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Figure 1: Using boundary coefficients (BC) to derive a backbone (red edges) from a BC-pine (black edges) in a 10NN-graph (grey
edges) derived from earthquake locations scattered across the Earth. Note that the left and right side are connected.

ABSTRACT
Graphs have emerged as powerful representations of data, from

obvious examples such as social networks, to proximity graphs

of high-dimensional metric data. Many of such real-world data

sets share a common property: they have a well-hidden and much
simpler graph-structured core, from which all data points emerge.
Uncovering these core structures, in this paper termed backbones,
often offers great insight into these data sets. However, standard

methods for identifying these are computationally inefficient, sensi-

tive to outliers, and lead to topological bias, prioritizing low-weight

edges in dense regions, instead of spreading out smoothly across the

topology underlying the graph. Furthermore, for high-dimensional

metric data, standard methods for dimensionality reduction often

fail to reveal the hidden topology. We resolve these issues by intro-

ducing the boundary coefficient (BC), a powerful vertex measure
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for locating core structure in data sets with an underlying graph-

structured topology. Combining the BC with the newly proposed

concept of f -pines, we propose a generally applicable method for

revealing these structures in such data. We evaluate our method on

a number of artificial and real-life data sets, demonstrating its wide

range of applicability, superior effectiveness, robustness against

noise, and scalability.
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1 INTRODUCTION
Motivation. Many real-world graphs, whether given (social net-

works, road networks, image webs, . . . ) or derived as neighborhood

graphs from point cloud data (gene expression data of differentiat-

ing cells, GPS traces, earthquake locations, galaxy coordinates in

space, . . . ), tend to follow a much simpler graph structured topol-

ogy [1, 3, 6, 7, 13, 15], in this paper referred to as the backbone of
the graph. Although the topology of the original graph might be

https://doi.org/10.1145/1122445.1122456
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complex (e.g., in terms of degree sequences, multifurcations, cycles,

. . . ), often many vertices lie close to some core structure, having a

much simpler topology, from which they emerge. Identifying and

visualizing the topological structure of these backbones, and hence,

of the original graphs, is a non-trivial and active topic of research,

applicable to many fields of science [1, 3, 7, 11, 13, 15].

E.g., consider the (point cloud) data set of earthquake locations

in Fig. 1. Earthquakes clearly do not occur at random locations, as

the majority of earthquake locations lie close to a graph-structured

topology, i.e., a backbone, mapped onto the surface of the earth.

As the earthquake data set is 2-dimensional, its graph-structured

topology is readily noticed by visual inspection. However, it is clear

that such topologies, in high-dimensional data, are hard to uncover,

and standard dimensionality reduction techniques will fail in most

of the non-trivial cases. Furthermore, often there is no clear way

of visualizing a given graph, i.e., when it is not embedded into

some Euclidean space. Generally, the complexity of state-of-the-art

visualizations increases with the complexity of the graph.

(Local) Topological Data Analysis [1, 4, 8, 15] provides some

tools for dealing with this type of data. However, they are often

computationally inefficient, or highly sensitive to noise and param-

eters. Furthermore, their primary focus is on geometric data or

graphs (i.e. proximity graphs), whereas backbones are present in a

wide variety of other networks (Fig. 2).

In this paper, we provide a new approach for revealing such

backbones, consisting of two main ingredients:

• A quantification of how core a node is within a given graph,

called the boundary coefficient, by generalizing intuition from
the geometric to the non-geometric case.

• Searching a tree (which can subsequently be pruned to just

the core) that connects nodes to the core of this graph ac-

cording to this new measure.

Related work. (Local) Topological Data Analysis [4, 15] provides
tools for investigating unknown structure in point cloud data. How-

ever, only a few of them are related to the particular case of data

approximating graph-structured topologies. Revealing these is the

main topic of [1, 15]. Here, the authors make use of local detection

techniques to classify edges and multifurcations. Global reconstruc-

tion techniques are used to retrieve the underlying topology from

this information. However, such methods induce a high parameter

sensitivity, and quickly fail in more complex or noisy examples.

Furthermore, they are mainly built for investigating topology in

point cloud data, and require a Rips-graph (Subsec. 2.1) to be built

from the data. They are almost always incapable of retrieving the

topology when another neighborhood graph, such as a k-nearest

neighbor (kNN) graph, is used. Local persistent (co)homology [8, 16]

provides a more general framework for investigating local structure

in—not necessarily graph-structured—data. However, these meth-

ods are again sensitive to parameters and noise, computationally

inefficient, and do not consider reconstructing the global topology.

