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Abstract

Existing popular methods for semi-supervised
learning with Graph Neural Networks (such as the
Graph Convolutional Network) provably cannot
learn a general class of neighborhood mixing rela-
tionships. To address this weakness, we propose a
new model, MixHop, that can learn these relation-
ships, including difference operators, by repeat-
edly mixing feature representations of neighbors
at various distances. MixHop requires no addi-
tional memory or computational complexity, and
outperforms on challenging baselines. In addition,
we propose sparsity regularization that allows us
to visualize how the network prioritizes neighbor-
hood information across different graph datasets.
Our analysis of the learned architectures reveals
that neighborhood mixing varies per datasets.

1. Introduction
Convolutional Neural Networks (CNNs) establish state-of-
the-art performance for many Computer Vision applications
(Krizhevsky et al., 2012; Szegedy et al., 2015). CNNs con-
sist of a series of convolutional layers, each parameterized
by a filter with pre-specified spatial dimensions. CNNs
are powerful because they are able to learn a hierarchy of
translation invariant feature detectors.

The success of CNNs in Computer Vision and other domains
has motivated researchers (Bruna et al., 2014; Defferrard
et al., 2016; Kipf & Welling, 2017) to extend the convolu-
tional operator from regular grids, in which the structure
is fixed and repeated everywhere, to graph-structured data,
where nodes’ neighborhoods can greatly vary in structure
across the graph. Generalizing convolution to graph struc-
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Figure 1: Feature propagation in traditional graph convo-
lution methods (a) compared ours (b). We show the latent
feature for red node in layer i + 1 given node features in
layer i. The traditional graph convolution case only aggre-
gates from immediate neighbors ÂH(i). In our MixHop the
feature vectorH(i+1) is a learned combination of the node’s
neighbors ÂjH(i) at multiple distances j.

tures should allow models to learn location-invariant node
and neighborhood features.

Early extensions of the graph convolution (GC) operator
were theoretically motivated (Bruna et al., 2014), but (1)
required quadratic computational complexity in number of
nodes and therefore were not scalable to large graphs, and
(2) required the graph to be completely observed during
training, targeting only the transductive setting. Deffer-
rard et al. (2016) and Kipf & Welling (2017) propose GC
approximations that are computationally-efficient (linear
complexity, in the number of edges), and can be applied in
inductive settings, where the test graphs are not observed
during training.

However, said approximations limit the representational ca-
pacity of the model. In particular, if we represent an image
as a graph of pixel nodes, where edges connect adjacent
pixels, GC approximations applied on the pixel graphs will
be unable to learn Gabor-like1 filters. Gabor filters are fun-
damental to the human visual cognitive system (Daugman,
1980; 1985). Further, these filters are automatically recov-
ered by training CNNs on natural images (see Krizhevsky
et al. (2012); Lee et al. (2009) for visualizations). Their

1We use “like”, as graph edges are not axis-aligned.



MixHop: Higher-Order Graph Convolution Architectures via Sparsified Neighborhood Mixing

automatic recovery implies their usefulness for hierarchical
object representations and scene understanding, as guided
by the optimization (e.g. classification) objective. Since
Graphs are generic data structures that can encode data from
various domains (e.g. images, chemical compounds, so-
cial, and biological networks), realizing Gabor-like filters in
Graph domains ought to yield a general advantage.

In this work, we address the limitations of the approxima-
tions that prevent these models from capturing the graph
analogue of Gabor filters. Our proposed method, MixHop,
allows full linear mixing of neighborhood information (as il-
lustrated in Figure 1), at every message passing step. Specif-
ically, our contributions are the following:
• We formalize Delta Operators and their generalization,

Neighborhood Mixing, to analyze the expressiveness
of graph convolution models. We show that popular
graph convolution models (e.g. GCN of Kipf & Welling
(2017)) cannot learn these representations.
• We propose MixHop, a new Graph Convolutional layer

that mixes powers of the adjacency matrix. We prove
that MixHop can learn a wider class of representations
without increasing the memory footprint or computa-
tional complexity of previous GCN models.

