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ABSTRACT
Recent work in graph models has found that probabilistic hyper-
edge replacement grammars (HRGs) can be extracted from graphs
and used to generate new random graphs with graph properties
and substructures close to the original. In this paper, we show how
to add latent variables to the model, trained using Expectation-
Maximization, to generate still better graphs, that is, ones that
generalize better to the test data. We evaluate the new method by
separating training and test graphs, building the model on the for-
mer and measuring the likelihood of the latter, as a more stringent
test of how well the model can generalize to new graphs. On this
metric, we find that our latent-variable HRGs consistently outper-
form several existing graph models and provide interesting insights
into the building blocks of real world networks.
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1 INTRODUCTION
Detecting, interpreting and comparing structures and properties of
network data about social interactions and complex physical phe-
nomena is critically important to a variety of problems. However,
this is a difficult task because comparisons between two or more
networks can involve checking for graph or subgraph isomorphism,
for which no tractable solution is known. Instead, various network
properties (e.g., degree distribution, centrality distributions) have
been used to describe and compare networks.

Another approach is to consider a network’s global structure as a
by-product of a graph’s local substructures [22]. More sophisticated
graph statistics are based on counting the number of small motifs
[16] or graphlets [4] present in the graph and comparing their
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distributions [23]. Unfortunately, graphlet counting presupposes
that all possible graphlets be enumerated ahead of time. Because
the number of unique graphlets increases exponentially with the
number of nodes in the graphlet, previous work has been limited
to graphlets of at most five nodes.

An alternative to developing sophisticated graph statistics is
to learn graph generation models that encode properties of the
graph in various ways. Graph generators like the Exponential Ran-
dom Graph Model (ERGM) [20], the Chung-Lu Edge Configuration
Model (CL) [8], the Stochastic Kronecker Graph (SKG) [12], and
the Block Two-Level Erdős-Rényi Model (BTER) [21] can be fitted
to real-world graphs.

Recent work has found that many social and information net-
works have a more-or-less tree-like structure, which implies that de-
tailed topological properties can be identified and extracted from a
graph’s tree decomposition [1]. Based on these findings, Aguinaga et al. de-
scribed a method to turn a graph’s tree decomposition into a Hyper-
edge Replacement Grammar (HRG) [2]. The HRG model can then
generate new graphs with properties similar to the original.

One limitation of the HRG model is that the instructions for
reassembling the building blocks, i.e., the graph grammar, encode
only enough information to ensure that the result is well-formed.
HRG production rules are extracted directly from the tree decom-
position; some rules from the top of the tree, some from the middle
of the tree, and some from the bottom of the tree. Then, to generate
an new graph that is similar to the original graph, we would expect
that rules from the top of the tree decomposition are applied first,
rules from the middle next, and rules from the leaves of the tree
are applied last. However, when generating a new graph the HRG
model applies rules probabilistically; where a rule’s probability rel-
ative to its frequency in the grammar. However, when generating a
new graph, the rules in HRG models have no context on when they
should fire. HRG models are in need of a mechanism that corrects
for this problem by providing context to the rules.

In the present work, we make three contributions:

(1) We improve the HRG model by encoding context in latent
variables.

(2) We propose a methodology for evaluating our model that
enforces a strict separation between training and test data,
in order to guard against overfitting.
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Figure 1: An example graph and its tree decomposition. The
width of this tree decomposition is 3, i.e., the size of the
largest bagminus 1. The sepset between each bag and its par-
ent is labeled in blue. Bags are labeled (η0, etc.) for illustra-
tion purposes only.

(3) We test our model on 6 train/test pairs of graphs and find
that it discovers a better model, that is, one that generalizes
better to the test data, than the original HRG model as well
as Kronecker and Chung-Lu models.

2 BACKGROUND
Before we introduce our model, we first provide an overview and
examples of the HRG model.

2.1 Hyperedge Replacement Grammars
Like a context free string grammar (CFG), an HRG has a set of
production rules A→ R, where A is called the left-hand side (LHS)
and R is called the right-hand side (RHS). In an HRG, a rule’s RHS is
a graph (or hypergraph) with zero or more external nodes. Applying
the rule replaces a hyperedge labeledAwith the graph R; the nodes
formerly joined by the hyperedge are merged with the external
nodes of R. The HRG generates a graph by starting with the start
nonterminal, S , and applying rules until no more nonterminal-
labeled hyperedges remain.