Another possibility is the Mapper algorithm [11], built as a general

data visualization tool. However, the quality of its result highly

depends on the used filters
1
, and the method has been shown to

fail to retrieve the underlying topology in simple cases before [15].

1
These are projections of the data to a lower dimensional space, usually R or R2

,

required by the algorithm.

Figure 2: A linear backbone (red) in the karate network [18].

Facility Location Problems [10] deal with finding subgraphs that

well approximate a given graph. They consider a trade-off between

a distance measure between the given graph and the subgraph

on the one hand, and the cost of the subgraph on the other hand,

expressed e.g. by the sum of the weights of its edges. However, these

methods are often computationally inefficient, sensitive to outliers,

or topologically biased, by which we mean that the solutions are

biased towards including lower weight edges, instead of spreading

out smoothly across the graph topology.

Some other vertex measures that might be used to identify core

nodes in graphs exist, such as the local cluster coefficient (Fig. 2 &
Subsec. 2.4), or its generalizations to weighted graphs [17]. However,

these were not built for the particular purpose of identifying or

visualizing core structure within a wide variety of graph-structured

data sets. As such, they lack important properties of the boundary

coefficient, such as applicability to fully weighted networks and

robustness to outliers, as we confirm in our experiments.

Contributions.
• We introduce a new approach for revealing backbones in

graphs, consisting of two components (Sec. 2 & 3).

• We introduce the boundary coefficient to locate core structure
in graphs, with extensive theoretical analysis and compar-

isons, and an algorithm for efficient computation (Sec. 2).

• We show how the boundary coefficients are used for effi-

ciently finding the best backbone in a graph by means of the

minimum spanning tree (MST) algorithm (Sec. 3).

• We experimentally verify that our method provides a uni-

versal approach towards locating simplified structures in a

wide variety of real-world data sets (Sec. 4).

• We summarize how our method improves on state-of-the-

art approaches, and opens up new possibilities for further

improvements and applications (Sec. 5).

2 LOCATING CORE STRUCTURE IN GRAPHS
In this section, we start with intuitive examples to illustrate what

the core nodes of a graph are, and that these are hard to identify by

current existing vertexmeasures (Subsec. 2.1). Inspired by Euclidean

geometry, we introduce the transmissivity of a node, which will

be higher on average for nodes representing the core of a graph

(Subsec. 2.2). Hence, averaging the negative transmissivity will lead

to the boundary coefficient (BC), marking boundary nodes by higher

values (Subsec. 2.3). We discuss the properties of BC, as well as its

relation to the ordinary local cluster coefficient (Subsec. 2.4). Finally,
we will show how to efficiently compute the boundary coefficients

by means of matrix multiplication (Subsec. 2.5).
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2.1 The Core Nodes of a Graph
Real data often contains noise, outliers, and noisy interconnections

between different components. In these cases, approximating every

single node by one structure, as customary in Facility Location
Problems [10], will ‘shift’ and ‘wiggle’ the resulting structure away

from the graph’s true core(s). Hence, our goal is not give an exact

definition of the core nodes in a given graph, but to find a function

that performs well under these conditions to identify and separate

core nodes within and between components of this graph. We

emphasize that throughout this paper by core nodes we mean
nodes away from the ‘boundary’, which is not equivalent to
nodes close to the global center of the graph for our purpose.

We will illustrate this by means of intuitive toy examples (Fig. 3).

(a) (b) (c) (d)

Figure 3: Onnela’s generalized local cluster coefficients (a &
b) and boundary coefficients (c & d) for a complete weighted
graph representing a disk (a & c), and a Rips-graph (ϵ = 10)
representing the letter ‘C’ with outliers (b & d).

Consider the complete graph G = (V ,E) displayed on the left

of Fig. 3. This graph is built from a 2D sample of 250 points on

the unit disk, where the weight ω({u,v}) of the edge {u,v} equals
∥u−v ∥. Since this graph represents a disk, we have a good intuition
about our core nodes being the nodes closer to the center of the

disk underlying this graph. Our purpose is to find a function from

which we can identify how close a node is to this center, based

solely on the graph itself, and its weighting function ω.
As this is a complete graph, computing many different measures

mapping a node to a local degree of ‘clustering’, such as the ordinary

local cluster coefficient (Subsec. 2.4), the local efficiency, or some

of their generalizations to weighted graphs [17], will result in a

uniform mapping from V to 1, providing no further information.