• We provide a method of learning to divide modeling ca-
pacity among various widths and depths of a MixHop
model, yielding powerful compact GCN architectures.
These architectures conveniently also allow visual in-
spection of which aspects of a graph are important.

We demonstrate our method on node classification tasks.

2. Preliminaries and Related Work
2.1. Notation

Graph G with n nodes and m edges has a feature matrix
X ∈ Rn×s0 with s0 features per node, and training labels
YI , annotating a partial set of nodes with the c possible
classes. The output of the task, YO, is an assignment of la-
bels to the nodes, Y ∈ [0, 1]n×c. LetA denote the adjacency
matrix of G, where a non-zero entry Aij indicates an edge
between nodes i and j. We consider the case of a binary
adjacency matrix (A ∈ {0, 1}n×n), but this notation can be
extended w.l.o.g. to weighted graphs. Let In be the n× n
identity matrix, and D be the degree matrix, D = diag(d),
where d ∈ Zn is the degree vector with dj =

∑
iAij .

2.2. Message Passing

Message Passing algorithms can be used to learn models
over graphs (Gilmer et al., 2017). In such models, each
graph node (and optionally edge) holds a latent vector, ini-
tialized to the node’s input features Each node repeatedly
passes its current latent vector to, and aggregates incoming
messages from, its immediate neighbors. After l steps of

message passing and feature aggregation, every node out-
puts a representation which can be used for an upstream
task e.g. node classification, or entire graph classifica-
tion. The l steps (message passing and aggregation) can be
parametrized and trained via Backprop-Through-Structure
algorithms (Goller & Kuchler, 1996), to minimize an objec-
tive measured using the node representations as output by
the l’th step.

2.3. Graph Convolutional Networks

We refer to the Graph Convolutional Network proposed by
Kipf & Welling (2017) as the vanilla GCN. The vanilla
GCN Graph Convolutional (GC) Layer is defined as:

H(i+1) = σ(ÂH(i)W (i)), (1)

where H(i) ∈ Rn×si and H(i+1) ∈ Rn×si+1 are the input
and output activations for layer i, W (i) ∈ Rsi×si+1 is a
trainable weight matrix and σ is an element-wise activation
function, and Â is a symmetrically normalized adjacency
matrix with self-connections, Â = D−

1
2 (A+ In)D

− 1
2 . A

GCN model with l layers is then defined as:

H(i) =

{
X if i = 0

σ(ÂH(i−1)W (i−1)) if i ∈ [1 .. l],
(2)

and the output YO can be set as to function of H(l). The
vanilla GCN can be described as a message passing al-
gorithm, where a node’s latent representation at step i is
defined as an average of its neighbors’ representations from
step i− 1, multiplied by W (i−1). See Gilmer et al. (2017).

The vanilla GCN makes three simplifying assumptions: (1)
it is a Chebyshev rank-2 approximation of multiplication
in the Graph Fourier basis, defined to be the eigenbasis of
the graph Laplacian; (2) it assumes that the two coefficients
of the Chebyshev polynomials multiply to -1; (3) a renor-
malization trick adds self-connections (identity matrix) to
A before, rather than after, normalization. These simplifi-
cations reduce the computational complexity and prevent
exploding/vanishing gradients. However, it simplifies the
definition of convolution to become a simple neighborhood-
averaging operator: this is obvious from Equation 1 – the
features are left-multiplied by normalized adjacency Â, ef-
fectively replacing each row in the feature matrix, by the
average of its neighbors (and itself, due to renormalization).

2.4. Semi-supervised Node Classification

We evaluate our method on semi-supervised node classi-
fication tasks. To train a GCN model on such a task, we
select row slices from the output matrix YO, corresponding
to nodes with known labels in YI , on which a loss and its
gradients are evaluated. The gradient of the loss is back-
propagated through the GC layers where they get multiplied
by Â>, spreading gradients to unlabeled examples.
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3. Our Proposed Architecture
We are interested in higher-order message passing, where
nodes receive latent representations from their immediate
(first-degree) neighbors and from further N-degree neigh-
bors at every message passing step. In this section, we
motivate and detail a model with trainable aggregation pa-
rameters that can choose how to mix latent information from
neighbors at various distances.

