
On-Device Algorithms for Public-Private Data
with Absolute Privacy

Alessandro Epasto

Google

New York

aepasto@google.com

Hossein Esfandiari

Google

New York

esfandiari@google.com

Vahab Mirrokni

Google

New York

mirrokni@google.com

ABSTRACT
Motivated by the increasing need to preserve privacy in digital

devices, we introduce the on-device public-private model of com-

putation. Our motivation comes from social-network based rec-

ommender systems in which the users want to receive recommen-

dations based on the information available on their devices, as

well as the suggestions of their social contacts, without sharing

such information or contacts with the central recommendation

system. Our model allows us to solve many algorithmic problems

while providing absolute (deterministic) guarantees of the privacy

of on-device data and the user’s contacts. In fact, we ensure that

the private data and private contacts are never revealed to the

central system. Our restrictive model of computation presents sev-

eral interesting algorithmic challenges because any computation

based on private information and contacts must be performed on

local devices of limited capabilities. Despite these challenges, un-

der realistic assumptions of inter-device communication, we show

several efficient algorithms for fundamental data mining and ma-

chine learning problems, ranging from k-means clustering to heavy

hitters. We complement this analysis with strong impossibility re-

sults for efficient private algorithms without allowing inter-device

communication. In our experimental evaluation, we show that our

private algorithms provide results almost as accurate as those of the

non-private ones while speeding up the on-device computations

by orders of magnitude.

CCS CONCEPTS
• Security and privacy → Social network security and pri-
vacy; • Information systems→Datamining; Social networks;
• Theory of computation→ Sketching and sampling.
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1 INTRODUCTION
Digital devices play a significant role in the lives of their users

through the connections they provide, the information they assist
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in consuming, and the online purchases they enable. The wealth

of information on such devices (contacts, purchases, etc.) can be

potentially used to provide their owner with ever-improving ser-

vices and a better user experience, but only if the user’s privacy is

respected. Providing the users with useful services while also re-

specting their privacy is the holy grail of data mining and machine

learning and a fundamental endeavor in the research community

and in the industry [1, 15, 21–23, 27, 48].

Consider the case of a standard recommender system, such as

a service that suggests books to read. The system has a central

recommendation provider. The user logs into the system and vol-

unteers her ratings for the books already read and, in exchange,

receives suggestions for new books to read. Now, assume that the

user would like to receive suggestions based on the books read by

her close friends (perhaps the contacts in her mobile phone). In a

standard centralized system [12], to obtain such social recommen-

dations, the user needs to authorize access to her list of contacts

on the phone.

This has obvious limitations. The user might want to share the

book reviews online and with her friends, but at the same time

she might not want to share the contact list to the system. The

standard centralized system architecture does not allow such a use

case, because all the data necessary to solve the task of obtaining

the reviews (i.e., the book ratings and the social graph) must be

stored and processed in a centralized system.

In this paper, we begin the study of a new model of computation

that we call the On-Device Public-Private model. This model allows

the user to employ all the information available on her device,

as well as the user’s social contacts, without sharing them with

the central system. In particular, we show how to solve several

machine learning and data mining problems, in this model, without

having to move any private data to the central system and without

having to reveal the private connections in the social graph. Our

method provides absolute deterministic guarantees of privacy, as

no information based on the private data or the private contacts of

the user is shared with the central authority.

Thismodel is along the lines of other privacy-preserving schemes

that are actively studied and that are reviewed in related workâĂŤ-

for instance, differential privacy [1, 22–24], federated learning [38],

and the recent public-private data models [7, 15]. All these methods

allow strong privacy guarantees, and may complement ours, but

we observe that they do not directly model the social-graph-based

information or they involve a setting where private data or some

information based on it may still need to be collected by the central

authority (although in an anonymized or aggregated form). We

seek to study a model that allows general algorithmic problems to

be solved while harnessing the social network of the users. Our
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model can be seen as an extension to the recent public-private

graph model [15], along the lines of on-device learning settings in

which our model, contrary to the public-private graph model, does

not require any private information to be shared with the central

system, and it also allows metadata on nodes of the network to

address applications beyond graph analysis. Finally, we show how

to achieve this without relying on insertion of noise to obfuscate

the output, which might partially degrade it, while achieving, by

design, an even stronger notion of privacy: private data is only used

to provide outputs to the data owner.

Our restrictive model of computation presents several interest-

ing algorithmic challenges: since no private information is shared,

all computations based on private data must be performed on local

devices of limited capabilities. Despite these challenges, we show

efficient algorithms in our model for fundamental data mining and

machine learning problems, ranging from clustering to recommen-

dation system applications.

In a nutshell, our model works as follows: we allow the user to

specify an arbitrary partitioning of the local device data as public

or private. Moreover, the user is allowed to specify some contacts

as private or public. Only the public data and the public contacts

are shared to the central system in accordance with the choice of

the user. Then, the user wants to obtain some information (e.g.,

the results of a recommendation system algorithm) on a dataset

consisting of all the data to which the user has access (i.e., her

private data, all her contacts whether private or public, as well

as all the public information available in the system). All of this

must be achieved without revealing the private data and the private

contacts to the central authority. We present a formal summary of

these results in section 3 after defining necessary preliminaries.

Under the realistic assumption of a limited amount of communi-

cation among private contacts, we show positive results for address-

ing general algorithmic problems with applications in areas includ-

ing social-network-based recommender systems [42, 46]. We stress

that our model, contrary to previous work [15], is not restricted

to graph-based problems. In fact, we show results on general ma-

chine learning and data mining problems, finding heavy hitter [33]

and solving clustering problems (like k-medians, k-means and k-
centers) [11, 29].

To further motivate the model, we study a more restrictive case

in which the devices cannot communicate directly with each other.

In this no-inter-communication scenario, we show strong impos-

sibility results for many problems of practical interest, including

approximating the distance of users in social networks or counting

the connected components of the graph. These impossibility results,

in turn, motivate our model that allows minimal communication

among devices. On the positive side, we show that, informally,

even in this restrictive case, any problem that allows a streaming

algorithm with a limited amount of space can be solved efficiently.

The rest of the paper proceeds as follows. In section 2, we intro-

duce our models and review the prior public-private graph models.

Then, in section 3, we present our main theoretical results for our

model. Next, in section 4, we show empirical evaluation of algo-

rithms in our model. In section 5, we review related work, and

finally, in section 6, we present our conclusions.

