
Improving Robustness to Attacks Against Vertex Classification
Benjamin A. Miller

miller.be@husky.neu.edu

Northeastern University

Boston, MA

Mustafa Çamurcu

camurcu.m@husky.neu.edu

Northeastern University

Boston, MA

Alexander J. Gomez

gomez.alexa@husky.neu.edu

Northeastern University

Boston, MA

Kevin Chan

kevin.s.chan.civ@mail.mil

Army Research Laboratory

Adelphi, MD

Tina Eliassi-Rad

t.eliassirad@northeastern.edu

Northeastern University

Boston, MA

ABSTRACT

Vertex classification—the problem of identifying the class labels of

nodes in a graph—has applicability in a wide variety of domains.

Examples include classifying subject areas of papers in citation net-

works or roles of machines in a computer network. Recent work has

demonstrated that vertex classification using graph convolutional

networks is susceptible to targeted poisoning attacks, in which both

graph structure and node attributes can be changed in an attempt

to misclassify a target node. This vulnerability decreases users’

confidence in the learning method and can prevent adoption in

high-stakes contexts. This paper presents work in progress aiming

to make vertex classification robust to these types of attacks.

We investigate two aspects of this problem: (1) the classification

model and (2) themethod for selecting training data. Our alternative

classifier is a support vector machine (with a radial basis function

kernel), which is applied to an augmented node feature-vector

obtained by appending the node’s attributes to a Euclidean vector

representing the node based on the graph structure. Our alternative

methods of selecting training data are (1) to select the highest-

degree nodes in each class and (2) to iteratively select the node with

the most neighbors minimally connected to the training set. In the

datasets on which the original attack was demonstrated, we show

that changing the training set can make the network much harder

to attack. To maintain a given probability of attack success, the

adversary must use far more perturbations; often a factor of 2–4

over the random training baseline. Even in cases where success is

relatively easy for the attacker, we show that the classification and

training alternatives allow classification performance to degrade

much more gradually, with weaker incorrect predictions for the

attacked nodes.

KEYWORDS

Graph convolutional networks, vertex classification, poisoning at-

tacks, robust learning

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MLG’19, Aug 05, 2019, Anchorage, AK
© 2019 Copyright held by the owner/author(s).

ACM Reference Format:

Benjamin A. Miller, Mustafa Çamurcu, Alexander J. Gomez, Kevin Chan,

and Tina Eliassi-Rad. 2019. Improving Robustness to Attacks Against Vertex

Classification. In MLG’19: The 15th International Workshop on Mining and
Learning with Graphs, Aug 05, 2019, Anchorage, AK. ACM, New York, NY,

USA, 8 pages.

1 INTRODUCTION

Classification of vertices in graphs is an important problem in

a variety of applications, varying from e-commerce (classifying

users for targeted advertising) to security (classifying computer

nodes as malicious or not) to bioinformatics (classifying roles in a

protein interaction network). In the past several years, numerous

methods have been developed for this task (see, e.g., [9, 12]). Until

recently, however, little attention has been paid to the robustness

of these methods to adversarial actions such as data poisoning.

If an adversary was able to insert data into the training set (e.g.,

generate benign traffic during a data collection period that could

cover its behavior during testing/inference time), he/she would be

more likely to succeed in successfully evading detection (which is

undesirable to the data analyst).

To classify vertices in the presence of adversarial activity, we

must implement learning systems that are robust to such potential

manipulation. If suchmalicious behavior has low cost to the attacker

and high cost to the data analyst, machine learning systems will not

be trusted and adopted for use in practice, especially in high-stakes

scenarios such as network security and traffic safety. Understanding

how to achieve robustness is key to realizing the full potential of

machine learning.

Adversaries, of course, will attempt to conceal their manipulation.

In a recent paper, Zügner et al. propose an adversarial technique

called Nettack [21], which can create perturbations that are subtle
1

while still being extremely effective in decreasing performance on

the target vertices. The authors use their poisoning attack against

a graph convolutional network (GCN). Nettack’s effectiveness is

notable, but the authors do not consider how the end user of the

classifier might defend against it.

In this paper, we present work in progress suggesting that there

are ways to make classifiers more robust to Nettack. We focus

on two potential methods: changing the classifier and changing

the training data selection technique. We consider a classification

scheme in which topology and vertex attributes are decoupled

1
We are not convinced by the subtlety of the perturbations in [21]. As Figure 6 shows

Nettack’s perturbations can be detected by examining triangle distributions.

