v, S)], where
S ∼ x denotes drawing a set from the product distribution with

marginals x . This can easily be calculated in closed form [Karimi

et al. 2017]. Second, we replace the min with a softmin.

Baseline learning methods:We instantiate ClusterNet using a

2-layer GCN for node embeddings, followed by a clustering layer.

We compare to three families of baselines. First, GCN-2stage, the two
stage approach which first trains a model for link prediction, and

then inputs the predicted graph into an optimization algorithm. For

link prediction, we use the GCN-based system of [Schlichtkrull et al.

2018] (we also adopt their training procedure, including negative

sampling and edge dropout). For the optimization algorithms, we

use standard approaches for each domain, outlined below. Second,
“train", which runs each optimization algorithm only on the ob-

served training subgraph (without attempting any link prediction).

Third, GCN-e2e, an end-to-end approach which does not include

explicit algorithm structure. We train a GCN-based network to di-

rectly predict the final decision variable (r or x) using the same

training objectives as our own model. Empirically, we observed best

performance with a 2-layer GCN. This baseline allows us to isolate

the benefits of including algorithmic structure.

Baseline optimization approaches: In each domain, we com-

pare to expert-designed optimization algorithms found in the litera-

ture. In community detection, we compare to “CNM" [Clauset et al.

2004], an agglomerative approach, “Newman", an approach that

recursively partitions the graph [Newman 2006a], and “SC", which

performs spectral clustering [Von Luxburg 2007] on the modularity

matrix. In facility location, we compare to “greedy", the common

heuristic of iteratively selecting the point with greatest marginal

improvement in objective value, and “gonzalez" [Gonzalez 1985],

an algorithm which iteratively selects the node furthest from the

current set (which attains the optimal 2-approximation).

Datasets: We use several standard graph datasets: cora [Sen et al.

2008] (a citation network with 2,708 nodes), citeseer [Sen et al. 2008]

(a citation network with 3,327 nodes), protein [Collection 2017c]

(a protein interaction network with 3,133 nodes), adol [Collection

2017a] (an adolescent social network with 2,539 vertices), and fb

[Collection 2017b; Leskovec and Mcauley 2012] (an online social

network with 2,888 nodes). For facility location, we use the largest

connected component of the graph (since otherwise distances may

be infinite). Cora and citeseer have node features (based on a bag-of-

words representation of the document), whichwere given to all GCN-

based methods. For the other datasets, we generated unsupervised

node2vec features [Grover and Leskovec 2016] using the training

edges.

5.1 Results on single graphs
We start out with results for the combined link prediction and opti-

mization problem. Table 1 shows the objective value obtained by

each approach on the full graph for community detection, with

Table 2 showing facility location. We focus first on the “Learning

+ optimization" column which shows the combined link predic-

tion/optimization task. We use K = 5; K = 10 is very similar and

may be found in the appendix. ClusterNet outperforms the baselines

in nearly all cases, often substantially. GCN-e2e learns to produce

nontrivial solutions, often rivaling the other baseline methods. How-

ever, the explicit structure used by our approach ClusterNet results

in much higher performance.

Interestingly, the two stage approach sometimes performs worse

than the train-only baseline which optimizes just based on the

training edges (without attempting to learn). This indicates that

approaches which attempt to accurately reconstruct the graph can

sometimes miss qualities which are important for optimization, and
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Table 1. Performance on the community detection task

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 0.54 0.55 0.29 0.49 0.30 0.72 0.73 0.52 0.58 0.76

GCN-e2e 0.16 0.02 0.13 0.12 0.13 0.19 0.03 0.16 0.20 0.23

Train-CNM 0.20 0.42 0.09 0.01 0.14 0.08 0.34 0.05 0.57 0.77
Train-Newman 0.09 0.15 0.15 0.15 0.08 0.20 0.23 0.29 0.30 0.55

Train-SC 0.03 0.02 0.03 0.23 0.19 0.09 0.05 0.06 0.49 0.61

GCN-2stage-CNM 0.17 0.21 0.18 0.28 0.13 - - - - -

GCN-2stage-Newman 0.00 0.00 0.00 0.14 0.02 - - - - -

GCN-2stage-SC 0.14 0.16 0.04 0.31 0.25 - - - - -

Table 2. Performance on the facility location task.

Learning + optimization Optimization

cora cite. prot. adol fb cora cite. prot. adol fb

ClusterNet 10 14 6 6 4 9 14 6 5 3
GCN-e2e 12 15 8 6 5 11 14 7 6 5

Train-greedy 14 16 8 8 6 9 14 7 6 5

Train-gonzalez 12 17 8 6 6 10 15 7 7 3
GCN-2Stage-greedy 14 17 8 7 6 - - - - -

GCN-2Stage-gonzalez 13 17 8 6 6 - - - - -

in the worst case may simply add noise that overwhelms the signal

in the training edges. In order to confirm that the two-stage method

learned to make meaningful predictions, in the appendix we give

AUC values for each dataset. The average AUC value is 0.7584,

indicating that the two stage model does learn to make nontrivial

predictions. However, the small amount of training data (only 40%

of edges are observed) prevents it from perfectly reconstructing

the true graph. This drives home the point that decision-focused

learningmethods can offer substantial benefitswhen highly accurate

predictions are out of reach even for sophisticated methods.