Onella’s generalized local cluster coefficient (O_LCC) for weighted
graphs [12, 17] provides a good measure for quantifying the ‘close-

ness to the center’ in this particular case, as seen in Fig. 3. This coef-

ficient assigns every nodev to a value proportional to the geometric
mean of the edge weights

2
, namely

3

√
ω({u,v})ω({v,w})ω({u,w}),

averaged over all triples (u,v,w) adjacent to v , i.e., for which

{u,v}, {v,w} ∈ E. However, as can be seen on the second plot

of Fig. 3, this coefficient is quite sensitive to outliers. Here, we built

a Rips-graph, consisting of the set of data points as nodes, and an

edge {u,v} whenever 0 < ∥u − v ∥ < ϵ for some fixed parameter

ϵ ∈ R+, on top of 2D ‘C-shaped’ point cloud data set with outliers.

Hence, we are clearly in need of a function that is better capable

of recognizing the core nodes of a graph. This is where the BC

comes into play (Fig. 3). This coefficient will show to drastically

outperform the non-weighted standards, as well as the state-of-

the art generalizations to weighted graphs [17], for locating core

structure in a wide variety of graphs (Fig. 3 & Sec. 4).

2ω({u, v }) is defined to be 0 if {u, v } < E .

2.2 The Transmissivity of a Node
Given two vectors x̄ , ȳ in the Euclidean space Rn ,n ∈ N∗, we know
that the angle α between them satisfies

cosα =
∥x̄ ∥2 + ∥ȳ2∥ − ∥x̄ − ȳ∥2

2∥x̄ ∥∥ȳ∥
.

As all of the terms in the fraction may be expressed as distances

(between pairs of the triple of vectors (x̄ , ȳ, 0̄)), we may straightfor-

wardly generalize the concept of angle to arbitrary metric spaces

(M,d). Furthermore, since, a graph G = (V ,E) can be converted to

a metric space (V ,d), where for u,v ∈ V , d(u,v) denotes the length
of the shortest (weighted) path from u to v in G, we may extend

the definition of angle in Euclidean spaces to graphs as well.

Definition 2.1. Let G = (V ,E) be a simple, undirected, positively

weighted graph. Suppose that u,v,w ∈ V ,u , v , w , belong to

the same connected component of V . We define the (cosine of the)

angle ûvw as

cos ûvw B

(
d(u,v)2 + d(v,w)2 − d(u,w)2

2d(u,v)d(v,w)

)
,

where d denotes the pairwise shortest distance metric on G. The
transmissivity T(u,v,w) of v for u andw is defined as

T(u,v,w) B − cos ûvw .

The transmissivity T(u,v,w) of v for u andw has a mean-
ingful interpretation even when the graph is not embedded
in a Euclidean space3. T(u,v,w) will be high if the cost of going

first straight from u to v , and then straight from v tow , does not

differ a lot from the cost of going straight from u to w . Here, by

going straight we mean taking the shortest path, and hence, by the

cost the weighted length of this path. Moreover, if going through v
is the only possibility to go from u tow , then T(u,v,w) = 1 (note

that the reverse implication does not hold). Vice versa, T(u,v,w)

will be low if it is much more costly to travel from u tow through

v , than to go straight from u tow , and exactly −1 if u = w .

2.3 The Boundary Coefficient
The boundary coefficient (BC) of a node v is defined as its negative

transmissivity averaged over the pairs of neighbors of v . As illus-
trated by Fig. 3 and Fig. 4, this is a measure for how close vertices

are near the ‘boundary’ of the graph (hence the name), and by this,

how far they are from its core.

Definition 2.2. Let G = (V ,E) be a simple, undirected, positively

weighted graph. For every v ∈ V we define N(v) ⊆ V as the set of

neighbors ofv inG . For everyv ∈ V with degree δ (v) B |N(v)| > 0,

we define it’s boundary coefficient (BC) as

BC(v) B
−1

δ (v)2

∑
u,w ∈N(v)

T(u,v,w).