Our analysis starts with the Delta Operator, a subtraction
operation between node features collected from different
distances. The vanilla GCN is unable to learn such a feature
representation. Before introducing our model, we give one
formal definition:

Definition 1 Representing Two-hop Delta Operator: A
model is capable of representing a two-hop Delta Operator
if there exists a setting of its parameters and an injective
mapping f , such that the output of the network becomes
equal to

f
(
σ
(
ÂX

)
− σ

(
Â2X

))
, (3)

given any adjacency matrix Â, features X , and activation
function σ.

Learning such an operator should allow models to represent
feature differences among neighbors, which is necessary,
for example, for learning Gabor-like filters on the graph
manifold. To provide a concrete example regarding graphs,
consider an online social network. In this setting, Delta
Operators allow a model to represent users that live around
the “boundary” of social circles (Perozzi & Akoglu, 2018).
To learn an approximate feature for American person with a
popular German friend, might have most immediate friends
speaking English, but many friends-of-friends speaking Ger-
man. This person can be represented by learning a convolu-
tional filter contrasting the English and German languages
of one-hop and two-hop neighbors.

Note that in the Definition 1 we allow not learning the direct
form of two-hop Delta Operators, but a transformation of
it, as long as that transformation can be inverted (i.e. f is
injective).

In Sections 3.1 - 3.3, we analyze the extent to which various
GCN models can learn the Delta Operator. We generalize
this definition and analysis in Section 3.4.

3.1. MixHop Graph Convolution Layer

We propose replacing the Graph Convolution (GC) layer
defined in Equation 1, with:

H(i+1) =

∥∥∥∥∥
j∈P

σ
(
ÂjH(i)W

(i)
j

)
, (4)
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×Â
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Figure 2: Vanilla GC layer (a), using adjacency Â, versus
our GC layer (b), using powers of Â. Orange denotes an in-
put activation matrix, with one row per node; green denotes
the trainable parameters; and red denotes the layer output.
Left vs right-multiplication is specified by the relative posi-
tion of the multiplicand to the × operator.

where the hyper-parameter P is a set of integer adjacency
powers, Âj denotes the adjacency matrix Â multiplied by it-
self j times, and ‖ denotes column-wise concatenation. The
difference between our proposed layer and a vanilla GCN
is shown in Figure 2. Note that setting P = {1} exactly
recovers the original GC layer. Further, note that Â0 is the
identity matrix In, where n is the number of nodes in the
graph. We depict a model with P = {0, 1, 2} in Figure
1b. In our model, each layer contains |P | distinct parameter
matrices, each of which can be a different size. By default,
we set all |P | matrices to have the same dimensionality;
however, in Section 4.2, we explain how we utilize sparsify-
ing regularizers on the learnable weight matrices to produce
dataset-specific model architectures that slightly outperform
our default settings.

3.2. Computational Complexity

There is no need to calculate Âj . We calculate ÂjH(i) with
right-to-left multiplication. Specifically, if j = 3, we cal-
culate Â3H(i) as Â

(
Â
(
ÂH(i)

))
. Since we store Â as a

sparse matrix with m non-zero entries, an efficient imple-
mentation of our layer (Equation 4) takes O(jmax ×m× si)
computational time, where jmax is the largest element in P
and si is the feature dimension of H(i). Under the realistic
assumptions of jmax � m and sl � m, running an l-layer
model takes O(lm) computational time. This matches the
computational complexity of the vanilla GCN.