2 ON-DEVICE PUBLIC-PRIVATE MODEL OF
COMPUTATION

In this section, we formally define the on-device public-private
model of computation. Before defining the model, we review the

public-private graph model, which was introduced by Chierichetti

et al. [15], to which we refer as centralized public-private model to

distinguish it from the on-device version we introduce.

Centralized model. In the (centralized) public-private model of

computation, we have a graph G = (V ,E), called the public graph,
where V is the set of nodes representing users of a system and E is

the set of public edges connecting them. Let n = |V | andm = |E |.
Then, for each node u ∈ V , we have an associated private graph
Gu = ({u} ∪Vu ,Eu ), over the set of nodes Vu = {v1, . . . ,vk } ⊆ V
representing the private edges of the node. Throughout the paper,

we assume that the public and private graphs are undirected, un-

weighted graphs, but the model can be defined [15] in the obvious

way for general graphs. We also focus on the most studied instance

of the model (known as the star case) where the set Eu consists

of a star centered in u (i.e., Eu = {u} ×Vu ), which represents the

private neighbors of the node u.
In the centralized public-private model of computation, we have

a graph problem to solve (e.g., determining the connected com-

ponents of the graph) and want to output efficiently the solution

for the problem for the graph visible to any arbitrary user u (i.e.,

the public-private graph of node u, G ∪Gu ) after performing some

efficient preprocessing of the public graph G computed by a cen-

tral machine. More precisely, let P be the preprocessing algorithm.

Ideally, we want P to analyze the public graph G in a time that is

polynomial in its size (i.e., O(poly(n +m))), and to output a space-

efficient synopsis P(G) of the public graph with space Õ(n).1 Then,
the aim of the query algorithm is to take in input for node u the

private graph Gu and to output the solution of the problem for

G ∪Gu by using the synopsis P(G), in time and space that is ide-

ally near-linear in |Eu | and poly-log(n). Crucially, we observe that
this model assumes that the query algorithm can access the entire

synopsis by making queries to it that depend on the private data.

Implicitly, this means that the private graph (or some information

based on it) resides in the central machine.

On-device model. Motivated by the problem of social-network-

based recommendations, in this paper we refine the previous model

to enforce that each private graphGu is stored exclusively on the

device owned by the agent u to protect her privacy. We assume that

private edges of Eu represent reciprocal private connections of the

user u (i.e., v ∈ Eu implies that u ∈ Ev and that u and v know each

other and they want their connection to be private to them and not

shared to the central authority or any other user). Hence, contrary

to the centralized model, the query algorithm must be executed on

a device of limited computation power and (crucially) cannot make

queries to the central machine that depend on the private edges, as

this would reveal the private connections to the shared machine.

To model this, we assume, as in the previous model, that a central

machine with high computational power can preprocess the public

graph G in polynomial time. Then, contrary to the previous model,

we assume that the query algorithm for G ∪ Gu is run on the

1
we use Õ (·) to neglect polylogarithmic factors.
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Figure 1: Description of the on-device public private model
of computation

private device of u that is not capable of storing the whole public

graph. Indeed, as the complete graph might be large, we restrict

the computation power (both space and running time) on each

device to be sublinear in the size of the public graph o(n + m),

preferably poly-logarithmic in n, and polynomial in the size of the

private graph, ideally Õ(Eu ). As this rules out the possibility for

the device to store a synopsis ofG of size Θ(n), we allow the device

to communicate with the central machine and to the other private

neighbors’ devices with small-size messages.

The on-device communication protocol. More formally, in the

on-device model, we assume that the central machine, after pre-

processing the public graph G, sends a single message σu to the

device corresponding to the node u of (ideally) poly-log(n) bits (we
refer to Figure 1 for a pictorial description of the model). No other

communication is allowed with the central machine from the device

thereafter. Indeed, the shared machine has no information about

the private graph Gu , and σu just depends on the public graph G
and node u, thus preserving completely the privacy of the private

contacts in Gu . Next, the device of u is allowed to directly query

the device of each private neighbor v ∈ Eu to receive the same
message σv sent to v by the central machine. We observe that this

communication does not involve the central authority and so does

not leak any information to it. We also observe that the messages

exchanged between a pair of private contacts do not contain pri-

vate information (as they are obtained from the public machine and

shared verbatim with the private contact), so no leakage is possible.

Finally, after this exchange, the query algorithm on the device uses

the messages received only to solve the problem.

For instance, in our book recommendation system example in

the introduction, v might be a contact of u in u’s favoring secure
messaging app.

2
User u may obtain σv using the same messag-

ing app to contact v , without thus sharing the app contact list to

the book recommendation system provider. Then, u will use the

messages received to compute the recommendations on her device.

2
In our model we abstract away the details of the communication protocols involved.

We only assume that there is a way for the devices to obtain small messages from their

private contacts without involving the central authority providing the recommendation

system.

Guarantees. Notice that, in this model, we protect by design all

private information from being known by the central authority, as it

is never reported to it. Notice, also, that nodes do not share private

data with their neighbors (the messages exchanged contain only

public data processed by the central machine). Thus, no leakage is

possible from neighbors, by design, under the assumptions that the

devices are able to establish a trusted connection with their private

contacts, and the private contacts will not leak the existence of

their connection to others. Notice that even if a private neighbor

were to collude with the central machine, the only information that

could be obtained by the machine would be the existence of the

connection with that neighbor.

Alternative models without communication or a centralized system.
Our model requires a single round of small-sized communication

among private contacts. This assumption is indeed necessary to

solve many important problems, as, in section 3.8, we show strong

impossibility results in a model with no-inter-communication be-

tween devices. Finally, we observe that the protocol could be simu-

lated without a central authority, if computational constraints were

not present, but that would require to process all public data on the

user’s devices, which is not feasible for large-scale systems.

Metadata. So far, we have described a model which, as in [15],

only involves graph information. Recently, another model has been

defined that allows public-private (problem-specific) data associ-

ated with users as the public-private framework of data summariza-

tion [39]. In our on-device framework, as well, we allow both graph

data and non-graph metadata on nodes. We assume that each node

has a problem-specific public metadata SPu that can be shared pub-

licly to everyone and a problem-specific private metadata SVu that

is only available to u. This allows us to address non-graph-related

problems such as clustering and heavy hitters, as we show in our

paper. Similar to the graph information, the public metadata can

be stored in the central machine, while the private metadata must

be processed locally. We observe that more sophisticated access

controls (who-can-access-what) can be defined, but we leave this

to a future work. To handle the metadata, we seek algorithms that

use polynomial time and space in the size of all public data for

preprocessing and linear time in the private data of a user for the

query algorithm.