2.2 Tree Decomposition
Given a graph H = (V ,E), a tree decomposition is a tree whose
nodes, called bags, are labeled with subsets ofV , in such a way that
the following properties are satisfied:
• For each node v ∈ V , there is a bag η that contains v .
• For each edge (u,v ) ∈ E, there is a bag η that contains u and
v .
• If bags η and η′ contain v , then all the bags on the path from
η to η′ also contain v .

If η′ is the parent of η, define η̄ = η′∩η (also known as the sepset
between η′ and η). If η is the root, then η̄ = ∅.

All graphs can be decomposed (though not uniquely) into a
tree decomposition, as shown in Fig. 1. In simple terms, a tree
decomposition of a graph organizes its nodes into overlapping bags
that form a tree. The width of the tree decomposition, which is
related to the size of the largest bag, measures how tree-like the
graph is. Finding optimal tree decompositions is NP-hard, but there
is significant interest in finding fast approximations because many
computationally difficult problems can be solved efficiently when
the data is constrained to be a tree-like structure.
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η21
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Figure 2: Extraction of an HRG production rule from η2 con-
taining graph vertices {2,3,4,5}. The LHS of the production
rule corresponds to the sepset of the bag and its parent. The
RHS of the production rule contains nodes from the bag, ter-
minal edges induced from the original graph, and nontermi-
nal edges from the sepset between the bag and its children.

2.3 Grammar Extraction
Aguinaga et al. [2] extract HRG rules from a graph, guided by a
tree decomposition of the graph. For example, Figure 2 illustrates
how one HRG rule is extracted from a tree decomposition.

If we assume that the tree decomposition is rooted, then every
bag η of the tree decomposition corresponds to an edge-induced
subgraph, which we write Gη , defined as follows: For each edge
(u,v ) ∈ E, if every bag η′ containing u,v is either equal to η or a
descendant of η, then (u,v ) ∈ Hη . For example, in Figure 1, the bag
η2 = {2, 3, 4, 5} corresponds to the subgraph Hη2 whose edges are
1–2, 1–5, 2–3, 2–4, and 3–5.

If H = (V ,E) is a graph and H ′ = (V ′,E ′) is an edge-induced
subgraph of H , we define an external node of H ′ to be any node
of H ′ that has a neighbor not in H ′. Then, define the operation of
replacing H ′ with a hyperedge to be:
• Remove all edges in E ′.
• Remove all nodes in V ′ except for the external nodes.
• Add a hyperedge joining the external nodes.

Every bag η also induces a HRG rule N |η̄ | → R, where R is
constructed as follows.
• Make a copy of Hη .
• Label the nodes in η̄ as external nodes.
• For each child ηi of η, replace Hηi with a hyperedge labeled
N |η̄i | .

For example, in Figure 2, the bag η2 induces the rule shown at
right. The LHS is N3 because the sepset between η2 and its parent
has three nodes (3, 4, 5); in the RHS, these three nodes are marked
as external. The node numbers are for illustration purposes only;
they are not actually stored with the production rules. The RHS
has two terminal edges (2–3, 2–4) from the original graph and one
nonterminal edge (2–5) corresponding to the sepset between η2
and its one child.

After an HRG is extracted from the tree decomposition, its pro-
duction rules are gathered into a set, merging identical rules and
assigning to each unique rule (A→ R) a probability P (A→ R) =
P (R | A) proportional to howmany times it was encountered during
extraction. This grammar can then be used to randomly generate
new graphs, or compute the probability of another graph.
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η,Xi η,Xi

Figure 3: Inside and outside probabilities. Here, a hyperedge
labeled Xi with three external nodes has generated a sub-
graph η. The inside probability (left) of η,Xi is the probabil-
ity of all the subderivations that generate subgraph η from
Xi . The outside probability (right) is the probability of all
the partial derivations that generate the complement of sub-
graph η, with a hyperedge labeled Xi in place of the sub-
graph.

3 LATENT VARIABLE PROBABILISTIC
HYPEREDGE REPLACEMENT GRAMMARS

Here, we improve upon the HRG model by encoding more context
into the model via latent variables, in a process that is analogous to
how a first-order Markov chain can simulate a higher-order Markov
chain by expanding the state space.