3.3. Representational Capability

Since each layer outputs the multiplication of different adja-
cency powers in different columns, the next layer’s weights
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Algorithm 1 MixHop Graph Convolution Layer

Inputs: H(i−1), Â
Parameters: {W (i)

j }j∈P
jmax := maxP
B := H(i−1)

for j = 1 to jmax do
B := ÂB
if j ∈ P then
Oj := BW

(i)
j

end if
end for
H(i) := ‖

j∈P
Oj

Return: H(i)

can learn arbitrary linear combinations of the columns. By
assigning a positive coefficient to a column produced by
some Â power, and assigning a negative coefficient to an-
other, the model can learn a Delta Operator. In contrast,
vanilla GCNs are not capable of representing this class of
operations, even when stacked over multiple layers.

Theorem 1 The vanilla GCN defined by Equation 2 is not
capable of representing two-hop Delta Operators.

Theorem 2 MixHop GCN (using layers defined in Equa-
tion 4) can represent two-hop Delta Operators.

Proof of Theorem 1. The output of an l-layer vanilla GCN
has the following form:

σ(Â(σ(Â · · ·σ(ÂXW (0)) · · · )W (l−2))W (l−1)).

For the simplicity of the proof, let’s assume that ∀i, si =
n. In a particular case, when σ(x) = x and X = In,
this reduces to ÂlW ∗, where W ∗ =W (0)W (1) · · ·W (l−1).
Suppose the network is capable of representing a two-hop
Delta Operator. This means that there exists an injective map
f and a value for W ∗, such that ∀Â, ÂlW ∗ = f(Â− Â2).
Setting Â = In, we get that W ∗ = f(0). Let

Ĉ1,2 ,


0.5 0.5 0 · · · 0
0.5 0.5 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


be the symmetrically normalized adjacency matrix with
self-connections corresponding to the graph having a single
edge between vertices 1 and 2. Setting Â = Ĉ1,2, we get
Ĉ1,2W

∗ = f(0). Since we already have that f(0) = W ∗,
we get that (In − Ĉ1,2)W

∗ = 0, which proves that the
w∗1 = w∗2 , where w∗i is the i-th row of W ∗. Since the choice

of vertices 1 and 2 was arbitrary, we have that all rows of
W ∗ are equal to each other. Therefore, rank(ÂlW ∗) ≤ 1,
which implies that outputs of mapping f should be at most
rank-one matrices. Thus, f cannot be injective, proving that
vanilla GCN cannot represent two-hop Delta Operators.

�

Proof of Theorem 2. A two-layer model, defined using
Equation 4 with P = {0, 1, 2} recovers the two-hop delta
operator defined in Equation 3. We start by redefining the
feature vector H(1) learned by the first layer of the model
by pulling out the element-wise activation function σ and
expanding the concatenation operator found in the layer
definition:

H(1) =

∥∥∥∥∥
j∈{0,1,2}

σ
(
ÂjXW

(0)
j

)

= σ


∥∥∥∥∥

j∈{0,1,2}

ÂjXW
(0)
j


= σ

([
INXW

(0)
0 ÂXW

(0)
1 Â2XW

(0)
2

])
,

We can now set W (0)
0 = 0 (zero matrix) and W

(0)
1 =

W
(0)
2 = Is0 . The expression above can be simplified to

H(1) = σ
([

0 ÂX Â2X
])

. The feature vector H(1)

can be plugged into the equation for the second layer that
has linear activation function:

H(2) =
[
INH

(1)W
(1)
0 ÂH(1)W

(1)
1 Â2H(1)W

(1)
2

]
.

Setting the weights for the second layer as W (1)
1 =W

(1)
2 =

0, and

W
(1)
0 =

 0
Is0
−Is0

 , (5)

makes

H(2) =
[ (

σ
(
ÂX

)
− σ

(
Â2X

))
0 0

]
.

This shows that our GCN can successfully represent the
two-hop Delta Operators according to the Definition 1. �

3.4. General Neighborhood Mixing

We generalize Definition 1 from two-hops to multiple hops:

Definition 2 General layer-wise Neighbor-hood Mixing:
A Graph Convolutional Network is capable of representing
layer-wise neighborhood mixing if for any α0, α1, . . . , αm

numbers, there exists a setting of its parameters and an
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injective mapping f , such that the output of the network
becomes equal to

f

 m∑
j=0

αjσ
(
ÂjX

) (6)

for any adjacency matrix Â, features X , and activation
function σ.