3 ALGORITHMIC RESULTS FOR THE
ON-DEVICE MODEL

In this section, we report our main algorithmic results. First, we

study formally the relationships between the centralized and the

on-device model in Section 3.1. Then, we show novel algorithmic

results for the heavy hitters problem and k-clustering problem.

Finally, we show impossibility results when the devices are not

allowed to communicate between private contacts.

3.1 Relationships between the models
Before introducing our main novel algorithmic results, as a warm-

up, we present a few basic lemmas to clarify the relationships

between the on-device and the centralized model for graph algo-

rithms. In the on-device model, we define Σ as the maximum size



of a message exchanged in the protocol, while in the centralized al-

gorithm, we define |P(G)| as the size of the preprocessing synopsis

obtained.

First, we prove that the on-device model is at least as hard as

the centralized model, because any on-device algorithm can be

implemented in the centralized setting.

Lemma 1. Any on-device public-private graph algorithm with
polynomial time preprocessing, Σ ∈ Õ(1) message size and Õ(|Eu |)
query time, can be implemented in the centralized public-private
graph model with polynomial time preprocessing, |P(G)| ∈ Õ(n)
preprocessing space and Õ(|Eu |) query time.

Proof. It is easy to observe that using the central machine, one

can simulate the on-device protocol by storing in the synopsis all

the messages sent to the nodes and reading them from memory

during query time. The total space for the preprocessing is hence

O(nΣ), while the preprocessing time is clearly polynomial. At query

time, the central machine reads the Õ(|Eu |) messages “sent” to u
and simulates the on-device query algorithm in Õ(|Eu |) time. □

Another simple lemma shows that the contrary is not always

true: the on-device mode is strictly harder.

Lemma 2. There exist problems that admit a |P(G)| ∈ O(n) pre-
processing space in the centralized model and for which there is no
o(n) message size algorithm in the on-device public-private model.

The proof is omitted for lack of space, but it is based on standard

results in communication theory. All omitted proofs are deferred

to the extended version of the paper.

Despite the on-device model being generally harder, we now

show that for a significant class of centralized public-private graph

algorithms, there is an immediate reduction to the on-device model.

Lemma 3. Suppose for a given problem there exists a centralized
public-private algorithm with synopsis P(G) decomposable in n data-
structures, P(G)u for u ∈ V such that |P(G)u | ∈ Õ(1) and such that
the query algorithm for node u solves the problem in Õ(|Eu |) time
by having access only to P(G)u and P(G)v for v ∈ Eu . Then, there
exists a Σ ∈ Õ(1) message size and Õ(|Eu |) query time algorithm in
the on-device model.

Proof. We observe that the reduction is immediate because the

central machine can send message σu := P(G)u with space Õ(1) to
each node u, and then the devices can implement the query algo-

rithm using only the messages received from the central machine

and their private contacts. □

The previous reductions yield directly algorithms in the on-

device model for many problems already studied in the centralized

model such as counting the number of connected components,

estimating the size of the reachability set of a user, and several

centrality estimations (we refer the reader to [15] for details) when

the centralized public-private algorithm defined therein has the

property required by Lemma 3. Conversely, we observe that this

property does not hold for many important algorithms defined

in centralized settings, including approximating shortest path dis-

tances between nodes u and v and estimating several notions of

node similarities between them, because such algorithms require

arbitrary access to the centralized synopsis. In particular, the cen-

tral machine needs to be informed about the nodev queried from u.
Solving these problems while protecting the privacy of the query

in our restrictive model is an interesting open problem.

3.2 Problems addressed
We now introduce our main algorithmic contributions in which

we study a class of problems related to recommendation systems

in the on-device public-private model. In a social-network recom-

mendation system, there is a set of arbitrary items S and a graph

indicating the social network. We assume the social graph includes

a public partG and a private graphGu for each node u as described

above. For each vertex u, we have a set SPu ⊆ S of public items and

a set SVu ⊆ S of private items, respectively, that u likes.

Wemodel the problem of implementing a social recommendation

system that, given the information in the neighborhood reachable

within distance d of a vertex u in the graph visible to u, G ∪ Gu ,

returns a subset of items I , with |I | = k to recommend to u. More

formally, for a graphG, we letNd
u (G) be the set of vertices reachable

from u within a distance at most d on graph G. We let

Sdu (G) = SVu ∪
⋃

v ∈N d
u (G)

SPv

be the set of items visible to u in G (i.e., the private items of u plus

all public items of nodes reachable from u at distance less than d in

the graph G). We will drop G when we refer to the public graph

G. In particular, in our on-device model, we want to approximate

the output of certain functions specifying relevant items over the

set Sdu (G ∪Gu ) to recommend. We show results for the following

problems.

Uniform recommendation function. A uniform recommendation

function is a randomized function that returns a subset of items

uniformly at random without replacement from Sdu (G ∪Gu ).

Linear recommendation function. Fix a nodeu, let Sv be Sv := SPv
for v , u and Su := SVu ∪ SPu for u. Notice that Sdu (G ∪ Gu ) =⋃
v ∈N d

u (G∪Gu )
Sv . For a fixed u, item i ∈ S, and distance d , we

define Ciu (G ∪ Gu ) as the number of distinct nodes v ∈ Nd
u (G ∪

Gu ) for each i that appears in the set Sv defined above. A linear

recommendation function is a randomized function that returns a

subset of k items I , where the items in I are chosen from Sdu (G∪Gu )

without replacement with probability proportional to Ciu (G ∪Gu ).

Heavy hitter. Let M be a multiset of S, i.e., a set of items with

repetitions. For parameters ϵ and κ, heavy hitter is a function that

returns a subset of items I from a multisetM with two properties.

1) I contains all items that appear in at least
|M |
κ times inM where

|M | is the total number of items counting repetitions; and 2) each

item i ∈ I appears at least |M |
κ − ϵ times inM .

For a nodeu and distanced , we letM be themultiset that contains

the union (with repetitions) of Sv for distinct v ∈ Nd
u (G ∪Gu ) (i.e.,

all items visible to u counted with the number of users liked by

them). We seek to find all heavy hitters as defined above.

k-Clustering. In this case, each item in S represents a point in

an arbitrary metric space, and the goal is to pick a set of k points



Algorithm 1: General Algorithm.

Input: G , ∀u∈V (SPu , S
V
u , Gu ), d , k

Output: Output k items for each node u
1: Pre-processing on central machine using G , ∀u∈V SPu .
2: for all u ∈ V , for d ′ ≤ d do
3: Let S̄d

′

u (G) :=
⋃
v∈Nd

u (G )
SPv .