In this section, we adopt a notational shortcut. In an HRG produc-
tionA→ R, the RHS R is a hypergraph fragment containing zero or
more hyperedges with nonterminal labels Y1, . . . ,Yr . We suppress
the graph structure of R and write the rule simply as X → Y1 · · ·Yr .

3.1 Nonterminal Splitting
Following previous work on probabilistic CFGs [15, 17], we in-
crease the context-sensitivity of the grammar by splitting each
nonterminal symbol X in the grammar into n different subsymbols,
Xi , . . . ,Xn , which could potentially represent different contexts
that the rule is used in. Thus, each rule in the original grammar is
replaced with several subrules that use all possible combinations of
the subsymbols of its nonterminal symbols.

For example, ifn = 2, the rule N2 → ϵ would be split into N2
1 → ϵ

and N2
2 → ϵ .

In general, a rule with r nonterminal symbols on its right-hand
side is split into nr+1 subrules.

3.2 Learning
After obtaining an n-split grammar from the training graphs, we
want to learn probabilities for the subrules that maximize the likeli-
hood of the training graphs and their tree decompositions. Here we
use Expectation-Maximization (EM) [9]. In the E (Expectation) step,
we use the Inside-Outside algorithm [11] to compute the expected
count of each subrule given the training data, and in the M (Maxi-
mization) step, we update the subrule probabilities by normalizing
their expected counts.

η,Xi

η1,Yj η2,Zk

η,Xi

η1,Yj η2,Zk

Figure 4: Computation of inside and outside probabilities.
Here, a hyperedge labeled Xi has been rewritten with a rule
rhs with two hyperedges labeled Yj and Zk . At left, the in-
side probability of η,Xi is incremented by the product of the
rule and the inside probabilities of η1,Yj and η2,Zk . At right,
the outside probability of η1,Yj is incremented by the prod-
uct of the outside probability of η,Xi , the rule, and the inside
probability of η2,Zk .

These expected counts can be computed efficiently using dy-
namic programming. Given a tree decomposition T , consider a
bag η and its corresponding subgraph Hη . The grammar extrac-
tion method of Background Section 2.3 assigns Hη a nonterminal
symbol, which we write X . Let Xi be a subsymbol of X . The inside
probability of Hη with label Xi , written as Pin (η,Xi ), is the total
probability of all derivations starting from Xi and ending in Hη .
The outside probability of Hη with label Xi , written as Pout (η,Xi ),
is the total probability of all derivations starting from S and ending
in H with Hη replaced with a hyperedge labeled Xi . See Figure 3.

The inside probabilities can be calculated recursively, from smaller
subgraphs to larger subgraphs. We assume that bag η has at most
two children, which follows if T is in Chomsky Normal Form [7].
If η has two children, let η1 and η2 be the children, let Y and Z be
the labels of Hη1 and Hη2 , and let Yj be and Zk be subsymbols of
Y and Z . Then the inside probability of Hη with subsymbol Xi is
defined by:

Pin (η,Xi ) =
∑
j,k

P (Xi → YjZk ) Pin (η1,Yj ) Pin (η2,Zk )

and similarly if η has only one child:

Pin (η,Xi ) =
∑
j
P (Xi → Yj ) Pin (η1,Yj )

or no children:

Pin (η,Xi ) = P (Xi → ϵ ).

The outside probabilities are calculated top-down. If a bag η
has two children, then the outside probabilities of its children are
defined by:

Pout (η1,Yj ) =
∑
i,k

P (Xi → YjZk ) Pout (η,Xi ) Pin (η2,Zk )

Pout (η2,Zk ) =
∑
i, j

P (Xi → YjZk ) Pout (η,Xi ) Pin (η1,Yk ).
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See Figure 4 for an illustration of this computation. Similarly, if η
has only one child:

Pout (η1,Yj ) =
∑
i
P (Xi → Yj ) Pout (η,Xi ).