The BC attains lower values in nodes lying more near the core of

the graph (Fig. 3 & 4). Note that outliers having a low BC coincides

with the idea of those nodes lying closer to the core of the graph:

3
Furthermore, the weights ω do even not have to satisfy the triangle inequality in

the graphG = (V , E). I.e., we may have ω({u, v }) + ω({v, w }) < ω({u, w }) for

{u, v }, {v, w }, {u, w } ∈ E . The shortest path metric d will always naturally satisfy

the triangle inequality, which is needed to generalize the Euclidean angle.
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Figure 4: Basic intuition behind the boundary coefficient: a
point v lying further from the boundary has many more
pairs of neighbors defining a large angle, than a pointq lying
close to the boundary. The dotted line represents the short-
est path — not necessarily an edge — between two nodes.

they just represent isolated points in the core, and are separated

from its major component(s) through the boundary nodes (Fig. 3).

2.4 Properties of the Boundary Coefficient
We summarize some properties of the newly introduced BC. Proofs

and intuition of the following propositions are omitted for concise-

ness, and are not necessary to comprehend the rest of the paper.

As a sum of values over pairs of adjacent nodes, the BC is closely

related to the ordinary local cluster coefficient (LCC) on unweighted

graphs:

Proposition 2.3. Suppose G = (V ,E) is a unweighted graph, i.e.,
a graph in which every edge gets a weight equal to 1. Then for every
v ∈ V with δ (v) > 1, it holds that

BC(v) =
δ (v) − 1

δ (v)

(
3

2

LCC(v) − 1

)
+

1

δ (v)
.

Hence, the BC does not fulfill the general versatility requirement

of an LCC generalization [17]: it does not coincide with the LCC

for unweighted graphs. However, it does satisfy three other criteria

of generalizations of the LCC to weighted graphs [17]. One of

these, namely its applicability to fully weighted networks, has been
illustrated in Fig. 3. This property, as well as the following two, are

important for our purpose of identifying core structure in a wide

variety of weighted graphs.

Proposition 2.4. (Weight-scale invariance). Let G = (V ,E) be a
simple, undirected graph, with weighting function ω : E → R+. Let
ωλ : E → R : {u,v} 7→ λω({u,v}) for a global scale factor λ > 0.
Then for every v ∈ V , BCλ(v) = BC(v), where BCλ(v) equals the
boundary coefficient of v for the new weighting function ωλ .

Proposition 2.5. (Robustness to noise). LetG = (V ,E) be a simple,
undirected graph, with weighting function ω : E → R+. Suppose
E is an additive noise matrix defining a new weighting function
ωϵ : E → R+ : {u,v} 7→ ω({u,v}) + Eu,v . Then

∆(E) B
100

|V |

∑
v ∈V

����BCϵ (v) − BC(v)
BC(v)

���� −−−−−−−→
∥E ∥→0

0,

where BCϵ (v) equals the boundary coefficient ofv for the new weight-
ing function ωϵ .

The crucial differences between the BC, the LCC (and many of

its generalizations [17]), and standard global centrality measures

such as eccentricity or betweenness [2], as well as the main reasons

why the BC outperforms these measures for a wide variety of

applications (Fig. 3 & Sec.4), are that for a node v ∈ V :

• The assignment −T(u,v,w) to a triple (u,v,w) in the sum of

BC(v) may attain different values over triples where {u,w} <
E (i.e., it is not always 0, such as with LCC, O_LCC, . . . );

• The assignment −T(u,v,w) to a triple (u,v,w) in the sum of

BC(v) may be low even if {u,w} ∈ E and—if weighted—the

three corresponding weights are relatively high (this is not

the case with LCC, O_LCC, . . . );

• The scope of the BC is local: it does not take into account the

shortest paths from v to all other nodes (as often the case

with standard centrality measures). Hence, the BC allows us

to locate boundary nodes even in the presence of complex,

long, or curving underlying topologies.