MLG’19, Aug 05, 2019, Anchorage, AK Benjamin A. Miller, Mustafa Çamurcu, Alexander J. Gomez, Kevin Chan, and Tina Eliassi-Rad

and considered as separate features. We see that—while there is

a tradeoff between overall performance and robustness—we can

substantially increase the level of perturbation required to achieve

the same decrease in the classification margin. To select training

data, we aim to train with a subset of nodes that are well connected

to the held-out set. Here we also see a benefit, often raising the

number of perturbations required for a given level of attack success

by a factor of 2 to 4. In a context where there is flexibility to choose

the training set, this can provide a significant advantage. Some

combination of these methods will likely be useful to develop a

more robust vertex classification system.

The contributions of this work are as follows:

• We tested transferability of Nettack to classifiers when we

decouple structure from attributes and observe varying levels

of robustness.

• We developed a new method for selecting training data that

puts a greater burden on attackers.

• We expand the GCN model used in [21] to use two hidden

layers and test this with the training data selection method,

also noting an increase in the required budget in most cases.

• We identified potential tradeoffs between overall classifier

performance and robustness to attack.

These contributions all point toward interesting future research in

this area, such as developing a broad set of attacks against vertex

classification and subsequent research into robustness.

The remainder of this paper is organized as follows. In Sec-

tion 2 we describe the vertex classification problem and the Nettack

method. Section 3 details the methods we investigate to provide

greater robustness. Section 4 documents several experimental re-

sults, identifying promising areas for continued investigation. In

Section 5, we briefly contextualize our work within the current

literature. In Section 6 we conclude with a summary and outline

future work.

2 PROBLEM MODEL

We consider the vertex classification problem as described in [21],

where we are given a graph G = (V ,E) of size N = |V | and an

N × d matrix of vertex attributes X . Each node has an arbitrary

numeric index from 1 to N . For this work, as in [21], we consider

only binary attributes. In addition to its d attributes, each node has

a label denoting its class. We enumerate classes as integers from

1 to C . Given a subset of labeled instances, the goal is to correctly

classify the unlabeled nodes.

The focus of [21] is on GCNs, which make use of the adjacency

matrix for the graph A = {ai j }, where ai j is 1 if there is an edge

between node i and node j and is 0 otherwise. The GCN applies a

symmetrized graph convolution to the input layer. That is, if we let

D be the diagonal matrix of vertex degrees—i.e., the ith diagonal

entry is the number of edges connected to vertex i , dii =
∑N
j=1 ai j—

then the first layer of the network is expressed as

H = σ
(
D−1/2AD−1/2XW1

)
,

whereW1 is a weight matrix, X is a feature matrix whose ith row

is xTi , and σ is the rectifier function. From the hidden layer to the

output layer, a similar graph convolution is performed, followed by

a softmax output:

Y = softmax

(
D−1/2AD−1/2HW2

)
.

The focus in [21] is on GCNs with a single hidden layer. Each vertex

is then classified according to the largest entry in the corresponding

row of Y .
The vertex attack proposed in [21] operates on a surrogate model

where the ReLU activation function is replaced by a linear function,

thus approximating the overall network as

Y ≈ softmax

((
D−1/2AD−1/2

)
2

XW1W2

)
(1)

= softmax

((
D−1/2AD−1/2

)
2

XW

)
.

Nettack uses a greedy algorithm to determine how to subtly per-

turb both A and X to make the GCN misclassify a target node. The

changes are intended to be “unnoticeable,” i.e., the degree distribu-

tion ofG and the co-occurrence of features are changed negligibly.

Using the approximation in (1), Nettack perturbs by either adding

or removing edges or turning off binary features so that the classi-

fication margin is reduced the most at each step. Note that while it

can change the topology and the features, Nettack does not change
the labels of any vertices. An additional variation on Nettack allows

either “direct” attacks, in which the target node itself has its edges

and features changed, or indirect “influencer” attacks, where the

neighbors of the target have their data altered.

The classifier is evaluated in a context where only some of the

labels are known, and the labeled data are split into training and

validation sets. To train the GCN, 10% of the data are selected at ran-

dom (or by one of the alternative methods outlined in Section 3.2),

and another 10% is selected for validation. The remaining 80% is the

test data. After training, nodes are selected for attack among those

that are correctly classified: the 10 where the margin is largest, the

10 where the margin is smallest, and 20 more at random. Each of

these is taken as a target node for attack in an experiment. The

attack is evaluated based on how much the classification margin

decreases for the targeted nodes.

Taking the perspective of a defender against the attack, we want

to ensure that this decrease in margin is minimized. The goal is to

determine how to make the GCN (or an alternative vertex classifier)

as robust as possible to this attack, minimizing the decrease in

margin for a given level of perturbation by the attacker.

3 PROPOSED TECHNIQUES

3.1 Alternative Classification

Our first investigation of robustness to Nettack involves altering

the classifier used by the defender. We still use the same attack as

in [21] and apply to a different classifier. This is also done in [21],

but we consider different alternative classifiers in a new context.