In the Expectation step, we compute the posterior probability of
each subrule at each bag of each training tree decomposition T :

P (η,Xi → YjZk | T ) =
1

P (T )
Pout (η,Xi )P (Xi → YjZk ) ·

Pin (η1,Yj )Pin (η2,Zk )

P (η,Xi → Yj | T ) =
1

P (T )
Pout (η,Xi )P (Xi → Yj )Pin (η1,Yj )

P (η,Xi → ϵ | T ) =
1

P (T )
Pout (η,Xi )P (Xi → ϵ )

where P (T ) = Pin (η0, S ) and η0 is the root bag of T . The expected
count of each subrule is calculated by summing over the posterior
probability of the rule over all nodes of all training trees:

E[c (Xi → α )] =
∑

trees T

∑
η∈T

P (η,Xi → α | T )

where α is any right-hand side.
In the Maximization step, we use the expected counts calculated

above to update the rule probabilities:

P (Xi → α ) :=
E[c (Xi → α )]∑
α ′ E[c (Xi → α ′)]

.

These probabilities are then used to repeat the E step. Themethod
is guaranteed to converge to a local maximum of the likelihood
function, but not necessarily to a global maximum.

4 EVALUATION
Current research in graph modelling and graph generation evaluate
their results by comparing the generated graphs with the original
graph by aggregate properties like degree distribution, clustering
coefficients, or diameter [2, 3, 5, 12, 13, 21]. There are two potential
problems with such metrics. First, these metrics do not test how
well the model generalizes to model other graphs that represent
similar data. Second, they are heuristics from which a generated
graph’s “goodness” is difficult to define or standardize. We discuss
and address both of these problems in this section.

4.1 Train/Test Data
Comparing generated graphs with the original graph cannot test
how well the model generalizes to other graphs that represent
similar data or different versions of the same network phenomena.
To see why, consider the extreme case, in which a model simply
memorizes the entire original graph. Then, the generated graphs
are all identical to the original graph and therefore score perfectly
according to these metrics. This is akin to overfitting a machine
learning classifier on training data and then testing it on the same
data, whichwould not reveal whether themodel is able to generalize
to unseen instances.

In standard data mining and machine learning tasks, the overfit-
ting problem is typically addressed through cross-validation or by
evaluating on heldout test data sets. In the present work, we adapt
the idea of using heldout test data to evaluate graph grammars.
In experiments on synthetic graphs, this means that we generate

two random graphs using the same model and parameters; we des-
ignate one as the training graph and the other as the test graph.
In experiments on real world graphs, we identify two graphs that
represent the same phenomenon, e.g., citations or collaborations,
and we mark one as the training graph and one as the test graph.

In reality, we might not be able to find test graphs that have sim-
ilar properties as the training graph. Fortunately, cross-validation
can also be adapted to cases where no test graph is available by
using disjoint subgraph samples from a single graph.

4.2 Likelihood
In addition to the possibility of overfitting, high-level aggrega-
tions of graph properties may not always be good comparators of
two or more graphs. Indeed, examples abound in related literature
showing how vastly different graphs can share similar aggregate
statistics [23]. We propose, as an additional metric, to evaluate
models by using them to measure the likelihood of a test graph
or graphs. Intuitively, this measures how well a model extracted
from the training graph generalizes to a test graph. If the model
simply memorizes the entire training graph, then it will have zero
likelihood (the worst possible) on the test graph. If the model is
better able to generalize to new graphs, then it will have higher
likelihood on the test graph.

Unfortunately, it is not always computationally feasible to com-
pute the likelihood of graphs under previous models. But with
HRGs, it can be computed in linear time given a tree decomposition.
(It would also be possible, but slower, to sum the probabilities of all
possible tree decompositions [6].) The likelihood on a test graph
is simply Pin (η0, S ), where η0 is the root of the tree decomposition.
Note that the model probabilities are estimated from the training
graphs, even when computing likelihood on test graphs. As this
number is usually very small, it’s common to take logs and deal
with log-likelihoods.

4.3 Smoothing
A problem arises, however, if the test graph uses a rule that does
not exist in the grammar extracted from the training graph. Then
the inside probability will be zero (or a log-probability of −∞). This
is because an HRG missing any necessary rules to construct the
test graph cannot generate the test graph exactly, and therefore
results in a zero probability.