4: Compute Id
′

u := sketch(S̄d
′

u (G)).

5: Send to u , σu := (Id−1

u , Idu ).
6: Query algorithm on u ’s device using Gu, SVu .

7: Receive σu from central machine.

8: Send σu to v and receive σv from v for all v ∈ Eu .
9: Compute IVu := sketch(SVu ).

10: Compose sketches IVu , Id−1

v for v ∈ Eu , and Idu to obtain sketch Iu .
11: Extract k items from Iu .

r1, . . . , rk that minimizes the cost function.( ∑
s ∈Sdu (G∪Gu )

k
min

j=1

dist(r j , s)ρ
)

1/ρ
,

for a particular fixed ρ. ρ = 1 corresponds to k-median, ρ = 2 to

k-means and ρ → ∞ to k-center.

In the next sections, we show algorithms with provable theoreti-

cal guarantees for all these problems in our model.

3.3 General algorithmic approach
The general approach of our algorithms (reported in Algorithm 1)

for the previously mentioned problems is to define a compos-

able sketch function sketch over sets of items such that 1) from

sketch(A), one can extract k items, approximately solving the prob-

lem; 2) sketch(A) has small space Õ(k); and 3) the sketches com-

puted over two (possibly overlapping) sets of items A and B can be

computed easily by composing sketch(A) and sketch(B). Assume

that such a function exists; we will use it to compute a sketch

Id
′

u for the items in the neighborhood at distance at most d ′ from

a node u on the public graph G over the public items SPu for all

u ∈ V . These sketches will be computed over the public data in

the centralized machine in the preprocessing phase for all integers

1 ≤ d ′ ≤ d using the public graphG and the public items SPu for all

u ∈ V . We will send to each individual node u, as the message σu ,

the sketches for the greatest two distances (i.e., σu := (Id−1

u , Idu )).
Then, the nodes will share the message received from the central

machine with their private neighbors and collect their messages.

In the query phase, node u will compose: the sketch Idu and the

sketches Id−1

v ∀v ∈ |Eu | received, as well as the sketch computed

over the private local items SVu , to obtain a sketch Iu and to extract

from it the recommendations.

Given this general framework, for each specific problem, we only

need to show how the preprocessing phase obtains the sketches

Id
′

u efficiently, how they can be composed, and how to extract the

solution from the sketch.

3.4 Uniform recommendation function
We define the sketch for the uniform case. We start with a simple

sketching algorithm that does not work. Let us assume the public

server defines as sketch Idu of uniform and independent sample

Algorithm 2: Algorithm for uniform recommenda-

tion function.

Input: G , ∀u∈V (SPu , S
V
u , Gu ), d , k , a hash function h(.)

Output: Output k uniform sample items for each node u

1: Obtaining Id
′
’s during preprocessing

2: For d ′ = 0

3: for all u ∈ V do
4: Sort items in i ∈ SPu based on hash h(i) and let I 0

u be the first k
items by h(·).

5: for d ′ ∈ {1 · · ·d } for u ∈ V do
6: Let Îd

′

u be the union of Id
′−1

u ∪
⋃
v∈N (u) Id

′−1

v where N (u) is refers
to graph G .

7: Sort items in Îd
′

u based on h(i) and let Id
′

u be the first k items.

8: Query algorithm on u ’s device using same h(·) function.
9: Let IVu be the top k items by h(·) in SVu .

10: Compute ˆIu as union of IVu , Id−1

v for v ∈ Eu , and Idu .
11: Extract k items from Îu by h(·).

of items from Sdu . Suppose u has two neighbors, v ′
and v ′′

. Let

item i ∈ Sdv ′ , i ∈ Sdv ′′ , and i ′ ∈ Sdv ′ , but i
′ < Sdv ′′ . In this case, the

probability that i exists in either one of the samples of v ′
or v ′′

is more than the probability for element i ′, which is not desired

because it does not allow a simple combination of the two samples.

To resolve this issue, we assume that there exists a k-min-wise

independent uniform hash function h : S → [0, 1] from the items

to [0, 1]. We assume that the function has shared random seeds that

are available to all devices and the central machine (i.e., we can

compute it consistently in every device). The algorithm is reported

in Algorithm 2, in which we report only the details missing from

the general Algorithm 1. To sketch a set of items S , we hash the

items in S and keep the k items with minimum values. Two sketches

for sets A,B can be easily composed because one can sort the items

in A ∪ B and return the top k by h. Algorithm 2 shows how to

use this property to iteratively construct Id
′

u for all nodes based

on Id
′

u and how to initialize I0

u , which is the sketch of SPu . Then,

Id
′

u is obtained by combining the sketches of Id
′−1

v for the public

neighbors of u and the previous sketch Id
′−1

u of u. Finally, the last
two sketches for d and d − 1 are sent to each device. To construct

uniform recommendations, for any v in the private neighborhood

of u, we query v to obtain Id−1

v , construct ∪v ′∈Eu∪Gv I
d−1

v ′ ∪ Idu ,
and compose it with the sketch of the private items in u. Finally,
we recommend the k items with minimum hash value from the

combined sketch.

The following lemma can be shown.

Theorem 4. Algorithm 2 obtains k uniform recommendations
without replacement for each node in the on-device model with total

preprocessing time Õ
(∑

u |SPu | + kd(m + n)
)
using Õ(k) space mes-

sages and Õ
(
|SVu | + k |Eu |

)
query time.

We observe that one could use l0 sketches [30] on each vertex to

provide a uniform recommendation function. However, l0 samplers

provide independent samples (i.e., with replacements). This can

be resolved by using more sketches on each vertex and removing

duplicated items, but l0 samplers are designed to handle deletions

of items as well, which is not necessary here.



3.5 Linear recommendation function
In this subsection, we provide a simple technique to recommend

k items without replacement from Sdu (G ∪ Gu ) with probability

proportional to Ciu (G ∪Gu ).

First, we give a simple example to show that unlike the uniform

sampling case, several copies of independent samplers are not useful

to solve the problem efficiently. Suppose we have only items i and

i ′, andCiu (G ∪Gu ) = n andCi
′

u (G ∪Gu ) = 1. Note that any sampler

that samples 2 items without replacement reports both i and i ′.
However, sampling one item gives i with probability

n
n+1

, and i ′

with probability
1

n+1
. Hence, in expectations, we need to makeO(n)

linear samples with replacement to observe i ′ once, which is not

desirable.

