
Semi-Supervised Learning on Graphs Based on Local Label
Distributions

Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert

Ludwig-Maximilians-Universität München

Munich, Germany

{faerman,borutta,busch,schubert}@dbs.ifi.lmu.de

ABSTRACT
Most approaches that tackle the problem of node classification con-

sider nodes to be similar, if they have shared neighbors or are close

to each other in the graph. Recent methods for attributed graphs

additionally take attributes of neighboring nodes into account. We

argue that the class labels of the neighbors bear important informa-

tion and considering them helps to improve classification quality.

Two nodes which are similar based on class labels in their neigh-

borhood do not need to be close-by in the graph and may even

belong to different connected components. In this work, we pro-

pose a novel approach for the semi-supervised node classification.

Precisely, we propose a new node embedding which is based on

the class labels in the local neighborhood of a node. We show that

this is a different setting from attribute-based embeddings and thus,

we propose a new method to learn label-based node embeddings

which can mirror a variety of relations between the class labels of

neighboring nodes. Our experimental evaluation demonstrates that

our new methods can significantly improve the prediction quality

on real world data sets.

KEYWORDS
Feature learning, Graph representations, Node embeddings, Node

classification

ACM Reference Format:
Evgeniy Faerman, Felix Borutta, Julian Busch, Matthias Schubert. 2018.

Semi-Supervised Learning on Graphs Based on Local Label Distributions.

In ACM Workshop@SIGKDD (MLG’18). ACM, London, UK, 8 pages.

1 INTRODUCTION
Graphs are the most general way to represent structured data. In

general, a set of entities with some given pairwise relationships

between them can be modeled as a graph G = (V ,E) with a cor-

responding node set V and an edge set E ⊆ V × V . Real-world
examples of graph-structured data are abundant and include social

networks, co-citation networks or biological networks.

In addition to the graph structure, further attribute information

may be provided for the entities described by the graph nodes. In

an attributed graph, each node vi ∈ V is associated with an at-

tribute vector fi ∈ R
d
. For instance, social network users might be

enriched with personal information or documents in a co-citation

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MLG’18, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).

.

network might be described by bag-of-words vectors. The increas-

ing relevance of graph-structured data has been accompanied by

an increased interest in learning algorithms which can leverage

underlying graph structure to make accurate predictions for the

modeled entities.

An important semi-supervised learning task on graphs is node

classification, where each node vi ∈ V can be associated with a

set of class labels (simply referred to as labels in the following)

represented by a label vector yi ∈ {0, 1}l where l is the number of

possible labels. Given a set of already labeled nodes in a graph, the

goal is to predict new likely labels for unlabeled nodes. The task is

semi-supervised in the sense that connectivity information about

the whole graph is available and at least some of the class labels

are already known. In the case of attributed graphs, attributes of all

nodes can additionally be used for prediction, including those of the

unlabeled nodes in the graph. Important applications include rec-

ommendation in social networks, where the node labels represent

user interests, or document classification in co-citation networks,

where the node labels indicate associated fields of research.

Approaches for node classification on graphs may employ ad-

ditional node attributes or operate on the graph structure alone.

Wewill refer to these approaches as attribute-based and connectivity-
based approaches, respectively. Among the most successful

connectivity-based methods are node embedding techniques [7,

9, 13, 16, 17, 21, 32, 33, 37, 40]. An underlying assumption of these

techniques is that nodes which are closely connected in the graph,

should have similar labels, which is commonly referred to as ho-

mophily [25]. Our method does not rely on the homophily assump-

tion, but is still able to relate close-by nodes. Furthermore, unlike

most node embedding techniques our new approach can be used to

classify nodes unseen during training. In the attribute-based setting

the graph structure can be incorporated in different ways, for in-

stance by using regularization [5, 41, 44, 45], combining attributes

with node embeddings [42], or aggregating them over local neigh-

borhoods [4, 8, 12, 20, 23, 26, 27, 39]. While regularization-based

methods rely on the homophily assumption and most of them are

not able to classify instances unseen during training, all other meth-

ods focus on node attributes. In addition to connectivity and node

attributes, the labels available during training further provide valu-

able information that is in general complementary to connectivity

and attribute features, and are useful to improve classification. In

general learning tasks on independent and identically distributed

(iid) data, labels indicate that an observation is sampled from a

particular distribution. However, in a graph we have non-iid data

and thus, the labels of connected objects allow for a novel use of

label information which has not been exploited before for learning

graph embeddings.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

Figure 1: Consider a communication network with nodes
labeled according to their device type (user, server, data-
base, printer). Assume the labels for the database and printer
nodes in the right connected component are unknownwhile
the remaining labels are provided. Further node attributes
are not given. We can observe that the roles of printers
and databases are clearly defined by the labels of their
neighboring nodes, e.g., printers are not connected to server
nodes. Homophily-based methods would fail to classify
these nodes correctly, since their labels differ from their
neighbors. Further, connectivity alone does not explain the
roles, since for instance the printer and database in the left
part of the graph have the same degree and even their neigh-
bors have the same degrees.