In this case, we would still like to perform meaningful compar-
isons betweenmodels, if possible. So we apply smoothing as follows.
To test an HRGH on a test graph, we first extract an HRG,H ′, from
the test graph using the latent-variable HRG method. Define an un-
known rule to be a rule in H ′ but not in H . Then for each unknown
rule, we add the rule to H with a probability of ϵ . We can then
compute the log likelihood on the test graph under the augmented
grammar H ∪ H ′. The final test log likelihood is calculated as

L = LH∪H ′ − c (H
′ \ H ) · log ϵ

where LH∪H ′ is the log likelihood of the test graph under the aug-
mented grammar, c (H ′ \ H ) is the number of times that unknown
rules are used in the test graph, and ϵ is the probability of each
unknown rule. Note that as long as ϵ is much smaller than the
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Table 1: Datasets used in experiments

Type Name Nodes Edges

Synth
Barabasi-Albert train-ba 30,000 59,996

test-ba 30,000 59,996

Watts-Strogatz train-ws 30,000 60,000
test-ws 30,000 60,000

Real

Citation train-cit-HepTh 27,770 352,807
test-cit-HepPh 34,546 421,578

Internet train-as-topo 34,761 171,403
test-as-733 6,474 13,895

Purchase train-amazon0312 400,727 3,200,440
test-amazon0302 262,111 1,234,877

Wikipedia train-wiki-vote 7,115 103,689
test-wiki-talk 2,394,385 5,021,410

probability of any known rule, its value is irrelevant because L does
not depend on it.

Ideally, we would like the number of unknown rules to be zero.
In our experiments, we find that increasing the number of train-
ing graphs and/or decreasing the size of the training graphs can
bring this number to zero or close to zero. Note that if two HRGs
have differing sets of unknown rules, then it is not meaningful to
compare their log-likelihood on test graphs. But if two HRGs have
identical sets of unknown rules, then their log-likelihoods can be
meaningfully compared. We will exploit this fact when evaluating
models with latent variables in the next section.

5 EXPERIMENTS
In this section we test the ability of the latent-variable HRG (laHRG)
to generate graphs using the train-test framework described above.
We varyn, the number of subsymbols that each nonterminal symbol
is split into, from 1 to 4. Note that the 1-split laHRG model is
identical to the original HRG method. By varying the number of
splits, we will be able to find the value that optimizes the test
likelihood.We have provided all of the source code and data analysis
scripts at https://github.com/cindyxinyiwang/laHRG.

5.1 Setup
Given a training graph, we extract and train a latent-variable HRG
from the graph. Then we evaluate the goodness of the grammar by
calculating the log likelihood that the test graph could be generated
from the grammar.

For evaluation, we need to make sure that the test graph is
disjoint from the training graph to guard against overfitting. Here
we introduce two techniques to achieve that: 1. we partition a single
graph into two disjoint parts so that they do not have overlapping
vertices. Then we train laHRG from one part of the graph, and
calculate the log likelihood of the other disjoint part; 2. we choose
2 graphs of the same type, and use one for training and the other
for evaluation.

We evaluate laHRG with log likelihood metric for both evalua-
tion methods mentioned above on 6 types of graphs: 2 synthetic
graphs (generated from random graph generators), and 4 real world

graphs. For the first evaluation method, we use 1 graph, each from
6 different types of graphs, and partition the graph for training
and testing purpose. For the second evaluation method, we do not
partition the training graph, but choose 1 additional graph from
each type of graphs for testing. The graphs were obtained from the
SNAP1 and KONECT2 graph repositories and are listed in Table 1.

Many of these graphs are too large for a tree decomposition
to be calculated. Instead, we randomly sampled a set of fixed-size
subgraphs from the training graph and a set of fixed-size subgraphs
from the test graph. Besides the concern from the calculation of
large tree decompositions, sampling multiple graphs is also impor-
tant for the extraction of a broad set of rules. Recall that if a single
rule required to generate the test graph is not found within the
training graph, then the likelihood will be 0. Therefore, large test
graphs would require many more training graphs in order to reduce
(or hopefully eliminate) the need for smoothing.

In all experiments, we extract 500 samples of size-25 subgraphs
from the training graph. We extract an HRG from each size-25
subgraph, perform nonterminal splitting and EM training. The 500
HRGs are then combined and their weights are normalized to create
the final laHRG model. We also take 4 samples of size-25 subgraphs
from the test graph, calculate the log-likelihood of each under the
laHRG model, and report the mean log-likelihood and confidence
interval.

We chose these parameters empirically such that there is no
need for smoothing. If we were to increase the subgraph size for
the test graphs, then we would also need to increase the number of
training graph samples or rely on smoothing to ensure non-zero
likelihood.