Theorem 3 GCNs defined using Equation 1 are not capa-
ble of representing general layer-wise neighborhood mixing.

Theorem 4 GCNs defined using our proposed method
(Equation 4) are capable of representing general layer-wise
neighborhood mixing.

Proof of Theorem 3. This trivially follows from Theorem 1:
if the vanilla GCN cannot recover a two-hop Delta Operator,
defined in Equation 3, it cannot recover the Delta Operator
generalization in Equation 6. �

Proof of Theorem 4. The proof steps closely resemble the
proof of Theorem 2. Our GCN with P = {0, . . . ,m} can
represent the target function, by setting the first layer weight
matrices as W (0)

j = Is0 , ∀j ∈ P and setting all but the

zeroth second layer weight matrices as W (1)
1 = W

(1)
2 =

· · · =W
(1)
m = 0. In other words, we utilize only zero-hops

in the second layer, setting the zeroth-power weight matrix
the following way:

W
(1)
0 =

 α0Is0
...

αmIs0

 (7)

This setting of parameters exactly recover the expression in
Equation 6, for any adjacency matrix Â and features X . �

We note that the generalized Delta Operator in Definition 2
does not explicitly specify feature differences as in Defini-
tion 1; rather, the generalized form defines linear combina-
tions of features (which includes subtraction).

4. Learning Graph Convolution Architectures
We have discussed a single layer of our model. In prac-
tice, one would stack multiple layers and interleave them
with standard neural operators such as BatchNorm (Ioffe &
Szegedy, 2015), element-wise activation, and Dropout (Sri-
vastava et al., 2014). In this section, we discuss approaches
to turning the MixHop GC layer into a MixHop GCN.

4.1. Output Layer

The final layer of a GCN performs a key role for learning
the learned latent space of the model on the dataset that is

being trained on. As MixHop uniquely mixes features from
different sets of information, we theorized that constraining
the output layer may result in better outcomes for different
tasks. In order to leverage this property, we define our output
layer in the following way: We divide sl columns into sets
of size c and compute ỸO =

∑sl/c
k=1 qkH

(l)
∗,(idl/c : (i+1)sl/c)

,

then YO = softmax(ỸO). Here the subscript onH(l) selects
c contiguous columns and the scalars qk ∈ [0, 1] define
a valid distribution (output of a softmax). This results in
the model being forced to choose which features it wants
to prioritize by putting more weight on that feature. We
obtain the model parametersW (j)

i for all i, j and q1, . . . q sl
c

,
by minimizing cross-entropy loss, measured only on nodes
with known labels i.e. similar to (Kipf & Welling, 2017).

4.2. Learning Adjacency Power Architectures

As mentioned, our model learns multiple weight matrices
W

(i)
j , one per adjacency power used in the model. By

default, we set allW (i)
j to be the same size, which effectively

assigns the same capacity to adjacency powers Âj for all
j ∈ P . We intuit that different sizes of W (i)

j may be more
appropriate for different tasks and datasets; as such, we are
interested in learning how to automatically size W (i)

j .

For vanilla GCNs, such an architecture search is relatively
inexpensive - the parameters are the number of layers and
their widths. In contrast, searching over the architecture
space of our model is multiplicatively O(l × |P |) more ex-
pensive, as each architecture involves choices on how to
divide each layer width si among the adjacency powers. To
address this limitation, we propose using a lasso regular-
ization to automatically learn an architecture for our model
(Gordon et al., 2018). In particular, we train our architecture
in stages:

1. Construct a wide network (e.g. 200 dimensions for
each adjacency power, at each layer), only making
choices on the depth.

2. Train the network on the task while applying L2 Group
Lasso regularization over each column of each W (l)

j .
This will drop values of entire columns (close) to zero.