In this case, we still classify based on both structural features and

attributes, but decouple the two in a way that cannot be done with

GCN.

In each case, we generate an N × de feature matrix Xs based on

the structure of the graph. We then concatenate these features to

the attributes to obtain a new feature matrix Xf = [Xs X], which
is passed to a classifier.

Improving Robustness to Attacks Against Vertex Classification MLG’19, Aug 05, 2019, Anchorage, AK

We consider two graph embedding procedures, which map ver-

tices to points in Rde . The first is node2vec [8], which embeds each

node in Euclidean space based on distance between nodes in a ran-

dom walk. That is, the more often nodes vi ,vj ∈ V occur near each

other in random walks, the smaller ∥ f (vi)− f (vj)∥2 should be. The
function f (v) is the feature representation of vertex v in the lower-

dimensional space. Node2vec adapts the framework of word embed-

ding to graphs. First, it finds “context” around each vertex v ∈ V by

conducting second-order biased randomwalks around the neighbor-

hood ofv . Let’s denote this context by N (v). Then, it maximizes the

log-likelihood objective to find f : maxf
∑
v ∈V log Pr(N (v)| f (v)).

In this way, f (v) is predictive of the nodes in v’s neighborhood
N (v).

The other embedding technique we use is recursive feature ex-

traction (ReFeX) [10]. This method starts with a base set of local

features and iteratively aggregates the features of its neighbors

until convergence. The base node features are degree, number of

edges in the egonet, and number of edges from the egonet to the

rest of the graph. At each iteration, ReFeX considers adding new

features consisting of the sum and average of its neighbors features,

only keeping them if they provide sufficient new information. We

use the implementation provided in [6], which uses an alternative

method to determine which features to keep (different from the

original paper).

In the experiments in Section 4.1, we use a support vector ma-

chine (SVM) with a radial basis function kernel as our classifier. We

use scikit-learn’s implementation and enable probability outputs

to evaluate the classification margins as we do with the GCN, for

which we use the implementation provided by the authors of [21].

3.2 Alternative Training

The Nettack paper only considered one way of selecting the train-

ing set: a random sample (stratified across classes) of 20% of the

data was taken, and split in half for training and validation, with

the remaining 80% being used for testing. As we investigated clas-

sification performance, we noted that nodes in the test set with

many neighbors in the training set were more likely to be correctly

classified. This dependence on labeled neighbors is consistent with

previous observations [14]. This suggested that a training set that

provides something like a vertex cover—a kind of “scaffolding” for

the data—could make the classification more robust.

We considered two methods to test this hypothesis. The first

simply chooses the highest-degree nodes to be in the training set.

The top 10% of each class is chosen for the training data, and the

remaining 90% is randomly split (stratified by class) into test (80%)

and validation (10%), maintaining the proportions of the original

experiment in [21]. The other method uses a greedy approach in

an attempt to ensure every node has at least a minimal number

of neighbors in the training set. Starting with an empty training

set and a threshold k = 0, we iteratively add the node with the

largest number of neighbors connected to at most k nodes in the

training set. When there are no such neighbors, we increment k .
This procedure continues until we have the desired proportion of

the overall dataset for training (again, 10% in our experiments). The

remaining data are randomly partitioned into test and validation

sets. Algorithm 1 provides the pseudo-code. In this case, there is

no stratification by class. Incorporating this aspect is part of our

future work.

Algorithm 1 GreedyCover

Input: Graph G = (V ,E), training proportion t ∈ (0, 1)
Output: Training set T ⊂ V
k ← 0, T ← ∅
for all u ∈ V do

mu ← 0 ⟨⟨mark all nodes 0⟩⟩

end for

while |T | < |V |t do
v ← argmaxu ∈V \T

∑
u′∈N(u) I [mu′ = k]

if

∑
u′∈N(v) I [mu′ = k] = 0 then

k ← k + 1 ⟨⟨increment min. num. trained neighbors⟩⟩

else

T ← T ∪ {v}
mv ← −1

for all u ′ ∈ N(v) \T do

mu′ ←mu′ + 1

end for

end if

end while

return T

There are issues with both of these approaches. Since it adds

edges to the graph, Nettack changes the degree of the nodes. The

targets, however, are selected from among the test set (the nodes

with “unknown” labels). These two aspects of the problem setup

are in contention: selecting the target requires knowledge of the

training set, but the training set selection requires knowledge of

degree, which is not fully known until after the attack. This is an

issue with the experimental setup that will need to be resolved

to fully formalize this analysis. Given the results in Section 4.2,

however, this strategy shows promise and is worth pursuing in

greater depth.