In this paper, we propose a label-based approach to learn a node

embedding which allows for more accurate node classifications.

The main idea of our approach is that there often exists a correlation

between the labels of a node and the distribution of labels in its

local neighborhood. Thus, considering the local label distribution

when computing a node embedding can exploit this correlation to

improve the descriptiveness of the learned embedding. In Figure

1, we illustrate this for a typical case for which the label of a node

is determined by the labels of neighboring nodes and not by node

attributes or connectivity. As an additional example, the function of

a protein can be expected to correlate strongly with the functions of

interacting proteins. As mentioned above, we assume that the labels

of at least some of the neighboring nodes are known for each new

node with unknown labels. In the majority of applications, this is

realistic because new nodes usually connect to already known parts

of the network. For instance, new papers usually cite established

articles and new members of a social network will usually already

know multiple friends in the network to connect to.

Though labels can be considered as another type of node at-

tributes, there exists an important difference between labels and

attributes which prevents attribute-based embeddings to general-

ize well on label information. Though the attribute values of the

predicted node are allowed to be used for learning the embedding,

using the node labels even in an transitive way leads to overfitting

and a bad generalization performance of the learned embedding.

We will discuss these issues in more detail in Section 3 and intro-

duce a simple baseline method. In our new method, we aggregate

labels from relevant nodes directly and thus, we can completely

exclude any influence of the nodes’ own labels. In a first step, we

determine the relevant neighbors of a given node based on Ap-
proximate Personalized PageRank (APPR). Since this might be an

expensive task for large graphs, we use an adaption of the highly

efficient algorithm from [36]. After determining the neighborhood,

we compute the label distribution within the neighborhood and

classify the node based on this novel representation. We compare

our new representation to state-of-the-art graph embeddings based

on several benchmark datasets for node classification.

The remainder of the paper is structured as follows: After provid-

ing a formal problem definition for our approach in Section 2, we

introduce our new method in Section 3, starting with a discussion

on the possibility of incorporating label-based features into existing

models in Section 3.1. After a discussion of related work in Section

4, the performance of our model is evaluated experimentally and

compared to state-of-the-art methods in Section 5. Finally, Section

6 concludes the paper and proposes directions for future work.

2 PROBLEM SETTING
We consider (possibly directed) graphs G = (V ,E), with node set

V = {v1, . . . ,vn } and edge set E ⊆ V × V . A graph can be rep-

resented by an n × n adjacency matrix A = (ai j)vi ,vj ∈V , where
ai j ∈ R denotes the weight of the edge (vi ,vj). In case of an un-

weighted graph, ai, j = 1 indicates the existence and ai, j = 0 the

absence of an edge between vi and vj . Furthermore, we do not

allow self-links, i.e., ai,i = 0 for all nodes vi ∈ V . In an attributed

graph, additional node attributes are provided in the form of an

attribute vector fi ∈ R
d
for each nodevi . The attribute information

for the whole graph can be represented by an n ×d attribute matrix

F, where the ith row of F corresponds tovi ’s attribute vector fi . Let
us note that an important difference between attributes and labels

is that attributes are usually known for all nodes, in particular those

nodes without known labels.

Our problem setting is semi-supervised node classification, where
the node set V is partitioned into a set of labeled nodes L and

unlabeled nodes U , such that V = L ∪U and L ∩U = ∅. Thereby,

each node vi ∈ V is associated with a label vector yi ∈ {0, 1}l ,

where l is the number of possible labels and an entry one indicates

the presence of the corresponding label for a certain node. The

labels available for training can be represented by an n × l label
matrix Ytrain, where the i’ths row of Ytrain corresponds to the label

vector yi of vi if vi ∈ L. For unlabeled nodes, we assign constant

zero vectors. The task is now to train a classifier using A, Ytrain
and possibly F which accurately predicts yi for each vi ∈ U . In

multi-class classification, each node is assigned to exactly one class,

such that yi = ej is the j’s unit vector, if vi is assigned to class j.
Multi-label classification denotes the general case, in which each

node may be assigned to one or more classes and the goal is to

predict all labels assigned to a particular node.