2.5 Computing the Boundary Coefficient
Given the pairwise distances between nodes in a graph G with n
nodes andm edges, a straightforward computation of the BC as

defined in Def. 2.2 for all nodes would require three nested for-loops,

resulting in a O(n(δmax

G )2) algorithm for a graph G with n nodes

andm edges. In practice, this can be improved to the computational

cost of (sparse) matrix multiplication

Theorem 2.6. Let G = (V ,E) be a simple, undirected, positively
weighted graph. Let D be the matrix of pairwise distances in G, and
let D2

⊙ and 1/D be the pointwise square and inverse of D, respectively.
Then for v ∈ V with δ (v) > 0,

BC(v) =
1

δ (v)2


n∑

u ∈N(v)

Du,v

n∑
u ∈N(v)

1

Du,v
−

1

2

(
1

D

(
D2

⊙

)
1

D

)
v,v

 .
Proof. This can be shown from algebraic manipulation of the

formulas in Def. 2.1 & 2.2. Details are omitted for conciseness. □

For computational efficiency, D is stored as a sparse matrix,

removing all entries Du,w where the hop count between u andw is

greater than 2. Hence, given a pairwise distance matrix D forG , the
computational complexity is that of computing the multiplication

of two n ×n matrices, which is O(n2.375). The storage cost is O(n2).

If D is not given, running pairwise Dijkstra’s algorithm is O(n(m +
n logn)), and the total computational cost is O(n(m + n1.375)).

A practical method for dealing with the computational cost of

computing pairwise Dijkstra’s would be to modify the algorithm

to not compute Du,w if the hop count distance between u and w
is greater than 2. Other options to speed up the computation in-

clude parallelizing pairwise Dijkstra’s or the matrix multiplication,

tresholding the number of hops to approximate Du,w , approximat-

ing D by the original distance matrix for neighborhood graphs

constructed from point cloud data, or combinations of these.

3 CONSTRUCTING THE BACKBONE
In the previous section we introduced the BC, measuring the av-

erage (negative) transmissivity of a node, marking how close it

lies to the boundary of a graph. In this section, we introduce the

f -pine of a graph, with leaves located at higher values of a given

function f (Subsec. 3.1). Hence, by letting f = BC, we obtain a tree

with leaves located at the boundary of the graph (Subsec. 3.2). By

iteratively retracting this tree, i.e., pruning leaves, we will move

deeper inwards into the backbone of the graph (Subsec. 3.2).
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3.1 The f -pine of a Graph
Given a graph G = (V ,E), and a real-valued function f : V → R,
we want to find a spanning tree with leaves marking higher values

of f . We will call such a tree an f -pine: its needles ‘stick out and

point’ towards (locally) high values of f .

Definition 3.1. Let G = (V ,E) be a graph, and f : V → R. A
spanning tree T of G is called an f -pine in G, if∑

v ∈V
δT (v)f (v) = min

spanning treesT ′of G

∑
v ∈V

δT ′(v)f (v), (1)

where δT (v) denotes the degree of v in the subgraph T of G.

I.e., an f -pine in G is a spanning tree that prefers high-degree

nodes where f attains a low value. More specifically, an f -pine
attaches every nodeu to a nodev where f reaches a local minimum:

Theorem 3.2. Let G = (V ,E) be a graph, f : V → R, and T
an f -pine in G. For every u ∈ V with δG (u) > 0, there exists some
v ∈ arg min{ f (w) : w ∈ NG (u)} such that {u,v} ∈ E(T ).

Proof. Assume u ∈ V with δG (u) > 0. If {u,v} < E(T ) for
every v ∈ arg min{ f (w) : w ∈ NG (u)}, then choose such v . Let
P = (u = x0,x1, . . . ,xk = v) be the unique path from u to v in T .
Since {u,x1} ∈ E(T ), f (x1) > f (v), and we can replace {u,x1} by

{u,v} to obtain a tree attaining a lower cost as expressed by (1). □

The intuition behind the theorem above is that the building

blocks of an f -pine are several large star graphs that result from
pulling every node towards a node where f attains a local minimum.

Furthermore, Def. 3.1 implies that the centers of these star graphs

will be connected through nodes where f attains a low value on

average as well (Th. 3.3 & 3.4).

One may efficiently find an f -pine by finding a minimum span-

ning tree after reweighing the edges inG with the summed value

f attains at their endpoints.

Theorem 3.3. LetG = (V ,E) be a graph, and f : V → R. Finding
an f -pine in G is equivalent to finding a minimum spanning tree in
G, where each edge {u,v} is assigned to have weight f (u) + f (v).

Proof. This can easily be seen by rewriting the cost expressed

in (1) in terms of these new edge weights. □

Finally, an f -pine is invariant to affine transformations of f .
Hence, one may apply such transformation to f without effecting

the resulting f -pine, so that one may easily compare the BC(-pine)

to other transitivity or centrality measures on a similar scale.