4 EXPERIMENTAL RESULTS

We tested Nettack against the proposed defenses. In each case, we

randomly select a test/validatiton split (after either deterministically

or randomly selecting the training set), select 40 targets as discussed

in Section 2, and perturb the graph either directly or indirectly to

change the target’s classification. We evaluate the perturbation by

inspecting the classification margin for the target node. Specifically,

the margins reported here are the log probability ratios for the

correct class versus the highest probability incorrect class, i.e., if

the true class is c ,

log

pc
maxc ′,c pc ′

.

Thus, if the vertex is correctly classified, the margin will be positive;

otherwise it will be negative.

For each target, we perturb some number of times. We do the fol-

lowing to determine the budget required for an attacker to achieve a

given probability of success. First, compute the associated quantile

of the distribution of margins across targets (e.g., 10th percentile

for 10% attacker success probability) as a function of number of

perturbations. We then determine where this function first becomes

MLG’19, Aug 05, 2019, Anchorage, AK Benjamin A. Miller, Mustafa Çamurcu, Alexander J. Gomez, Kevin Chan, and Tina Eliassi-Rad

nonpositive (i.e., the smallest number of perturbations for the at-

tacker to successfully cause the target to be misclassified). This

value is the required budget. We linearly interpolate between tested

values to get better resolution. If a given level of attack success

is never achieved within the perturbations attempted, we set the

required budget to number of perturbations plus 1. We average this

value over 5 trials and report standard errors in the budget plots in

this section.

We use two of the datasets used in the Nettack paper in our

experiments:

• CiteSeer The CiteSeer dataset has 3312 scientific publica-

tions put into 6 classes. The network has 4732 links repre-

senting citations between the publications. The features of

the nodes contain 1s and 0s indicating the presence of the

word in the paper. There are 3703 unique words considered

for the dictionary.

• Cora The Cora dataset consists of 2708 machine learning

papers classified into one of seven categories. The citation

network consists of 5429 citations. For each paper (vertex) in

the network there is a feature vector of 0s and 1s for whether

it contains one of the 1433 unique words.

4.1 Classifier Variations

Our first test involves using an alternative classifier rather than

a GCN. For both ReFeX and node2vec, we use 128 features for

structure and select targets among nodes correctly classified by the
classifier being used. We perturb each target up to 10 times. Only

attacks against structure (not attributes) are used.

The budget required to achieve a certain probability of attack

success is shown in Figure 1. Results are shown for indirect attacks

against the randomly selected targets as opposed to those with

large or small margins. We should note that the overall classifica-

tion performance is much lower for ReFeX—about 50% as opposed

to the 86% achieved by the GCN—but those nodes that are cor-

rectly classified are much more robust to Nettack than using the

original GCN formulation. At low attack success probability rates,

the required budget is increased by about an order of magnitude.

This raises several questions. Since the overall classification perfor-

mance with ReFeX is lower, are these cases easier if we consider

them with the GCN as well? Is the robustness gap maintained if

we consider more perturbations (note that the top of the plot is at

10, which is the maximum number of perturbations we consider in

this experiment)? We are currently investigating these results more

deeply, but are highly encouraged by what we have seen so far.

The node2vec-based method, on the other hand actually seems to

impose a smaller burden on the attacker. While using the node2vec

embedding did not make these cases more robust to the attack, we

do see a change in performance if we look more closely at the data.

In many cases, the margin of classification decreases much more

slowly using the node2vec-based method. Results for such cases

are shown in Figure 2. This figure shows results for cases where im-

proving performance is more difficult: direct (rather than influence)

attacks against the target, cases where the margin is small (and

thus any attack immediately causes misclassification), and cases

where the margin is large (where it is often not possible to misclas-

sify within 10 perturbations). The figure shows the median (50%

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

Cora

GCN
node2vec
ReFeX

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

CiteSeer

GCN
node2vec
ReFeX

Figure 1: Budget required to achieve a given probability of at-

tack success, varying the classifier used. Results are shown

for influencer attacks against structure only, for both the

Cora and CiteSeer datasets. Targets are randomly chosen

from test nodes correctly classified with the given classi-

fier. Note that nodes correctly classified by applying an SVM

to the ReFeX representation require substantially more

perturbation—sometimes nearly an order of magnitude—to

achieve a given level of attack success.

attack success probability) across all targets in all 5 trials. In most of

these cases, while the target becomes misclassified using either the

node2vec-based method or the GCN at around the same number

of perturbations, the decline in the margin is typically steeper for

the GCN. This means that the classifier will be less confident in

its incorrect predictions of the targeted nodes for a given budget.

Note that this occurs because the initial classification margin for

the node2vec-based method is smaller than with the GCN. As we

continue this work, we will determine whether additional train-

ing can yield higher margins for the SVM to improve this method.