3. At the peak validation accuracy, measure the L2 norm
of each W (l)

j . Pick a threshold, and count the number

of columns in each W (l)
j with norm higher than the

threshold. In our experiments, we pick a threshold
such that the size of the shrunken model equals size of
our baseline model (i.e. with P = {1}).

4. Shrink the weight matrices by removing columns with
norms below the k’th percentile.

5. Substitute L2 Group Lasso with standard L2 regular-
ization. Restart training.

We discuss the learned architectures in Section 6.3.
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5. Experimental Design
Given the model described above, a number of natural ques-
tions arise. In this section, we aim to design experiments
which answer the following hypothesises:
• H1: The MixHop model learns delta operators.
• H2: Higher order graph convolutions using neighbor-

hood mixing can outperform existing approaches (e.g.
vanilla GCNs) on real semi-supervised learning tasks.
• H3: When learning a model architecture for MixHop

the best performing architectures differ for each graph.
To answer these questions, we design three experiments.
• Synthetic Experiments: This experiment uses a fam-

ily of synthetic graphs which allow us to vary the cor-
relation (or homophily) of the edges in a generated
graph, and observe how different graph convolutional
approaches respond. As homophily is decreased in the
network, nodes are more likely to connect to those with
different labels, and a model that better captures delta
operators should have superior performance.

• Real-World Experiments: This experiment evaluates
MixHop’s performance on a variety of noisy real world
datasets, comparing against challenging baselines.

• Model Visualization Experiment: This experiment
shows how an appropriately regularized MixHopmodel
can learn different, task-dependent, architectures.

5.1. Datasets

We conduct semi-supervised node classification experiments
on synthetic and real-world datasets.

Synthetic Datasets: Our synthetic datasets are generated
following Karimi et al. (2017). We generate 10 graphs,
each with a different homophily coefficient (ranging from
0.0 to 0.9 at 0.1 intervals) that indicates the likelihood of
a node forming a connection to a neighbor with the same
label. For example, a node in the homophily = 0.9 graph
with 10 edges, will have on average 9 edges to a same-label
neighbor. All graphs contain 5000 nodes. The features for
all synthetic nodes were sampled from overlapping multi-
Gaussian distributions. We randomly partition each graph
into train, test, and validation node splits, all of equal size.

Real World Datasets: The experiments with real-world
datasets follow the methodology proposed in Yang et al.
(2016). In addition to using the classic dataset split, (which
have 20 samples per label), we evaluate against against a
set of random splits with 100 samples per label. We will
release our test splits.

5.2. Training

For all experiments, we construct a 2-layer network of our
model using TensorFlow (Abadi et al., 2016). We train our

Homophily

# 
Le

ar
ne

d 
De

lta
 O

ps

Figure 3: Amount of model capacity devoted to learning
delta operators at different levels of homophily.

models using a Gradient Descent optimizer for a maximum
of 2000 steps, with an initial learning rate of 0.05 that decays
by 0.0005 every 40 steps. We terminate training if validation
accuracy does not improve for 40 consecutive steps; as a
result, most runs finish in less than 200 steps. We use
5 × 10−4 L2 regularization on the weights, and dropout
input and hidden layers. We note that the citation datasets
are extremely sensitve to initializations; as such, we run all
models 100 times, sort by the validation accuracy, and finally
report the test accuracy for the top 50 runs. For all models
we ran (our models in Tables 1 & 3, and all models in Table
3), we use a latent dimension of 60; Our default architecture
evenly divided 60 dimensions are divided evenly to all |P |
powers. Our learned architectures spread them unevenly,
see Section 6.3.

6. Experimental Results
6.1. Results on Synthetic Graphs

We present our results on the synthetic datasets in Figure
4. We show average accuracy for each baseline against the
homophily of the graph. We use a dense (MLP) model that
does not ingest any adjacency information as a control. As
expected, all models perform better as the homophily of
the synthetic graph increases. At low levels of homophily,
when nodes are rarely adjacent to neighbors with the same
label, we observe that MixHop performs significantly better
than the most competitive baseline. Interestingly, we notice
that the GAT model performs significantly worse than the
features-only control. This suggests that the added attention
mechanism of the GAT model relies heavily on homophily
in node neighborhoods.