Theorem 3.4. Let G = (V ,E) be a graph, f : V → R, and T an
f -pine in G. If д = af + b for some a,b ∈ R, T is also a д-pine in G.

Proof. This immediately follows from either Def. 3.1 or Th.

3.1. □

3.2 The BC-pine of a Graph
Th. 3.2 states an f -pine attaches a nodeu to a node where f reaches

a minimum over the neighbors of u. As the BC marks nodes inside

the core of a graph with lower values (sec. 2.3), we can construct a

BC-pine with leaves located at the boundary of the graph by using

the BC to redefine the weight of every edge, and constructing a

Figure 5: Some example of BC-pines (black + red edges)
within Rips-graphs constructed from synthetic 2D point
cloud data sets containing 300, 390, and 477 data points, re-
spectively. (Left) Non-pruned. (Middle + Right) Pruning the
pines twice results in the red graphs.

minimum spanning tree (Th. 3.3). Furthermore, Th. 3.3 assures that

the connections between these local minima remains within the

core of the graph.

In summary, the key properties of a BC-pine are (Fig. 5):

• the BC-pine contains a backbone of G passing smoothly

through the core ofG without topological bias towards lower

weight edges (in terms of the original weighting function);

• the BC-pine contains many (non-significant) leaves marking

boundary nodes, that quickly vanish after iteratively pruning

the tree, retracting deeper into the backbone of G.

By pruning leaves, the BC-pine quickly retracts towards the back-

bone, passing smoothly through the graph’s core (X & C-shape in

Fig. 5). Note that the BC-pines connect to outliers as well, as would

any spanning tree do. However, the BC-pine does not wrongly in-

terconnect different (parts of) branches through these. Hence, they

will also quickly disappear after more pruning (Fig. 5).

4 EXPERIMENTAL RESULTS
In this section, we show various applications of our boundary co-

efficients and f -pines, including identifying core structure, graph
simplifications, and visualization. Note that graph simplifications

have recently been shown to be able to increase the performance

of existing graph embedding methods [5]. Our method will show

to be applicable to a wide variety of data sets, from social networks,

to topological data analysis of high-dimensional point cloud data.

4.1 Social Networks
We have already shown by means of the Karate network [18], that

backbones may even be present in social networks (Fig. 2), not only

in metric graphs. This backbone (red edges in Fig. 2) was computed

by pruning the LCC-pine (black edges in Fig. 2) twice.

However, even in more complex social networks, there may

be a core structure present from which all other nodes emerge.

Furthermore, having a measure of ‘closeness’ between two nodes in

a network by means of edge weights, may provide further insight

into the core structure of the network by constructing a BC-pine.

This is verified on a KDD co-authorship graph, a social network

containing 5747 and 18715 edges. The data used to construct this

graph is publicly available on aminer.org/citation. Each edge be-

tween two nodes marks two authors who co-authored at least one

aminer.org/citation
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Figure 6: Identifying core structure in the KDD co-authorship network using different pines (all pruned eight times for visu-
alization). (Left) LCC-pine. (Middle) O_LCC-pine. (Right) BC-pine.

Figure 7: Various measures after iteratively pruning the reg-
ular MST (red), the LCC-pine (green), the O_LCC-pine (pur-
ple), and the BC-pine (blue). (Left) Fraction of original graph
size. (Middle) Average number of (KDD) citations. (Right) Av-
erage year of first published (KDD) paper.

KDD paper. The weight of each edge is the inverse of the number of

KDD papers co-authorized by the authors. As such, lower weights

correspond to authors who are closer to each other in the KDD

network. The resulting LCC-pine, O_LCC-pine, and BC-pine, were

constructed and pruned eight times for visualization (Fig. 6).

We compared various measures of our network when moving

deeper into the backbone by pruning leaves (Fig. 7), namely:

• the fraction of the nodes still included in the backbone;

• the average number of citations of the nodes (authors) still

included in the backbone;

• the average year of the first KDD publication across al nodes

(authors) still included in the backbone.

By iteratively pruning leaves, we note that all three pines retract

much faster to a core structure than the regular MST, discarding

the majority of the nodes after the first iteration, a consequence of

Th. 3.2. Furthermore, when pruning leaves, all pines quickly retract

to a core structure marking authors with many (KDD) citations,

and who are already present a long time in the network, as can be

expected from the core of this network.