To compute tree decompositions, we used a reimplementation of
the QuickBB algorithm [10], with only the “simplicial” and “almost-
simplicial” heuristics.

5.2 Log-Likelihood Results
This section explains the performance of laHRG in terms of log-
likelihood metric on test graph for two different train-test split
methods mentioned in the previous section. We mainly analyze
the results for the second method: train on one graph and test on
another graph of the same type. The first method has similar results,
and we include them here to show that our evaluation method also
works for graphs that are difficult to find different test graphs of
the same type.

5.2.1 Validate on Different Graph of Same Type. We first show
the log-likelihood results on synthetic datasets. The two random
graph models, the Barabasi-Albert graph and Watts-Strogatz graph,
generate very different graph types. The four panels in Fig. 5 show
the log-likelihood results of four combinations of training graphs
and test graphs. Higher is better.

As a sanity check, we also trained an laHRGmodel on a Barabasi-
Albert graph and tested it against a Watts-Strogatz graph and vice
versa. We expect to see much lower log-liklihood scores because
the laHRG trained on one type of graph should be different than
another type of graph. The top-right and bottom-left panels in Fig. 5

1https://snap.stanford.edu/data
2http://konect.uni-koblenz.de

https://github.com/cindyxinyiwang/laHRG
https://snap.stanford.edu/data
http://konect.uni-koblenz.de
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Figure 6: On real-world graphs, splitting nonterminal sym-
bols (n ≥ 2) always improves log-likelihood on the test
graph, as compared to no splitting (n = 1), peaking at 2 or
3 splits and then dropping due to overfitting. Error bars in-
dicate 95% confidence intervals. Higher is better.

show that this is indeed the case; the log-likelihood measure and
the laHRG model pass the sanity check.

Next we extracted and tested the laHRG model on real world
graphs. The log-likelihood results are illustrated in Fig. 6 for laHRG
models of up to 4-splits. We find that the log-likelihood scores peak
at n = 2 or 3 and then decreases when n = 4.

Recall that laHRG is the same as HRG [2] when n = 1. Based on
the results from Fig. 6, we find that splitting does indeed increase
HRG’s ability to generate the test graph. However, as increasing n
shows diminishing returns and sometimes decreases performance.
The decrease in log likelihood when n > 2 is caused by model
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Figure 7: Loglikelihood on subgraphs that are disjoint from
training graphs. Trends similar to Fig. 6 and Fig. 5 can be ob-
served with this method. Error bars indicate 95% confidence
intervals. Higher is better.

overfitting. The increase in node-splitting allows laHRG to fine-
tune the rule probabilities to the training graph, which we find does
not always generalize to the test graph.

5.2.2 Validate on Disjoint Subgraph. If it is difficult to find a test
graph of the same type with the training graph, it is still possible
to evaluate laHRG with the log likelihood metric. We can partition
the graph into two disjoint parts, and use one for training and
the other for testing. Fig. 7 shows the log likelihood of the test
subgraphs that are disjoint from the training graphs. Again, splitting
nonterminal symbols increase the log likelihood on the test graph,
but as the number of splits (n) increases, log likelihood decreases
due to overfitting.

5.3 Comparing against other Graph Generators
The log-likelihood metric is a principled approach to calculating
the performance of a graph generator. Unfortunately, other graph
generators are not capable of performing this type of likelihood
calculation. In order to compare the laHRG graph model to other
state of the art graph generators including the Kronecker [12] and
Chung-Lu [8] models, we revert to traditional graph metrics to
compare a generated graph to a test graph(not against the original
graph).

Among the many choices for heuristic graph comparisonmetrics,
we chose the degree distribution and graphlet correlation distance
(GCD).

Recall that the sampling of 25-node subgraphs was necessary
to ensure a non-zero probability for the log likelihood evaluation.
No such requirement exists for evaluation on GCD. Nevertheless,
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to maintain an apples to apples comparison, we performed similar
graph sampling methods for degree distribution distance and GCD:
we trained Kronecker and Chung-Lu models on a 25-node subgraph
from the training graph, generated a 25-node graph, compared the
generated graph against a 25-node subgraph of the test graph, and
repeated this process 500 times.