3 SEMI-SUPERVISED LEARNING ON GRAPHS
BASED ON LOCAL LABEL DISTRIBUTION

3.1 Labels as Attributes
The main idea of our approach is to learn a more descriptive node

representation by incorporating the known labels in the neigh-

borhood of a node. In the following, we will show why existing

methods are not suitable to consider this information. Methods

relying on neighborhood similarity [7, 9, 13, 16, 32, 37, 40] learn

representations in an unsupervised manner and thus, only rely

on the topology of the graph and not on attributes or labels. The

Planetoid-T model [42] considers labels by partly enforcing the

similarity between members of the same class and therefore, nodes

are related to each other based only on their own labels.

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

Graph Neural Networks [24, 34] or Graph Convolution Networks

(GCN) [4, 8, 12, 20, 23, 26, 27, 39] are special cases of a Message

Passing Neural Network (MPNN) [14] which is a framework de-

scribing a family of neural network based models for attributed

graphs. All MPNN methods have in common that they use some

differentiable function to iteratively compute messages for each

node which are passed to all its neighbors. These messages build

an input to a differentiable update function which computes new

node representations h:

mt+1
v =

∑
w ∈N (v)

Mt (h
t
v ,h

t
w),

ht+1v = Ut (h
t
v ,m

t+1
v).

Here t denotes the current iteration, htv is the representation of

nodev in iteration t and vectorh0v corresponds to the input features

of node v . N (v) denotes the set of direct neighbors of node v ,Mt is

the message andUt the set of update functions. The obvious way
to integrate the neighborhood label information into an MPNN-

based prediction model is to include the label information into the

messages directed to the neighbors in the first iteration. However,

even after removing self-links each node would receive information

about its own labels already in the second iteration during training.

Thus, models learned on such representations overfit on the nodes’

own labels and do not generalize well in the inference step where

the node labels are unknown. The same applies to directed graphs

with cycles. Therefore, applying MPNN models to communicate

neighboring labels is restricted to one iteration only. We use a

corresponding model as a baseline for our experiments.

Note that this problem does not apply to label diffusion algo-

rithms [15, 19, 44, 45]. However, these methods infer node labels

based on majority vote in local neighborhoods and do not make

use of recurrent patterns in graph.

3.2 General Approach
To present our method for semi-supervised learning on graphs

using local label distributions we first outline an efficient algorithm

for computing node neighborhoods based on Approximated Person-
alized PageRank (APPR). Afterwards, we describe how to create

node representations based on the label distribution in the local

neighborhood based on APPR. Finally, the node representations

can be used as feature descriptors in arbitrary classification models.

The Personalized PageRank (PPR) corresponds to the PageRank
algorithm [31], where the probabilities in the starting vector s are
biased towards some set of nodes. The result is the “importance” of

all nodes in the graph from the viewpoint of the nodes in s .
The push algorithm described in [18] and [6] is an efficient way

to compute an approximation of the Personalized PageRank (APPR)

vector if the start distribution vector s is sparse. The idea behind the
push algorithm is only to consider a node in the local neighborhood

if the probability to visit the node is significantly larger than the

probability to visit any other node from the rest of the graph. This

leads to a sparse solution meaning that only relatively few nodes of

the underlying graph are contained in the resulting APPR vector.

Algorithm 1 describes the computation of APPR using a variant

of the push operation on lazy random walk transition matrices

of undirected unweighted graphs. This algorithm was proposed

in [3], where APPR is used to partition graphs. We describe an

Algorithm 1 ApproximatePPR

Input: Starting vector s , Teleportation probability α , Approximation threshold ϵ
Output: APPR vector p
1: p = ®0, r = s
2: while r (u) ≥ ϵd (u) for some vertex u do
3: pick any u where r (u) ≥ ϵd (u)
4: push(u)

5: end while
6: return p

Algorithm 2 push

Input: Vertex u
1: p(u) = p(u) + (2α/(1 + α))r (u)
2: for v with (u, v) ∈ E do
3: r (v) = r (v) + ((1 − α)/(1 + α))r (u)/d (u)
4: end for
5: r (u) = 0

adapted version from [36] which converges faster. The algorithm

maintains two vectors: the solution vector p and a residual vector

r . The vector p is the current approximation of the PPR vector and

vector r contains the approximation error or the not yet distributed

probability mass. p(u) and r (u) are the entries in vectors p and

r corresponding to node u, d(u) is the degree of node u. In each

iteration the algorithm selects a node with sufficient probability

mass in vector r . This probability mass is spread between the node

entry inp and the entries of its direct neighbors in r . In each step, the
exact PPR is the linear combination of the current solution vector

p and the PPR solution for r , i.e., pr (s) = p + pr (r). The algorithm
can also be trivially adapted to directed graphs and graphs with

weighted edges.