For each level of homophily, we measured the number of
delta operators learned by our model. We present these
metrics in Figure 3. We observe that for low levels of
homophily, our model uses 2.5X of its model capacity on
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Model Citeseer Cora Pubmed
ManiReg (Belkin et al., 2006) 60.1 59.5 70.7
SemiEmb (Weston et al., 2012) 59.6 59.0 71.1
LP (Zhu et al., 2003) 45.3 68.0 63.0
DeepWalk (Perozzi et al., 2014) 43.2 67.2 65.3
ICA (Lu & Getoor, 2003) 69.1 75.1 73.9
Planetoid (Yang et al., 2016) 64.7 75.7 77.2
Vanilla GCN (Kipf & Welling, 2017) 70.3 81.5 79.0

MixHop with P = {1} (baseline) 70.7±0.73 81.1±0.84 79.9±0.78
MixHop: default architecture (ours) 71.4±0.81 81.8±0.62 80.0±1.1
MixHop: learned architecture (ours) 71.4±0.81† 81.9±0.40 80.8±0.58

Table 1: Experiments run on Node Classification citation datasets created by Yang et al. (2016). †The learned architecture
for Citeseer is equivalent to default architecture, so the results are the same.

Dataset nodes edges features c |Y P
I | |Y R

I |
Citeseer 3,327 4,732 3,703 6 120 600
Cora 2,708 5,429 1,433 7 140 700
Pubmed 19,717 44,338 500 3 60 300

Table 2: Dataset statistics. Numbers of nodes (n), edges
(m), features, classes (c), and labeled nodes (|Y P

I | from the
Planetoid splits, |Y R

I | from our random splits).

Te
st
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y

Homophily

Figure 4: Synthetic dataset results. MLP does not utilize
graph with (homophilic) edges, but only node features.

learning delta operators compared with higher homophily.
This follows intuition: as the nodes cluster around like-
labeled neighbors, the need to identify meaningful feature
differences between neighbors at different distances drops
significantly. These results strongly suggest that the learned
delta operators play a role in the success of MixHop in
Figure 4. For this experiment, we trained our model over the
synthetic datasets under one constraint: input layer weights
W

(j)
0 are shared across all powers j ∈ P . This allows

us to examine sub-columns in the following layer W (j)
1 .

Specifically, we count the number of times a feature, coming

out of the first layer, is assigned values of opposite signs
in W (j)

1 . We restrict the analysis to only values of W (j)
1

with magnitude larger than the median in the corresponding
column.

6.2. Node Classification Results

We show two sets of semi-supervised node classfication
results using different splits of our datasets. Because these
datasets are taken from the real world, they are inherently
noisy, and it is unlikely that achieving 100% classification
accuracy is possible even when given a significant amount
of labeled training data. Instead, we are interested in the
sparse classification task, namely how well our model is
able to improve on previous work while being resilient to
noise, even with limited information.

In Table 2, we demonstrate how our model performs on
common splits taken from Yang et al. (2016). Accuracy
numbers above double-line are copied from Kipf & Welling
(2017). Numbers below the double-line are our methods,
with P = {1} being equivalent to vanilla GCNs. ± repre-
sents the standard deviation of 50 runs with different random
initializations. All MixHop models are of same capacity.
These splits utilize only 20 labeled nodes per class during
training. We achieve a test accuracy of 71.4%, 81.9%, and
80.8% on Citeseer, Cora, and Pubmed respectively. Inter-
estingly, for Citeseer, we see that the learned architecture
was equal to the original architecture (and so the models
performed the same). In Table 3, we demonstrate how our
model performs using random splits with more training in-
formation available. These splits utilize 100 nodes per class
during training. We achieve a test accuracy of 77.0%, 87.2%,
and 83.9% on Citeseer, Cora, and Pubmed respectively.