Regardless, we see the reduction of the rate of decline as positive

and worth pursuing further. Note that the results using ReFeX are

virtually unchanged by the perturbations.

4.2 Training Variations

In our experiments varying the training selection method, we also

considered adding another hidden layer. In this case, Nettack uses

a different approximation of the output, modifying (1) to obtain

Y ≈ softmax

((
D−1/2AD−1/2

)
3

XW ′
)
,

Improving Robustness to Attacks Against Vertex Classification MLG’19, Aug 05, 2019, Anchorage, AK

0 2 4 6 8 10
Number of Perturbations

10

5

0

M
ed

ia
n

M
ar

gi
n

Cora, Random Target, Direct Attack

GCN
node2vec
ReFeX

0 2 4 6 8 10
Number of Perturbations

4

3

2

1

0

M
ed

ia
n

M
ar

gi
n

Cora, Small Margin, Indirect Attack

GCN
node2vec
ReFeX

0 2 4 6 8 10
Number of Perturbations

2.5

5.0

7.5

10.0

12.5

15.0

M
ed

ia
n

M
ar

gi
n

Cora, Large Margin, Indirect Attack
GCN
node2vec
ReFeX

0 2 4 6 8 10
Number of Perturbations

8

6

4

2

0

2

M
ed

ia
n

M
ar

gi
n

CiteSeer, Random Target, Direct Attack

GCN
node2vec
ReFeX

0 2 4 6 8 10
Number of Perturbations

4

3

2

1

0
M

ed
ia

n
M

ar
gi

n

CiteSeer, Small Margin, Indirect Attack

GCN
node2vec
ReFeX

0 2 4 6 8 10
Number of Perturbations

0

2

4

6

8

M
ed

ia
n

M
ar

gi
n

CiteSeer, Large Margin, Indirect Attack
GCN
node2vec
ReFeX

Figure 2: Median margin after perturbation, varying the classifier, in cases that are more difficult to improve: direct attacks

against random targets (left column), small margin cases (center column), and large margin cases (right column). The GCN

becomes much more confident in its incorrect predictions than the SVM applied to node2vec features. Performance with an

SVM applied to ReFeX features is virtually unchanged as more perturbations are applied.

where in this caseW ′ is the product of 3 matrices representing

the input layer and two hidden layers. This increases computa-

tional complexity as Nettack must consider additional paths (3 hops

rather than 2) as it identifies the most promising perturbations.

Both hidden layers have 16 units, as in the single hidden layer in

the previous experiments. In these experiments, we apply up to 50

perturbations and attack either structure, attributes, or both.

We see that, across a wide swath of attack success probabilities,

the alternative selection methods provide a significant increase in

robustness, often requiring a factor of 2–4 to achieve a given prob-

ability of success. Results demonstrating the increase in required

budget are shown in Figure 3. This plot includes influencer attacks

against randomly selected targets. Consider the attacks against

structure alone. Random selection sees little difference in using one

or two hidden layers for either dataset. For GreedyCover, we see

a significant increase in the required budget at high attack success

probabilities with two layers, while selecting high-degree nodes

is better with one layer when attack success probability is low. In

almost all cases, performance using the alternatives is appreciably

better than randomly selecting training data.

The improvement in performance is not universal across scenar-

ios. When attributes alone are attacked, for example, the classifier

is just as robust using random training as the other methods. Un-

derstanding this phenomenon is a goal of our ongoing work.

Just as when we considered varying the classifier, we see im-

provements that do not manifest themselves in the overall clas-

sification performance. Results for these more difficult cases are

provided in Figure 4. As when we varied the classifier, we see that,

although the margin may cross zero at approximately the same

point, the decrease is much more gradual in most cases using the

alternative selection methods (direct attacks against CiteSeer being

a notable exception). For example, in attacks against small-margin

targets in Cora, creating the same reduction in margin as with 10

perturbations under random selection requires 20 perturbations

using the alternative methods. We again see that there are larger

margins using the baseline method, which makes those targets less

vulnerable to attack, even if their margins decrease more quickly

as they are perturbed.

One additional consideration is whether either of these methods

degrades overall system performance, thus yielding a tradeoff be-

tween overall performance and robustness. The experiments we

have run so far suggest that there is some variation, as illustrated

in Figure 5. While it seems that using high-degree vertices does

slightly degrade classification performance, it is less clear that the

GreedyCover does; it slightly improves performance for CiteSeer,

perhaps because ensuring more unlabeled nodes have labeled neigh-

bors enhances the utility of the structure in the sparser graph.

5 RELATEDWORK

Adversarial examples in deep neural networks have received consid-

erable attention since they were documented a few years ago [18].

Since that time, numerous attack methods have been proposed,

largely focused on the image classification domain (though there

has been interest in natural language processing as well, e.g., [11]).