3.2.1 Local Label Distribution. In our approach we first compute

the APPR vector for each node. Before APPR is computed for node

v , the corresponding entry s(v) in starting vector s is set to one and
all other entries to zero. Therefore, the APPR vector of v describes

the importance of local neighbors only from its point of view.

In the APPR result matrix APPR, each row corresponds to the

APPR vector of the corresponding node. The local label distribution

representation X ∈ Rn×l is computed by manipulating APPR such

that the diagonal is set to zero to exlude information about the

own labels and then multiplying the resulting matrix �APPR with

the label matrix Ytrain. The entry Xv yj can be interpreted as the

probability that a random walk starting from node v stops at a

neighbor with label yj .
The local label distribution can be used as a node embedding

vector which can be passed into an arbitrary classification algorithm.

In our experiments, we employ a multi-layer perceptron with three

layers, i.e., an input layer taking the local label distribution matrixX
as input, a dense hidden layer with 16 units and an ReLU activation,

and finally a dense layer retrieving the output. Formally, the hidden

layer H can be described as

H = ReLU (�APPR · Ytrain ·W1)

with W1 denoting the weight matrix. Note that the bias is omitted

for the sake of better readability.

4 RELATEDWORK
Numerous approaches for semi-supervised learning on graphs have

been proposed recently. These can be categorized into unsupervised

node embedding techniques and semi-supervised techniques.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

4.1 Unsupervised Node Embedding
Lots of recent developments related to learning from structural

relationships have focussed on learning node embeddings, where
a latent vector representation is learned for each node, reflecting

its connectivity in the underlying graph. The learned node embed-

dings can be used as an input to a subsequent down-stream task,

such as node classification. Random walk based methods [16, 32]

sample a number of random walks from the graph and nodes are

related if they have common neighbors. LINE [37] is another vari-

ant, which considers direct first- and second-order proximities

instead of random walks. Graph2Gauss [7] learns similarity to hop

neighborhoods and embeds each node as a Gaussian distribution

to allow for uncertainty in the representation. GECS [2] uses con-
nections subgraphs to determine appropriate node neighborhood.

More closely related to our approach, LASAGNE [13] relies on

APPR to determine relevant context nodes. Other works perform

matrix factorization. For instance, GraRep [9] factorizes a sequence

of k-step log-probability matrices with SVD and concatenates the

resulting low-dimensional node representations to form the final

representations. Abu-El-Haija et al. propose matrix factorization

of random-walk occurrence matrix with different approaches to

determine context window size distribution [1]. SDNE [40] uses a

multi-layer auto-encoder model to capture non-linear structures

based on direct first- and second-order proximities. Authors of

[10] propose embeddings in hyperbolic space. HARP [11] addresses

the local minima problem and introduce an iterative scheme for

learning of node representations which can be used with different

embedding learning methods. An input graph is coarsened on dif-

ferent levels and node representations are learned starting with

the coarsest graph and learned embeddings are provided as initial-

izations for the embeddings of subsequent finer graphs. While the

above methods rely on the homophily assumption, struc2vec [33]
aims at learning representations which relate structurally similar

nodes instead of nodes which are close in the graph. It does so by

using degree sequences in neighborhoods of different sizes. All of

the above approaches are transductive in the sense that labels can

only be predicted for unlabeled nodes observed already at training

time. The GraphSAGE [17] framework introduces inductive node
embeddings. The basic idea is to learn an embedding function by

sampling and aggregating node attributes in local neighborhoods.

The embedding function can further be learned with a supervised

loss function. Inductive models are also obtained by considering

node attributes. Variational Graph Auto-Encoders [21] learn node

representations using a variational auto-encoder, where the en-

coder is a two-layer GCN. The model can be applied to attributed

and non-attributed graphs.

4.2 Semi-Supervised Learning on Graphs
Compared to separately optimizing steps in a semi-supervised learn-

ing pipeline, as is the case for semi-supervised learning with pre-

trained node embeddings, end-to-end training usually leads to bet-

ter performance on the supervised learning objective.