Here again, we use k-min-wise hash functions with shared ran-

dom bits in a similar fashion to Algorithm 2. The key difference

with the algorithm is in the sketch method, which instead of hash-

ing items S to [0, 1], it hashes pairs of items (i,u) to [0, 1], where i
is an item and u is a vertex containing i in its items. We first focus

on the preprocessing. For each vertex u, we defineTd
′

u = {(v, i)|v ∈

Nd ′

v (G) and i ∈ SPv }. We define the sketch Id
′

u to be the set of k

pairs in Td
′

u with minimum hash values and with distinct items

(i.e., when an item appears several times, we only keep the pair

with lowest hash value for that item). It is easy to see that such

sketches can be computed iteratively as in the uniform case. Notice

also that at query time for node u, by having access to Idu , I
d−1

v for

v ∈ Eu and SVu , one can construct in the same way a sketch for

Sdu (G ∪Gu ) = ∪v ∈N d
u (G∪Gu )

Sv , where Sv is defined as Sv := SPv

for v , u and Su = SPu ∪ SVu .

To construct the linear recommendations, we recommend the k
distinct items with minimum hash values in the combined sketch of

Sdu (G∪Gu ). Notice that the recommended set is equivalent to the set

of the k distinct items with minimum hash values inTdu (G ∪Gu ) =

{(v, i)|v ∈ Nd
u (G ∪ Gu ) and i ∈ Sv }. Hence, the probability that

a pair corresponding to an item i has the minimum hash value is

proportional to its frequency Ciu as desired. After removing the

pairs corresponding to the first item, the same argument holds for

the second item, and so on. This allows the following theorem to

be shown.

Theorem 5. The previous algorithm obtains k linear recommen-
dations without replacement for each node in the on-device model

with total preprocessing time Õ
(∑

u |SPu | + kd(m + n)
)
using Õ(k)

space messages and Õ
(
|SVu | + k |Eu |

)
query time.

3.6 Heavy Hitters
In this subsection, we provide a technique to recommend heavy

hitters. Fix a probability 0 < δ < 1. Let s = |S| be the total number

of items. We use a similar technique to the linear case, except that

we use H = 12 log
2s
δ ϵ−2

fully independent hash functions. As in

the linear recommendations case, each hash function maps a pair

(u, i) of user and item to [0, 1]. The sketch Idu keeps H pairs, one

per function, such that for each function, the pair stored is the one

with minimum hash value over the items inserted in the sketch. It

can be observed that the sketch is composable. The construction of

the sketches in the pre-processing and query time is the same as in

the linear case. It can be noted that the final sketch Idu constructed

at query time is a list of

12 log
2s
δ

ϵ 2
items sampled independently,

this time with replacement, from Nd
u (G ∪ Gu ) with probability

proportional to Cdu (G ∪Gu ). We recommend an item if and only if

it appears at least

(
1

κ − ϵ
2

)
12 log

2s
δ

ϵ 2
times in the list Idu .

Given the result in Theorem 5, the proof can be adapted to show

the following bound on the running time and message space.

Lemma 6. The previous algorithm obtains runs in the on-device

model with total pre-processing time Õ
(∑

u |SPu |H + d(m + n)H
)
us-

ing Õ(H ) space messages and Õ
(
|SVu |H + |Eu |H

)
query time.

With a little more work, we can also show the following lemma.

Lemma 7. The algorithm defined above returns the heavy hitter
items in the neighborhood of u, with probability 1 − δ .

3.7 k-clustering
Our algorithm in this section is based on the notion of composable

core-sets [11]. Bateni et al. [11] show that given a linear space

α-approximation algorithm for k-clustering problem for a fixed

ρ norm (e.g., ρ = 1 for k-median, ρ = 2 for k-means, ρ = ∞ for

k-center), the following procedure provides an O(α)-approximate

solution of the problem. Arbitrarily decompose the points into

disjoint sets U1, · · · ,Ut . Inside each set Ui select an approximate

solution of size Θ̃(k). We call these points representatives. Then,

for each point inUi that is not a representative we move it to the

location of the closest representative point in Ui . Now one can

represent the new dataset by distinct point locations and their

multiplicities, which are composable core-sets. Then, combine the

composable core-sets and solve the problem on the new dataset.

This is known to provide a O(α)-approximation. Notice that the

challenge to applying this method to our case is that the points

in the sets SPu , S
V
u for u ∈ V are not necessarily disjoint. We show,

nevertheless, how to use this technique in our case.

Similar to the technique in previous sections, for each node u
we keep a composable core-set of the points in

⋃
v ∈N d′

u (G)
SPv for

d ′ = d and d ′ = d − 1, for each node. We do this, in this section, by

first running a BFS search from each node u, gathering the points

in SPv for v ∈ Nd ′

u (G), and finding the corresponding core-sets Id
′

u
as in [11]. Note that this preprocessing step can be implemented in

Õ(k |V |) space and polynomial time. Then,u receives Id−1

v from each

vertex v in its private neighborhood. Node u merges the userâĂŹs

core-set Idu and the core-sets from private neighbors Id−1

v and solves

the problem. Note that core-sets Id−1

v correspond to not necessarily

disjoint sets. However, each point appears at most |Eu | + 1 times in

these core-sets, where |Eu | is the number of private neighbors of u.
Therefore, we can show that our approximation factor is increased

by a factor of at most |Eu | + 1. This implies the following theorem,

where, as in [11], we assume there is a polynomial time, linear

space, α-approximation algorithm Alд for k-clustering in the norm

ρ.

Theorem 8. The previous algorithm obtains aO(α |Eu |)-approximate
k-clustering in the norm ρ, for each node u, in the on-device model



with polynomial time preprocessing, using Õ(k) space messages, and
using query time polynomial in |SVu |, k and |Eu |, as desired.

Specifically, the total pre-processing time is

Õ
©«
∑
u

f
©«
������ ⋃
v ∈N d′

u (G)

SPv

������ª®®¬ +m +
∑
u

∑
v ∈N d

u (G)

���SPu ���ª®®¬
and query time is Õ

(
f
(��SVu �� + k |Eu |)) , where f (.) indicates the

running time of the offline algorithm Alд.
The increase |Eu | in the approximation factor in the previous

algorithm is due to the possibility of items appearing in multiple

core-sets. In the next subsection we provide a sketching technique

that allows us to reduce the weight of the duplicated points from

the core-sets. By applying this sketching, our algorithm is (approxi-

mately) using the true weight of the points in the core-set. While

this heuristic does not improve the approximation factor in the

worst case, this theoretically sound heuristic improves the results

in practice.