In addition to documenting adversarial examples, Szegedy et al.

MLG’19, Aug 05, 2019, Anchorage, AK Benjamin A. Miller, Mustafa Çamurcu, Alexander J. Gomez, Kevin Chan, and Tina Eliassi-Rad

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

Cora, Attack Structure

random
degree
cover

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

Cora, Attack Attributes
random
degree
cover

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

Cora, Attack Both

random
degree
cover

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

CiteSeer, Attack Structure

random
degree
cover

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

CiteSeer, Attack Attributes
random
degree
cover

0.2 0.4 0.6 0.8 1.0
Prob. of Successful Attack

10
0

10
1

R
eq

ui
re

d
B

ud
ge

t

CiteSeer, Attack Both
random
degree
cover

Figure 3: Budget required to achieve a given probability of attack success, varying the training data selection method. Results

are shown forGCNswith one (solid line) or two (dash line) hidden layers.We consider attacks on the structure of the graph (left

column), the vertex attributes (center column), and attacks against both simultaneously (right column). All results use attacks

against neighbors of a randomly selected target. Using GreedyCover consistently outperforms random selection, often by a

factor of 2 and sometimes by a factor of 4. Training with high-degree nodes also typically shows a substantial benefit.

0 10 20 30 40 50
Number of Perturbations

20

15

10

5

0

M
ed

ia
n

M
ar

gi
n

Cora, Random Margin, Direct Attack
random
degree
cover

0 10 20 30 40 50
Number of Perturbations

8

6

4

2

0

M
ed

ia
n

M
ar

gi
n

Cora, Small Margin, Indirect Attack
random
degree
cover

0 10 20 30 40 50
Number of Perturbations

2.5

0.0

2.5

5.0

7.5

10.0

M
ed

ia
n

M
ar

gi
n

Cora, Large Margin, Indirect Attack
random
degree
cover

0 10 20 30 40 50
Number of Perturbations

15

10

5

0

M
ed

ia
n

M
ar

gi
n

CiteSeer, Random Margin, Direct Attack
random
degree
cover

0 10 20 30 40 50
Number of Perturbations

5

4

3

2

1

0

M
ed

ia
n

M
ar

gi
n

CiteSeer, Small Margin, Indirect Attack
random
degree
cover

0 10 20 30 40 50
Number of Perturbations

2

0

2

4

6

8

10

M
ed

ia
n

M
ar

gi
n

CiteSeer, Large Margin, Indirect Attack
random
degree
cover

Figure 4: Median margin after perturbation, varying the training data selection method, in cases that are difficult to improve:

direct attacks (left column), small margin cases (center column), and large margin cases (right column). Attacks are against

a GCN with one hidden layer and change both structure and attributes. In the direct and small margin attacks, even when

misclassification occurs (0 crossing) at the same perturbation level, the margin often decreases faster with random selection.

Improving Robustness to Attacks Against Vertex Classification MLG’19, Aug 05, 2019, Anchorage, AK

0.79 0.80 0.81 0.82 0.83
F1 Score (Macro)

0.0

0.1

0.2

0.3

S
am

pl
e

P
ro

po
rti

on
Cora

random
degree
cover

0.58 0.60 0.62 0.64 0.66 0.68
F1 Score (Macro)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
am

pl
e

P
ro

po
rti

on

CiteSeer
random
degree
cover

Figure 5: Distribution of F1 scores (macro aggregated) us-

ing all 3 training set selection methods on both datasets be-

fore perturbation. Performance is for a GCN with one hid-

den layer. The alternative methods sometimes reduce per-

formance, suggesting there may be a tradeoff between ro-

bustness and classification performance.

demonstrated that such examples can be generated using the limited-

memory BFGS (L-BFGS) algorithm, which identifies an adversarial

example in an incorrect class with minimal L2 norm to the true

data. Later, Goodfellow et al. proposed the fast gradient signmethod

(FGSM), where the attacker starts with a clean image and takes

small, equal-sized steps in each dimension (i.e., alters each pixel

by the same amount) in the direction maximizing the loss [7]. An-

other proposed attack—the Jacobian-based Saliency Map Attack

(JSMA)—iteratively modifies the pixel with the largest impact on

the loss [15]. DeepFool, like L-BFGS, minimizes the L2 distance

from the true instance while crossing a boundary into an incorrect

class, but does so quickly by approximating the classifier as linear,

stepping to maximize the loss, then correcting for the true classifi-

cation surface [13]. Like Nettack, these methods all try to maintain

closeness to the original data (L2 norm for L-BFGS and DeepFool,

L0 norm for JSMA, and L∞ norm for FGSM).

The Nettack paper only compares to one of these methods: FGSM.