As a baseline, we also compared the training and test graph
directly to get a basic sense of their similarity. So, we directly
compared 25-node subgraphs from the training graph to 25-node
subgraphs of the test graph without any model. We repeated this
direct comparison 500 times and report the mean and 95% confi-
dence interval. We call this the “Direct” comparison because it does
not involve any graph generation.

5.3.1 Degree Distribution Distance. In the present work we ap-
ply the degree distribution distance of Pržulj [18] to compare two
or more degree distributions. Lower degree distribution distance
between two graphs means they are more similar.

which is defined as follows. Given a graph H , we first scale and
normalize the degree distribution of H :

SH (k ) =
dH (k )

k

TH =
∞∑
k=1

SH (k )

NH (k ) =
SH (k )

TH
in order to reduce the effect of higher degree nodes, where dH (K ) is
the number of nodes inH that have a degree of k . Then we calculate
the distance between two degree distributions D (dH ,dH ′ ) as:

D (dH ,dH ′ ) =
1
√

2

√√√ ∞∑
k=1

(NH (k ) − NH ′ (k ))
2,

which is essentially a normalized sum of squares between the two
distributions. We call this metric the degree distribution distance.
Because this is a “distance” metric low values indicate high similar-
ity.

Figure 8 illustrates the results of the degree distribution distance.
Recall that the laHRG is identical to HRG [2] when n = 1. The
Kronecker and Chung-Lu do not have an n parameter, so their
plots are flat. All points represent the mean of 500 repetitions; each
point contains error bars indicating the 95% confidence intervals –
although many error bars are too small to be seen.

The laHRG model generates graphs that more closely follow
the degree distribution of the test graph than graphs generated by
Kronecker and Chung-Lu models. Higher nonterminal splitting, i.e.,
n > 1, shows little change on the degree distribution distance.

It is expected that the Direct baseline outperforms all graph
models, because the Direct baseline simply compares two graphs
generated from the exact same generation process, which rewards
an overfit model.

Here, the HRG models predict the test graph’s degree distribu-
tion better than the Direct baseline does; whether this is because
they generalize better, or due to chance, or some other reason,
would need further analysis to determine. In any case, nonterminal
splitting (n ≥ 2) has only a slight effect on the model, generally
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Figure 8: HRG models are shown to generate graphs with
lower (= better) degree distribution distance to the test graph
when compared to other models. Splitting nonterminals
(n ≥ 2) sometimes decreases degree distance but sometimes
increases it.

attracting the degree distribution toward the training graph’s and
away from the test graph’s.

Interestingly, the Direct baseline has similar or better perfor-
mance than the Kronecker and Chung-Lu methods. It is unlikely
that these results can be completely explained by overfitting. In-
stead, Kronecker or Chung-Lu methods may perform poorly due to
underfitting, wherein these models do not model the training graph
well enough. More work is needed to understand these results.

5.3.2 Graphlet Correlation Distance. Although the degree dis-
tribution is the most well known and widely adopted graph com-
parison metric, it is far from complete. The degree distribution
can be easily mimicked by two very large and different networks.
For example, previous work has shown that it is easy to construct
two or more networks with exactly the same degree distribution
but substantially different structure and function [14, 19]. There is
mounting evidence which argues that the graphlet comparisons are
a better way to measure the similarity between two graphs [18, 22].
Recent work from systems biology has identified a metric called
the Graphlet Correlation Distance (GCD). The GCD computes the
distance between two graphlet correlation matrices – one matrix
for each graph [24]. Because the GCD is a distance metric, low val-
ues indicate high similarity where the GCD is 0 iff the two graphs
are isomorphic.
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Figure 9: HRG models are shown to generate graphs with
lower (= better) graphlet correlation difference (GCD) to the
test graph,when comparedwith othermodels. Splitting non-
terminals (n ≥ 2) sometimes inproves GCD and sometimes
decreases it.

Figure 9 illustrates the results of the GCD. Recall that the laHRG
is identical to HRG [10] when n = 1. The Kronecker and Chung-
Lu do not have an n parameter, so their plots are flat. All points
represent the mean of 500 repetitions; each point contains error
bars indicating the 95 confidence intervals âĂŞ although many
error bars are too small to be seen.

The Direct baseline illustrates how similar the training and test
graphs are. As expected, we find that the Direct comparison is best
on the random Watts-Strogatz graphs. But laHRG outperforms it
on all of the real-world graphs.