Though all three pines show to satisfy these properties, we do

note some differences between them. The LCC-pine and O_LCC-

pine reveal more of a ‘star-structured’ topology within the core

of the network, centered around the same author. The BC-pine

shows more of a ‘coat rack’ structure within the core. The similarity

between the former two pines may be declared by O_LCC focusing

on generalizing the ordinary LCC. The BC focuses on revealing

long and branching structures through the core nodes of the graph.

Though most authors were pruned from the pines for visualiza-

tion, Fig. 7 reveals that many ‘core’ authors (in terms of number of

citations and years active) lie close to these structures.

4.2 Metric Data
There are a wide variety of point cloud data sets embedded in a

metric space approximating a graph-structured topology. For such

data, our method provides a tool to build the underlying simplified

network topology for analysis. Furthermore, it may serve as a tool

within the field of Topological Data Analysis, where is it used to

identify topological structure that would otherwise be hidden due

to the high dimensionality of the the data set, as state-of-the art

methods for dimensionality reduction often fail to provide insight

into the core structure underlying such data.

4.2.1 Earthquake locations. We already showed the result of our

method on a data set of earthquakes scattered across the globe at

the start of this paper (Fig. 1).

To obtain this result, we proceeded as follows.We obtained a data

set containing information on 80549 earthquakes, which is freely

accessible from USGS Earthquake Search. The topology underlying

such a data set was already analyzed in [1, 15]. However, contrary

to the procedure presented in these papers, we did not restrict to a

particular small rectangular domain with a low amount of noise,

and did not apply any noise filtering in advance.

A random sample of 5000 earthquakes was taken, from which we

constructed an undirected 10NN graph with 31334 edges using the

Great circle (geographic) distances between location coordinates.

Boundary coefficients where computed using these distances as

weights. The BC-pine was pruned once, reducing the number of

nodes by 78.5%, and the number of edges by 96.6%. Even though

pruning once drastically reduced the graph’s size, the resulting tree

remained nicely spread out across the underlying topology (Fig. 1).

4.2.2 Cell Trajectory Data. 4 Our method can be used as a tool

for data visualization within the framework of Topological Data

Analysis as well. We will demonstrate this by means of a synthetic

cell trajectory data set of 556 cells in a 3475-dimensional gene

4
These data sets are publicly available at zenodo.org/record/1443566#.XD7lb8tKhhF.

zenodo.org/record/1443566#.XD7lb8tKhhF
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expression space [14]. This data represents a snapshot of these

cells at a specific point during a cell differentiation process, and is

visualized by means of a MDS plot on Fig. 8.

Figure 8: A synthetic cell trajectory data set of 556 cells in
a 3475-dimensional gene expression space. Trees are non-
pruned and visualized using the Fruchterman-Reingold lay-
out algorithm [9]. (Top left) Data visualized on a MDS plot.
(Top right) Data visualization using the regular MST. (Bot-
tom) Data visualization using the BC-pine.

The model underlying this data set is a continuous transition

between two different cell groups in the high-dimensional gene

expression space. This means that a linear backbone is present

in the data. This topology can be noted from the MDS plot as

well (Fig. 8). However, in general, even when the ground truth

is a simple topological model, identifying and visualizing such

structures shows to be a difficult task due to the high dimensionality

and amount of noise present in such data [14].

A 10NN graph was constructed from this data, using the Eu-

clidean distance between cells in the expression space as weights.

In Fig. 8, a regular minimum spanning tree (MST) of this data is

shown. The MST performs reasonably well for clustering the dif-

ferent groups of cells together, except for a small cluster of group

2 cells completely disconnected from the main cluster. The main

issue with the regular MST lies clearly in the visualization of the

topological structure, as their appear to be many long branching

structures.

However, the BC-pine is constructed such that it pulls every node

towards the backbone (Th. 3.2), which travels smoothly through

the graph without topological bias towards shorter edges. This

is clearly seen from the visualization using the BC-pine in Fig. 8,

where we note a linear backbone passing through the graph, to

which all cells connect to shortly. Furthermore, contrary to the

regular MST, both groups of cells are clustered nicely together, with

only being mixed at the transition between the two groups.

A similar experiment was conducted on a real cell trajectory

data of 355 cells embedded into a 3397-dimensional gene expression

space. The ground truth model is that of a Y-shaped topology, and

is shown on Fig. 9, along with an MDS plot of the data. This time,

the ground-truth model would be much more difficult to infer from

the dimensionality reduction without any prior knowledge. A 5NN

graph was built from this data, using the Euclidean distance as well.