In future work, it would be worthwhile to also compare to JSMA

and DeepFool. These both have similarities to Nettack: JSMA has a

similar greedy strategy of iteratively choosing a dimension to max-

imally increase the loss, and DeepFool uses a linear approximation

of the classifier. In addition, another attack against vertex classifi-

cation has been introduced [5]. This method uses reinforcement

learning to identify modifications to graph structure for an evasion

attack. A comparison between these methods would be valuable.

Defenses to these attacks have been proposed, although several

prove to be insufficient against stronger attacks. Defensive distilla-

tion is one such defense, in which a classifier is trained with high

“temperature” in the softmax, which is reduced for classification [16].

While this was effective against the methods from [7, 13, 15, 18],

it was shown in [3] that modifying the attack by changing the

constraint function (which ensures the adversarial example is in

a given class) renders this defense ineffective. As more defenses

have been proposed, such as pixel deflection [17] and randomiza-

tion techniques [20], but many such methods are still found to be

vulnerable to attacks [1, 2]. Future work will also consider defenses

that appear promising (e.g., [4, 19]) if they can be applied in the

graph domain.

6 CONCLUSIONS

This paper describes work in progress aiming to make vertex clas-

sification robust to the adversarial poisoning technique Nettack.

We consider two possible approaches to enhance robustness to

Nettack: varying the classifier used and varying the training set

selection method. When transferring Nettack to classifiers other

than a GCN—specifically classifiers that decouple structure from

attributes—we note that there is a much more gradual decline in the

classification margin than when using the GCN. In particular, using

ReFeX to embed the structure of the graph leads to much greater

robustness among vertices that are correctly classified. There is,

however, a reduction in overall performance, and achieving a bal-

ance between performance and robustness will be essential future

work. When considering alternative ways to select training data, we

also see an improvement in robustness, both in terms of increasing

the budget required for a successful attack (often by a factor of 2 or

more) and, in cases where this is not possible, making the classifier

much less confident in its incorrect predictions. Both of these de-

velopments are highly encouraging as we explore possibilities to

enhance vertex classification robustness.

The work we have documented here points to several avenues of

investigation we intend to pursue. First and foremost, developing

methods that achieve the performance of the GCN on the overall

dataset with the robustness of ReFeX on the targets is the ultimate

goal, and investigating a classification ensemble that incorporates

all of these classifiers may be a way to achieve this. Similarly, de-

veloping a hybrid method of selecting the training data that uses a

combination of randomly selected data and nodes that cover the

test set could prove useful if it enables both large classification

margins and robustness to perturbations. Of course, we must also

consider how an attacker may take these alternative contexts into

account, and update Nettack accordingly. Finally, changing the way

in which performance is evaluated may be interesting: splitting

nodes based on degree rather than margin and considering the

margin change for all nodes instead of those correctly classified. In

addition, expanding the notion of an “unnoticeable” or subtle attack

to include preserving triangle count would be helpful, as the attacks

appear to shift the triangle distribution (see Figure 6). Robustness

to adversarial activity has driven fascinating research in the image

MLG’19, Aug 05, 2019, Anchorage, AK Benjamin A. Miller, Mustafa Çamurcu, Alexander J. Gomez, Kevin Chan, and Tina Eliassi-Rad

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

S
am

pl
e

P
ro

po
rti

on

Cora, 10 Perturbations

Original
Direct (EMD 0.50)
Indirect (EMD 0.37)

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

0.8

S
am

pl
e

P
ro

po
rti

on

Cora, 25 Perturbations

Original
Direct (EMD 5.67)
Indirect (EMD 1.07)

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

0.8

1.0

S
am

pl
e

P
ro

po
rti

on

Cora, 50 Perturbations

Original
Direct (EMD 23.92)
Indirect (EMD 1.46)

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

0.8

S
am

pl
e

P
ro

po
rti

on

CiteSeer, 10 Perturbations

Original
Direct (EMD 1.54)
Indirect (EMD 0.27)

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

0.8
S

am
pl

e
P

ro
po

rti
on

CiteSeer, 25 Perturbations

Original
Direct (EMD 7.63)
Indirect (EMD 0.66)

0 10 20 30 40 50
Number of Triangles

0.0

0.2

0.4

0.6

0.8

S
am

pl
e

P
ro

po
rti

on

CiteSeer, 50 Perturbations

Original
Direct (EMD 23.55)
Indirect (EMD 0.97)

Figure 6: Distribution of triangle counts. In both Cora (top) and CiteSeer (bottom), the number of triangles goes up for direct

attacks and down for indirect attacks. Thus, the subtlety of Nettack’s perturbations is questionable. The legend is annotated

with the earth mover’s distance (EMD) of the perturbed triangle distribution from the original triangle distribution.

classification domain. We look forward to new discoveries as the

same is done for vertex classification.