5.4 Comparison with Log Likelihood Metric
GCD and Degree Distribution metrics indicate that laHRG is a
better graph generator than other options like Kron and Chung-
Lu graph generators, but our experiments seem to suggest that
splitting nonterminals in HRG does not have much effect in terms of
GCD and Degree Distribution. However, nonterminal splitting does
increase log likelihood of the test graph, as explained in Section 5.2.
This discrepancy is probably because log likelihood metric is able to
capture more general structure and properties of a graph than GCD
and Degree Distribution. Both GCD and Degree Distribution only
focus on a specific graph property, which might not be perfectly
correlated with overall structure of a graph. On the other hand,
the log likelihood metric we propose does not overemphasize a

Table 2: Number of rules/parameters in grammars extracted
from training graphs

n

Train 1 2 3 4

Citation 1,156 7,193 19,885 44,410
Internet 1,005 5,686 14,057 29,247
Purchase 969 6,196 18,237 38,186
Wikipedia 1,065 6,891 20,891 42,841

Barabasi-Albert 48 298 930 2,126
Watts-Strogatz 60 346 1,023 2,380

particular graph property, but directly measures the ability of the
graph generator to generate the test graph.

6 GRAMMAR ANALYSIS
Recall that the HRG models merges two production rules if they
are identical. Splitting rules produces subrules that have the same
structure, but different symbols, so they cannot be merged; splitting
nonterminal nodes will therefore increase the size of the grammar.
In the worst case, the blowup could be cubic in n. Table 2 shows the
sizes of all the grammars used in the experiments. Because rules
with probability zero are excluded, the blowup is slightly less than
cubic.

Here we see a trade-off between model size and performance.
The larger the grammar gets, the better it is able to fit the training
graph. On the other hand, we prefer smaller models to mitigate the
possibility of overfitting. If we had not used separate training and
test graphs, it would not be clear how to manage this trade-off, but
our evaluation is able to demonstrate that larger grammars (up to
a point) are indeed able to generalize to new data.

What do the HRG grammars look like? The models learned by
unsupervised methods like EM can often be difficult to interpret,
especially when the number of splits is high and the grammar is
large. Figure 10 shows selected 2-split rules extracted from the as-
topo training graph, namely, those with probability at least 0.1 and
with at most two external nodes.

We can see that the subsymbols behave quite differently from
each other. For example, the N2

1 rule adds a connection between its
two external nodes (via a third node), whereas none of the N2

2 rules
adds a connection (perhaps because, as can be seen in the RHS of
the N0 rule, they are already neighbors).

What can we learn from these graph grammars? This is an open
question. If we assume that the tree decomposition provides a
meaningful representation of the original graph, then we may be
able to interrogate and assign meaning to these rules depending on
their context. But we save this as a matter for future work.

7 CONCLUSION
This presentwork identifies and addresses two problems in applying
Hyperedge Replacement Grammars (HRGs) to network data [2]
by adding latent variables in order to make production rules more
sensitive to context and by introducing a principled evaluation
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Figure 10: Rules extracted from as-topo, 2-split nontermi-
nals, showing only those with probability at least 0.1 and
with at most two external nodes.

methodology that computes the log likelihood that an HRG model
generates a graph.

To guard against the possibility of the new model overfitting
the original graph, we enforced a separation between the original
graph from which the model is trained and a different graph on
which the model is tested. This methodology should be better at
selecting models that generalize well to new data. We confirmed
Aguinaga et al.’s original finding that HRGs perform better than
the widely-used Kronecker and Chung-Lu models, and showed that
adding latent variables usually improves performance further.

Furthermore, we evaluated our method against the original HRG
model by directly measuring the log-likelihood of the test graphs
under all models. This metric is more principled than aggregation of
statistics of select graph properties. Under this metric, our method
improves over the original in all cases, peaking at either n = 2 or 3
splits.

HRGs extracted from tree decompositions are large. Splitting
nonterminals grows the model even more. But our finding that 2- or
3-split grammars still generalize better to unseen graphs suggests
that these models are not unreasonably large.

It remains for future work to test this claim by evaluating other
generative graph models on test graphs distinct from training
graphs. It should also be possible to simplify the HRG and laHRG
models by trying to prune low-probability rules while maintaining
high performance. Finally, more analysis is needed to provide an
interpretation for the patterns automatically discovered by laHRGs.
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