Figure 9: (Left) Ground-truth topological model underlying
the real expression data. (Right) MDS plot of the data.

Figure 10: Visualizing trees of our real expression data us-
ing the Fruchterman-Reingold layout algorithm. The color-
ing corresponds to the coloring in Fig. 9. (Left) The BC-pine.
(Middle) The regular MST. (Right) The O_LCC-pine.

Fig. 10 shows three different visualizations of this data by means

of spanning trees: the BC-pine, the regular MST, and the O_LCC-

pine. Again, the regular MST performs well at clustering together

similar cell groups, but fails to reveal the hidden Y-structured topol-

ogy. In contrast, the Y-structure topology is much more notable

from the pines. However, the BC-pine improves a lot on the cor-

relation between the placement of cell groups in the pine and the

ground-truth. The O_LCC-pine appears to displace two Myocyte

clusters completely at opposite ends in the underlying topology,

and bifurcates very early at the start of the d2_induced cells.

4.3 Network Sizes and Computation Times
Table 1 summarizes our experimental results. All results were ob-

tained using non-optimized R code on a machine equipped with a

Intel
®
Core™ i7 processor at 2.6GHz and 8GB of RAM.

The unweighted diameter is a rough measure for how fast the

tree will retract into its core. As a result from Th. 3.2, all three pines

show to retract much faster compared to the regular MST. We note
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Table 1: Summary of our results. |V |: number of nodes in the original graph. |E |: number of edges in the original graph. timeBC:
computation time for full pairwise Dijkstra’s algorithm, a full unweighted distance matrix (to discard unnecessary entries),
and obtaining the BC bymeans of Th. 2.6.a timeO_LCC: computation time of Onella’s generalized LCC. diamBC: diameter of the
BC-pine. diamLCC: diameter of the LCC-pine. diamO_LCC: diameter of the O_LCC-pine. diamMST: diameter of the reg. MST.

|V | |E | timeBC timeO_LCC diamBC diamLCC diamO_LCC diamMST

KDD 5747 18715 28s 5min10s 28 21 23 90

Earthquakes 5000 31334 16s 3min27s 265 259 433 1119

Synth. cells 556 4636 1.6s 0.9s 30 32 34 45

Real cells 355 1543 1.2s 0.5s 15 19 19 26

a
Due to the R igraph/distances function calling optimized C code, this approach is currently faster than implementing Dijkstra’s algorithm with early exit for each node in R.

that our method scales well up to graphs with thousands of nodes,

and as discussed in Subsec. 2.6 and Sec. 5, there are still ways to

improve this even further for higher order graphs.

5 CONCLUSION AND FURTHERWORK
Investigating and visualizing simplified graph-structured topologies

in data is a core problem in many fields of science. Until now, there

was no universal approach towards this problem, applicable to

both general networks, and to point cloud data approaching such

topologies. State-of-the-art approaches that focused on either one

of them were computationally inefficient, sensitive to parameters,

noise, and outliers, were topologically biased, or did not generalize

well. We solved these issues by introducing the boundary coefficient,
a local vertex measure closely related to the local cluster coefficient

(LCC) (Prop. 2.3). Nevertheless, it is built for a completely different

purpose, and outperforms other generalizations of the LCC and

centrality measures for the task of finding core structure in a wide

variety of data sets. Combining these new coefficients with our

concept of f -pines allowed us to reliably identify the backbone of

these graphs, with applications focusing on identifying, visualizing,

and/or simplifying to this core topology.

By iteratively pruning leaves in the BC-pine, we quickly retract

towards the backbone of a graph, discarding the majority of the

nodes. However, in order to reduce the effects of noise and outliers

or ease the visualization of the backbone topology, we often need

to prune more than we want, retracting our core from the ‘true’

leaves of the underlying topology as well (Fig. 5 & 6). We already

developed two refined pruning algorithms overcoming this issue,

as well as an algorithm to automatically add significant cycles to

our backbone, which will be discussed in subsequent work.

Further work includes optimizing our code, i.e., avoiding the

use of full pairwise Dijkstra’s algorithm to compute the boundary

coefficients, accompanied with a refined theoretical complexity

analysis in terms of the sparsity of the network. Furthermore, our

algorithm is easily parallelized, and we plan to use this approach

to conduct even more experiments on very large graphs.
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