We next examine an optimization-only task where the entire

graph is available as input (the “Optimization" column of Tables 1

and Table 2). This tests ClusterNet’s ability to learn to solve combi-

natorial optimization problems compared to expert-designed algo-

rithms, even when there is no partial information or learning prob-

lem in play. We find that ClusterNet is highly competitive, meeting

and frequently exceeding the baselines. It is particularly effective for

community detection, where we observe large (> 3x) improvements

compared to the best baseline on some datasets. At facility loca-

tion, our method always at least ties the baselines, and frequently

improves on them. These experiments provide evidence that our

approach, which is automatically specialized during training to

optimize on a given graph, can rival and exceed hand-designed

algorithms from the literature. The alternate learning approach,

GCN-e2e, at best ties the baselines and typically underperforms.

This underscores the benefit of including algorithmic structure as a

part of the end-to-end architecture.

5.2 Generalizing across graphs
Next, we investigate whether our method can learn generalizable

strategies for optimization: can we train the model on one set of

graphs drawn from some distribution and then apply it to unseen

graphs? We consider two graph distributions. First, a synthetic

generator introduced by [Wilder et al. 2018], which is based on the

spatial preferential attachment model [Barthélemy 2011] (details

in the appendix). We use 20 training graphs, 10 validation, and 30

test. Second, a dataset obtained by splitting the pubmed graph into

20 components using metis [Karypis and Kumar 1998]. We fix 10

training graphs, 2 validation, and 8 test. At test time, only 40% of

the edges in each graph are revealed, matching the “Learning +

optimization" setup above.

Table 3 shows the results. To start out, we do not conduct any fine-

tuning to the test graphs, evaluating entirely the generalizability

of the learned representations. ClusterNet outperforms all baseline

methods on all tasks, except for facility location on pubmed where

it places second. We conclude that the learned model successfully

generalizes to completely unseen graphs. We next investigate (in the

“finetune" section of Table 3) whether ClusterNet’s performance can

be further improved by fine-tuning to the 40% of observed edges for

each test graph (treating each test graph as an instance of the link

prediction problem from Section 5.1, but with the model initialized

to the parameters of the model learned over the training graphs). We

see that ClusterNet’s performance typically improves, indicating

that fine-tuning can allow us to extract additional gains if extra

training time is available.

Interestingly, only fine-tuning (not using the training graphs at

all) yields similar performance (the row “ClstrNet-ft-only"). While

our earlier results show that ClusterNet can learn generalizable
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Table 3. Inductive results. “%" is the fraction of test instances for which a method attains top performance (including ties). “Finetune" methods are excluded
from this in the “No finetune" section.

Community detection Facility location

synthetic pubmed synthetic pubmed

No finetune Avg. % Avg. % No finetune Avg. % Avg. %

ClusterNet 0.57 26/30 0.30 7/8 ClusterNet 7.90 25/30 7.88 3/8

GCN-e2e 0.26 0/30 0.01 0/8 GCN-e2e 8.63 11/30 8.62 1/8

Train-CNM 0.14 0/30 0.16 1/8 Train-greedy 14.00 0/30 9.50 1/8

Train-Newman 0.24 0/30 0.17 0/8 Train-gonzalez 10.30 2/30 9.38 1/8

Train-SC 0.16 0/30 0.04 0/8 2Stage-greedy 9.60 3/30 10.00 0/8

2Stage-CNM 0.51 0/30 0.24 0/8 2Stage-gonz. 10.00 2/30 6.88 5/8
2Stage-Newman 0.01 0/30 0.01 0/8 ClstrNet-1train 7.93 12/30 7.88 2/8

2Stage-SC 0.52 4/30 0.15 0/8

ClstrNet-1train 0.55 0/30 0.25 0/8

Finetune Finetune

ClstrNet-ft 0.60 20/30 0.40 2/8 ClstrNet-ft 8.08 12/30 8.01 3/8

ClstrNet-ft-only 0.60 10/30 0.42 6/8 ClstrNet-ft-only 7.84 16/30 7.76 4/8

strategies, doing so may not be necessary when there is the oppor-

tunity to fine-tune. This allows a user to trade off between quality

and runtime: without fine-tuning, applying our method at test time

requires just a single forward pass through the network, which is

extremely efficient. If additional computational cost at test time is ac-

ceptable, fine-tuning can be used to improve performance. Complete

runtimes for all methods are shown in the appendix. ClusterNet’s

forward pass (i.e., no fine-tuning) is extremely efficient, requiring at

most 0.23 seconds on the largest network, and is always faster than
the baselines (on identical hardware). Fine-tuning requires longer,

on par with the slowest baseline.

We lastly investigate the reason why pretraining provides little

to no improvement over only fine-tuning. Essentially, we find that

ClusterNet is extremely sample-efficient: using only a single training

graph results in nearly as good performance as the full training set

(and still better than all of the baselines), as seen in the “ClstrNet-

1train" row of Table 3. That is, ClusterNet is capable of learning

optimization strategies that generalize with strong performance to

completely unseen graphs after observing only a single training

example. This underscores the benefits of including algorithmic

structure as a part of the architecture, which guides the model

towards learning meaningful strategies.
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