7 ACKNOWLEDGEMENTS

The authors would like to thank Qi (Rose) Yu and Rui Wang for

helpful feedback on the training modification portion of this work.

This research was sponsored in part by the Combat Capabili-

ties Development Command Army Research Laboratory and was

accomplished under Cooperative Agreement Number W911NF-13-

2-0045 (ARL Cyber Security CRA) and by the United States Air

Force under Air Force Contract No. FA8702-15-D-0001. The views

and conclusions contained in this document are those of the authors

and should not be interpreted as representing the official policies,

either expressed or implied, of the Combat Capabilities Develop-

ment Command Army Research Laboratory, the United States Air

Force, or the U.S. Government. The U.S. Government is authorized

to reproduce and distribute reprints for Government purposes not

withstanding any copyright notation here on.

REFERENCES

[1] Anish Athalye and Nicholas Carlini. 2018. On the Robustness of the CVPR 2018

White-Box Adversarial Example Defenses. CoRR abs/1804.03286 (2018).

[2] Anish Athalye, Nicholas Carlini, and David Wagner. 2018. Obfuscated Gradients

Give a False Sense of Security: Circumventing Defenses to Adversarial Examples.

In ICML. 274–283.
[3] N. Carlini and D. Wagner. 2017. Towards Evaluating the Robustness of Neural

Networks. In IEEE Symp. on Security and Privacy (SP). 39–57.
[4] Francesco Croce, Maksym Andriushchenko, and Matthias Hein. 2019. Provable

Robustness of ReLU networks via Maximization of Linear Regions. In AISTATS.
2057–2066.

[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial Attack on Graph Structured Data. In ICML. 1115–1124.

[6] Nikhil Desai. 2014. Beyond Community Detection - RolX. https://github.com/

Lab41/Circulo/blob/master/circulo/algorithms/rolx.py. (2014).

[7] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and

Harnessing Adversarial Examples. In ICLR. http://arxiv.org/abs/1412.6572
[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In KDD. 855–864.
[9] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representa-

tion Learning on Large Graphs. In NeurIPS (formerly known as NIPS). 1025–1035.
[10] Keith Henderson, Brian Gallagher, Lei Li, Leman Akoglu, Tina Eliassi-Rad, Hang-

hang Tong, and Christos Faloutsos. 2011. It’s Who You Know: Graph Mining

Using Recursive Structural Features. In KDD. 663–671.
[11] Robin Jia and Percy Liang. 2017. Adversarial Examples for Evaluating Reading

Comprehension Systems. In EMNLP. 2021–2031.
[12] John Moore and Jennifer Neville. 2017. Deep collective inference. In AAAI.

2364–2372.

[13] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. 2016.

DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In

CVPR. 2574–2582.
[14] J. Neville, B. Gallagher, and T. Eliassi-Rad. 2009. Evaluating Statistical Tests for

Within-Network Classifiers of Relational Data. In IEEE ICDM. 397–406.

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. 2016.

The Limitations of Deep Learning in Adversarial Settings. In IEEE European Symp.
on Security and Privacy (EuroSP). 372–387.

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami. 2016. Distillation as a

Defense to Adversarial Perturbations Against Deep Neural Networks. In IEEE
Symp. on Security and Privacy (SP). 582–597.

[17] Aaditya Prakash, Nick Moran, Solomon Garber, Antonella DiLillo, and James

Storer. 2018. Deflecting Adversarial Attacks With Pixel Deflection. In CVPR.
8571–8580.

[18] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks.

In ICLR. http://arxiv.org/abs/1312.6199
[19] EricWong and Zico Kolter. 2018. Provable Defenses against Adversarial Examples

via the Convex Outer Adversarial Polytope. In ICML. 5286–5295.
[20] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. 2018. Mit-

igating Adversarial Effects Through Randomization. In ICLR. https://openreview.
net/forum?id=Sk9yuql0Z

[21] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Adversarial

Attacks on Neural Networks for Graph Data. In KDD. 2847–2856.

https://github.com/Lab41/Circulo/blob/master/circulo/algorithms/rolx.py
https://github.com/Lab41/Circulo/blob/master/circulo/algorithms/rolx.py
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1312.6199
https://openreview.net/forum?id=Sk9yuql0Z
https://openreview.net/forum?id=Sk9yuql0Z

	Abstract
	1 Introduction
	2 Problem Model
	3 Proposed Techniques
	3.1 Alternative Classification
	3.2 Alternative Training

	4 Experimental Results
	4.1 Classifier Variations
	4.2 Training Variations

	5 Related Work
	6 Conclusions
	7 Acknowledgements
	References