As MixHop is able to pull in linear combinations of features
from farther distances, it can extract meaningful signals in
extremely sparse settings. We believe this explains why Mix-
Hop outperforms baseline methods in both sets of dataset
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Model Citeseer Cora Pubmed
2-Layer MLP 70.6±1 69.0±1.1 78.3±0.54
Chebyshev (Defferrard et al., 2016) 74.2±0.5 85.5±0.4 81.8±0.5
Vanilla GCN (Kipf & Welling, 2017) 76.7±0.43 86.1±0.34 82.2±0.29
GAT (Velickovic et al., 2018) 74.8±0.42 83.0±1.1 81.8±0.18
MixHop: default architecture (ours) 76.3±0.41 87.0±0.51 83.6±0.68
MixHop: learned architecture (ours) 77.0±0.54 87.2±0.32 83.8±0.44

Table 3: Classification results on random partitions of (Yang et al., 2016) datasets.
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Â0

×

1433

24W
(1)
0

×

Â1
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Figure 5: Learned MixHop Architectures. Note how different parameter sizes (green boxes) are learned for the two datasets.
For example, Group-Lasso regularization on Cora removes all capacity for the zeroth power in the second GC layer. For
space, all matrices are plotted transposed and output layer (Section 4.1) has been ommitted.

splits. The results of these experiments confirm our hypoth-
esis (H2) that higher order graph convolution methods with
neighborhood mixing can outperform existing methods on
real datasets.

6.3. Visualizing Learned Architectures

Figure 5 depicts the learned architectures for two of the cita-
tion datasets. We note that each dataset prefers its own archi-
tecture. For example, Cora prefers to have zero-capacity on
the 0th power of the adjacency matrix (effectively ignoring
the features of each node) in the second layer. Not shown
(for space reasons) is Citeseer, which prefers the default
parameter settings with the same weight capacity across
all powers. All three real datasets had different final archi-
tectures, which confirms our hypothesis (H3) that different
architectures are optimal for different graph datasets.

7. Related Work
Others considered multiple adjacency powers for feature
propagation on graphs, including (Abu-El-Haija et al., 2018)
and (Atwood & Towsley, 2016) which combine the powers
at the end of the network (right before classification layer),
and (Lee et al., 2018) which combines them at the input
of the network. We intermix information from the pow-
ers layer-wise, enabling our method to learn neighborhood
mixing e.g. delta operators, which contrast the features of
immediate neighbors from those further away. Defferrard
et al. (2016) uses more Chebyshev polynomials (i.e. higher-
rank) Graph Convolution, but their model underperforms

our baseline (Kipf & Welling, 2017). This allows us to
hypothesis that explicit message passing along edges yields
better performance than alignment onto the Fourier Basis.

8. Conclusion
In this work, we analyzed the expressive power of popular
methods for semi-supervised learning with Graph Neural
Networks and we showed they cannot learn general neigh-
borhood mixing functions. To address this, we have pro-
posed a graph convolutional layer that utilizes multiple pow-
ers of the adjacency matrix. Repeated application of this
layer allows a model to learn general mixing of neighbor-
hood information, including averaging and delta operators
in the feature space, without additional memory or compu-
tational complexity. Utilizing L2 group lasso regularization
on these stacked layers allows us to learn a unique architec-
ture that is optimized for each dataset. Our experimental
results showed that higher order graph convolution methods
can achieve state of the art performance on several node
classification tasks. Our analysis of the experimental results
showed that neighborhood difference operators are espe-
cially useful in graphs which do not have high homophily
(correlation between edges and labels). While we focused
this paper on applying our proposal to the most popular
models for graph convolution, it is possible to implement
our method in more sophisticated frameworks including the
recent GAT (Velickovic et al., 2018). Other recent work like
(Ying et al., 2018), which focuses on hierarchical pooling
for community-aware graph representation might also be
extended to use general neighborhood mixing layers.
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