3.7.1 Removing duplicated items. As we mentioned earlier in this

subsection, composable core-sets are designed to work with disjoint

sets (i.e., a decomposition of the input set). However, in the case of

our application, if a vertexv is reachable from two private neighbors

of u (via distance less than d), the items (i.e., points) of v appear

in both of these neighbors. Hence, we double count the weight of

these items on the representative items. If we could explicitly keep

the set of the items assigned to the representative items (which we

refer to as A1, . . . ,At for simplicity of notation), we could directly

indicate the duplicated items and remove their weights from the

representative items. However, this might not be practical due to the

large size of these sets. In this subsection we provide a technique

to sketch these sets such that we can remove the weight of the

duplicated items fairly accurately (i.e., with an ϵ error) using a

smaller memory.

Next, we provide our tool to deal with sets that are not disjoint for

composable core-sets. This tool might be of independent interest.

Let A be a collection of items and let A1, . . . ,At ⊆ A be a col-

lection of subsets of A. Without loss of generality, we assume

|A1 | ≥ |A2 | ≥ · · · ≥ |At |. Let ∆ be an upper bound on the

number sets that contain a, for any arbitrary a ∈ A. Let h(.)
be a universally shared hash function that hashes A → [0, 1]

uniformly at random. We let Âi be the subset of Ai with hash

value at most λi =
6 log(δ t )∆2

ϵ 2

1

|Ai |
. Note that we have E[|Âi |] =

|Ai |
6 log(δ t )∆2

ϵ 2

1

|Ai |
=

6 log(δ t )∆2

ϵ 2
∈ Õ(∆2).

For i ∈ {1, . . . , t} we define Bi =
{
a
��a ∈ At&∄j>ia ∈ Aj

}
. This

intuitively says that to construct Bi s from Ai s, we remove dupli-

cated items from the larger sets and keep them in the smaller ones.

Similarly, for i ∈ {1, . . . , t} we define B̂i =
{
a
��a ∈ Ât&∄j>ia ∈ Âj

}
.

Lemma 9. With probability at least 1 − δ−1, simultaneously, for
all i ∈ {1, . . . , t} we have���|Bi | − 1

λi
|B̂i |

��� ≤ ϵ
|Ai |

∆
.

The proof is omitted for lack of space.

3.8 Hardness results for
no-inter-communication models

To motivate our model, here we consider a more restrictive case

where we do not allow the nodes to exchange the messages σ ’s
with their private contacts. Hence, after the message σu is received,

the query algorithm has to solve the problem based exclusively on

the local private graph Gu and the message σu . We call this model

no-inter-communication model.

We show that it is impossible to solve several basic graph prob-

lems in the no-inter-communication public-private model, which

motivates our more general model and distinguishes the computa-

tion power of these two models. We summarize our negative results

in the following theorem.

Theorem 10. It is information-theoretically impossible to solve
the following problems in the no-inter-communication public-private
model using o(n) size messages:

• Approximate the distance of u and v .
• Decide if u is connected to v .
• Approximate the number of connected components.

The full proof of all the results is available in the full version.

For lack of space, here we describe the intuition behind them. Our

hardness results are based on two-party communication complexity

techniques. Note that we provide information-theoretic hardness,

and hencewe do not require computational complexity assumptions

like P , NP .
We use the hardness of the indexing problem [32] and set dis-

jointness [31, 44]. In the indexing problem, we have two parties:

namely, Alice and Bob. Alice holds a subset A ⊆ {1, 2, . . . ,n} and
Bob holds an element a. The goal is for Bob to detect whether or

not a ∈ A, using a one-way communication link from Alice to Bob.

It is known that Ω(n) bits of communication are required to solve

this problem.

In the set disjointness problem as well, we have two parties, Alice

and Bob, each holding a subset of {1, 2, . . . ,n}. Say Alice holds A
and Bob holds B. The goal here is to detect whether or notA∩B = ∅,

using a two-way communication link. This problem requires Ω(n)
bits of communication as well.

To prove the above theorem, let us define the reachability prob-

lem as follow. We have a network G with a vertex r indicated as

the root. A vertex v is reachable if there is a path from v to the

root. Indeed, the goal is to detect whether each vertex is reachable.

The next theorem shows the hardness of solving the reachability

problem in the no-inter-communication model.

Lemma 11. It is not possible to solve the reachability problem in
the no-inter-communication model using o(n) size messages to the
device.

Next we show the hardness of counting the number of connected

components.

Lemma 12. Let ϵ ∈ (0, 1] be an arbitrary small constant. It is not
possible to approximate the number of connected components with an
approximation factor ϵ in the no-inter-communication model using
o(n) communication with each device.

Let us define the delay approximation problem as follows. We

have an undirected unweighted networkG with a vertex r indicated



as the root. The delay of a vertex v is equal to the length of the

shortest path between v and the root. The delay approximation

problem is to approximate the length of the shortest path between

each vertex and the root. The next theorem shows the hardness of

delay approximation in the no-inter-communication model.

Lemma 13. It is not possible to solve the delay approximation prob-
lemwith an approximation factorω( 1

n ) in the no-inter-communication

model using o(n) communication with each local device.

Positive results. Despite the strong impossibility results presented

above, we show a reduction from the popular class of streaming

algorithms (with Õ(1) space). This result translates any streaming

algorithm to a no-inter-communication on-device public-private

algorithm and directly provides a few basic algorithms for the no-
inter-communication model.

Theorem 14. Consider a problem that admits an (insertion-only)
streaming algorithm with Õ(1) space, T0 update time per element
inserted, and T1 query time. The problem can be solved in the no-
inter-communication public-private setting using Õ(1)message space
and Õ(|Eu |T0 +T1) query time.

One application of this theorem is to estimate the size of the max-

imum matching in planar graphs (and bounded arboricity graphs).

This can be done with Õ(1) space, Õ(1) update time, and Õ(1) query
time [37]. In fact, none of the other results presented in this paper

can be derived from this theorem.

4 EXPERIMENTS
In this section, we empirically evaluate the efficiency of our al-

gorithms in the on-device public-private model. For experimen-

tation purposes, to ensure replicability of the results, and for pri-

vacy reasons, we exclusively use public-available data for all our

experiments. All our datasets are obtained from the Stanford’s

SNAP dataset (http://snap.stanford.edu/data) or from the DBLP

public data repository of computer science publication records

(https://dblp.uni-trier.de/). Of course, these datasets do not con-

tain private data, so as in previous works [15, 39], we simulate

the public-private data split in our dataset. We first describe the

datasets used and then show how we simulated the public-private

data split.

Uniform sampling, linear sampling, andheavyhitter.To eval-
uate our algorithms for uniform sampling, linear sampling, and

heavy hitters, we use three datasets, referred to as dblp, foods [35],
and movies [35]. From these three datasets we extract a collection

of user-user relationships (representing the social network of the

users) and a collection of user-item pairs (representing the items

associated to each user). We first present statistics on these datasets.

• dblp contains 1.1 × 10
6
nodes 8.6 × 10

6
links and 8.1 × 10

3

distinct items (for 3.5 × 10
6
total user-items relationships)

• foods contains 2.1 × 10
5
nodes 1.8 × 10

7
links and 6.8 × 10

4

distinct items (for 4.7 × 10
5
total user-items relationships).

• movies contains 9.4× 10
5
nodes 1.7× 10

8
links and 2.4× 10

5

distinct items (for 6.7 × 10
6
total user-items relationships).

For dblp the nodes are authors, and the items associated with a

node correspond to the venues in which the author published. The

social graph instead represents co-authorship relationships among

nodes. For foods and movies, the nodes are users in a recommender

system (see [35] for more details), while the user-items relationships

represent the objects each user reviewed. The edges in the social

network represent co-reviewing relationships.

k-Clustering. To evaluate our algorithms for the k-clustering prob-
lem instead we use a dataset where items are associated with a point

in a metric space. We use the gowalla dataset [16] which contains

2.0× 10
5
nodes 9.5× 10

5
links and a total of 6.4× 10

6
distinct items.

The items represent check-ins corresponding to 2d location data.

We use ρ = ∞ for the norm, corresponding to the well studied k-
center problem. The edges in this dataset are the social connections

among users.

Simulating the public-private graphs. To obtain examples of

public-private graphs as in [15, 39] we mark independently and

uniformly a fraction p of the edges in each dataset as private and

remove them from the public graph G while adding each private

edge u,v to the private graphs Gu and Gv . We use p = 1/2 in the

experiments reported, but this coefficient does not qualitatively

affect the results obtained. As the most salient aspect of the model

is the sketching of the public data in the preprocessing phase we

mark all items as public in our experiments, again this does not

qualitatively affect the results significantly.

4.1 Results for uniform sampling, linear
sampling, and heavy hitter

Here we experiment with our algorithms for uniform sampling,

linear sampling, and heavy hitter. In this setting, we use d = 2 and

d = 3 for the radius of the neighborhood around a node for which

we extract the suggestions. We chose this range as it is large enough

to be algorithmically challenging but not so large that it results

in little variability between node suggestions (it is well known

that most nodes are at distance 4 to 5 from each other [8, 34]). We

experiment with the recommendation number k in the range [1, 10].

For heavy hitter we set κ = k , ϵ = 1

2k , and probability of success to

90% (i.e, we upper bound the number of recommendations by k).
For stability of the results, when we report the running time, we

show the mean of 100 independent executions.

Recall that our aim is to provide to node u suggestions from

Sdu (G∪Gu ) = SVu ∪
⋃
v ∈N d

u (G∪Gu )
SPv according to the definitions of

the specific problem (uniform sampling, linear sampling, and heavy

hitter). Notice that our on-device algorithms for uniform sampling

and linear sampling are guaranteed to have the same output of a

centralized algorithm that analyzes all the data (private and public)

in Sdu (G ∪Gu ) and then computes the suggestions. Moreover, our

on-device algorithm for heavy hitters has the same output (and

hence accuracy) of the centralized sketch-based algorithm running

on all the data in Sdu (G ∪Gu ). As such, in our experiments for these

problems, we focus on the efficiency of the algorithms. Our main

aim is to show that executing the query algorithm for a single

node is highly efficient and can be performed on an inexpensive

device. In particular, we seek to show that our preprocessing allows

the query time to be much faster than without preprocessing the

data. To show this, we make the conservative comparison of the

running time of our query algorithm, executed for one node u, with

an algorithm that simply loads in memory all data in Sdu (G ∪Gu )

(which is much faster than an algorithm computing the suggestions).

http://snap.stanford.edu/data
https://dblp.uni-trier.de/


This will show the gains that come from the preprocessing. Also,

we show the preprocessing algorithm running time to evaluate

its scalability in a centralized system. For ease of comparison of

the preprocessing and query algorithm running times, we ran all

our algorithms (preprocessing and query) as a standard sequential

single-core job on the same machine (we used an Intel Xeon CPU

E5-1650 v4 with 6 cores at 3.60 GHz, running Debian). Each job uses

a single core, but we observe that the preprocessing algorithms

lead to an obvious distributed implementation. We observe for the

query algorithms very little memory use (less than 1 MB for the

data storage), while the preprocessing used less than 10 GB of RAM.

(a) movies preprocessing time

(b) movies query time

Figure 2: Running time of the preprocessing and query algo-
rithm for heavy hitter.

Preprocessing. We report the running time of our preprocessing

algorithms in Figures 2a for the heavy hitter case in movies. We

omit the figures for the uniform and linear sampling case for lack

of space as well as the figures for dblp, foods. The results are

qualitatively similar in all datasets and problems more details are

deferred to the full version of the paper.

From the charts, we can make the following observations. Note

that as expected, the number of recommendations has only an

almost-linear effect on the preprocessing time. The radius d has

also a moderate effect on the preprocessing time.

Query time.We now focus on the query time, which is reported in

Figure 2b for heavy hitter in movies (results for linear and uniform
sampling and for other datasets are omitted for lack of space, but are

qualitatively very similar). Here we can observe that the diameter, as

expected, does not affect the query time. As expected, increasing the

number of recommendations has a linear effect on the query time.

We observe running times that range from 0.5 to 2.00 milliseconds

per query in heavy hitter for the movies dataset (see Figure 2b),

showing great efficiency.

Recall that to show a conservative estimate of the speedup of the

running time of our query algorithm due to the preprocessing, we

compare its mean running time (over 100 random nodes u) with the

mean running time of an algorithm that simply loads in memory all

data in Sdu (G ∪Gu ). Our experiments for linear sampling, uniform

sampling, and heavy hitter shows that the query time for dblp
obtains a speedup of a factor 10 to 100 for d = 2 and a factor 100 to

1000 for d = 3 by the preprocessing. Similarly, for foods we see a
factor 20 to 200 for d = 2 and a factor 400 to 4000 for d = 3 and for

movies a factor 200 to 2000 for d = 2 and a factor 15000 to 150000

for d = 3.

4.2 Results for clustering
In this section, we show similar experimental results for our algo-

rithm for k-center (i.e., k-clustering with ρ = ∞) in the gowalla
dataset. We set the number of points in the core-set to be k and we

set the de-duplication method to use E[|Âi |] = 10|Ai |. As clustering
algorithm, to obtain the core-sets we use the standard k-center
greedy algorithm. The running times are reported in Figure 3a and

Figure 3b for preprocessing and query algorithm, respectively, for

d = 2 and k ∈ [1, 10] clusters. The preprocessing time is again

linearly related to k . The average running time per query is less

than 9 milliseconds. Here we observe that the running time has a

more than linear relationship with k but still is extremely fast for

all k . Again, as a benchmark, we compare the running times of the

query algorithm with a centralized algorithm: gathering the items

on a 2-neighborhood of the query node, we run the same greedy

k-center algorithm and observe an increase in speed from a factor

of 38 to a factor of 700 times for d = 2. Again, this confirms that

the preprocessing improves performances significantly.

Then, in Figure 3c, we evaluated the cost of the clustering so-

lution obtained by our algorithm (using the point de-duplication

technique) and the cost obtained by a centralized clustering algo-

rithm that runs over the correct dataset without duplicates. We

recall that the issue with the composability of the sketches is that

the points in the sketches for the private neighbors are not disjoint

(notice that this is true even if each user has distinct points, because

the sketches include points at distance 2 from the neighbor). For this

reason, we introduced a sketching technique to estimate the correct

multiplicity of the points in the core-sets. As it is possible to see in

the figure, the two lines are almost coincident. In fact, we observe

less than 1% variation in the cost of the two solutions, confirming

the accuracy of the method beyond the worst case guarantees in

this dataset.

5 RELATEDWORK
Related work to our paper spans a variety of areas, so we will focus

only on the most directly related ones.

Our paper is motivated by the importance of preserving privacy

in social-network-based systems. This area has attracted signif-

icant attention [21, 26, 27, 48]. Several authors describe attacks

and remedies to potential attacks on social-networks’ privacy [9,

47, 48]. Users are increasingly interested in privacy controls of

social-network data as Dey et al. [21] observe.

Private-public data model. This interest has motivated many

privacy-preserving frameworks in the past. The one most related to

our work is the public-private graph framework [15] described in

section 2. Chierichetti et al. [15] show how the framework allows



(a) gowalla preprocessing time (b) gowalla query time (c) gowalla clustering solution cost

Figure 3: Running time of the preprocessing and query algorithm for clustering and cost of the clustering solution.

multiple graph problems to be solved, including connected compo-

nents, all-pair distance estimation [19], node similarity scores as so-

cial affinity [41], correlation clustering [10], shortest paths [20], and

Personalized PageRank computation [25]. Notice that Chierichetti

et al. [15] do not explicitly address the issue of keeping the user’s

private data on the device of limited capacity because it models a

centralized setting.

The original framework was defined for graph problems only,

however, other non-graph problems have been studied such as

the data summarization framework [39], where users possess both

private and public data and one wants to summarize the data for

personalized recommender systems. The authors show succinct

summaries for optimizing submodular user utility functions. Simi-

larly, Archer et al. [7] study indexing problems in public-private

graphs, where one wants to retrieve nodes visible to a user. Neither

Mirzasoleiman et al. [39] nor Archer et al. [7] define explicitly a

notion of on-device computation.

Other privacy-preserving learning models. Related to ours is

the rich area of research on differential privacy [1, 22, 23]. Differ-

ential privacy was originally proposed as a model for preventing

leakage of individuals’ information from the output of a computa-

tion over private databases. In a nutshell, a differentially private

algorithm is guaranteed to have an output that is mostly unaffected

by the data of any given user, in a strong probabilistic sense. This

strong constraint limits the information over the private data that

an attacker can learn. This method has found wide adoption in

many areas of computer science, including deep learning [1], for

its theoretical elegance and its strong guarantees.

The original applications of differential privacy were in central-

ized settings, but recently, several studies have used it to protect

communication of on-device data to a central authority. An example

is Qin et al. [43], who address recommender system problems using

differential privacy in a setting not involving social-graph-based

information (unlike our paper). More generally, the local differential

privacy [24] technique consisting of perturbing local information

before sending it to the central authority has received wide atten-

tion because it allows the computation of aggregate statistics over

user data.

Another related topic is the setting of federated learning [38]. In

a federated learning scenario, the users of a system want to opti-

mize a shared machine learning model (e.g., training a single model

for all users, using their own private on-device data in a distributed

setting without sharing it to the central machine). In this setting,

several works [14, 38] show strong theoretical guarantees of pri-

vacy based on differential privacy and sophisticated cryptographic

protocols [14]. We observe that the setting is different from ours

because it does not directly model social-graph-based information,

and it focuses on the problem of using every user’s data to improve

machine learning models for all users.

Contrary to previous work, in our on-device framework, we do

not rely directly on differential privacy techniques, as we guarantee,

by design, an even stronger notion of privacy because private data

is only used to provide output to the data owner. We also observe

that our model does not require the insertion of noise in the output,

the estimation of output sensitivity [23], or the use of specific

cryptographic protocols. However, we believe that the wealth of

theoretical results on differential privacy, federated learning, and

other areas conceivably can be used to address a wide class of

problems in variants of our model, an effort that we leave as an

open problem.

Algorithmic problems addressed in our work. Our paper ad-
dresses several algorithmic problems in heavy hitters [33] and

clustering [4, 29], both of which have a vast literature. Related

to our algorithmic techniques is the area of streaming algorithms

and streaming data analysis [30, 36, 45]. In particular, we use exten-

sively techniques from sketching [5, 6] that have found applications

in graph problems [13, 17, 18, 36, 40]. Particularly related are the

notions of composable sketches, which are also related to the con-

cept of composable core-sets [3, 28], mergeable summaries [2], and

mapping core-sets for clustering [11].

Finally, to obtain our impossibility results, we use a few impor-

tant results such as [31, 32, 44].

6 CONCLUSIONS
We introduce a new model for addressing several computational

problems while providing strong privacy guarantees for the data

and contacts present on a user’s device. We believe that our paper

further shows how techniques from streaming and sketching can

be used for privacy-preserving computations in on-device com-

putations. As a future work, we would like to further explore the

connection of the area of streaming and privacy to address more

problems in the on-device public-private model. Also, an interest-

ing area of study is the use of differential-privacy methods in this

model.
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