One direction is Laplacian Regularization, where the prediction
loss is augmented with an unsupervised loss function based on the

graph’s Laplacian matrix, encoding the homophily assumption that

close-by nodes should have the same label. Related approaches in-

cludeManifold Regularization [5], a kernel-based method, and Deep

Semi-Supervised Embedding [41] which incorporates node embed-

dings by augmenting neural network models with an embedding

layer. Both of these methods generalize to attributed graphs. The

ICA algorithm [30] starts with the observed labels and iteratively

classifies unlabeled nodes based on aggregated node attributes in

local neighborhoods. At the end of each phase, the nodes classified

with highest certainty are added to the ground truth for the next

phase. Label Diffusion methods [15, 19, 44, 45] are more closely re-

lated to our work. Similarly to our method they create embeddings

based on labels in local neighborhoods. The basic idea is based on

mincuts [15] and labels are inferred based on majority vote. There-

fore, Label Diffusion approaches do not exploit the effect of similar

label distributions in a graph. More recent methods, as proposed

in [29] and [43], also classify nodes based on labels in local neigh-

borhoods. They learn a model which predicts node labels from a

feature vector describing the local k-neighborhood. Both methods

assume unattributed graphs.

Instead of imposing regularization, Planetoid [42] combines the

prediction loss with node embeddings by training a joint model

which predicts class labels as well as graph context for a given node.

The graph context sampled from random walks as well as the set of

nodes with shared labels. This allows Planetoid to relate nodes with

similar labels even if they are not close in the graph. Thus, Planetoid

does not rely on a strong homophily assumption. In addition to a

connectivity-based variant, Planetoid-G, the authors propose two
further architectures, which incorporate node attributes. The trans-

ductive variant Planetoid-T starts with pre-trained embeddings and

alternately optimizes the prediction and embedding loss functions.

The inductive variant Planetoid-I on the other hand predicts the

graph context from the node features instead.

Another important direction which has recently gained increas-

ing attention is concerned with generalizing deep neural network

architectures to graph-structured domains. As the general approach

consists of incorporating graph structure into supervised learning,

these models assume an attributed graph. However, they can nat-

urally be applied to non-attributed graphs by using the identity

matrix as the attribute matrix. The vast majority of neural network

based models for semi-supervised learning on graphs can be de-

scribed within a message-passing framework. In a Message Passing
Neural Network (MPNN) [14], each node has a hidden state which

is updated iteratively during training. The initial hidden state of a

node corresponds to its attribute vector. In a first step, messages

from vi ’s neighborhood are received and aggregated, where a mes-

sage from neighbor vj depends on vi ’s and vj ’s hidden states. In a

second step, vi ’s state is updated by combining it with the aggre-

gated messages. An important special case are Graph Convolution
Networks [8, 12, 20, 23, 26, 27, 39] which aggregate node attributes

over local neighborhoods with spatially localized filters, similar to

classical convolutional networks on images [22]. The ChebNet [12]
aggregates messages from neighbors analogously to the eigenvec-

tors of the graph’s Laplacian matrix. The update function ignores

the previous state and applies a non-linear activation. The result-

ing filters are k-localized. The GCN [20] is a simplification of the

ChebNet, which only considers one-hop neighbors. Messages are

aggregated according to a normalized adjacency matrix. In the up-

date phase, the aggregated messages are multiplied with a learned

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

filter matrix with a ReLU activation. For graph convolution net-

works, the number of message passing iterations corresponds to

the number of layers.

5 EVALUATION
We evaluate our approach by performing node-label prediction

and compare the quality in terms of micro F1 score for multiclass

prediction tasks, respectively micro F1 and macro F1 scores for

multilabel prediction tasks, against state-of-the-art methods.

For both tasks, we compare our model against the following

approaches:

• Adj: a baseline approach which learns node embeddings only

based on the information contained in the adjacency matrix

• GCN1_only_L: a GCN which applies convolution on label

matrix Y. We use one convolution layer on the adjacency

matrix without self-links, followed by a dense output layer
1

• noFeat GCN2: the standard 2-layer GCN as published by Kipf

et al. [20] without using the node attributes

• DeepWalk: the DeepWalk model as proposed in [32]

• node2vec: the node2vec model as proposed in [16]

• Planetoid-G: the Planetoid variant which does not use at-

tribute information [42]
2

Our model is denoted as LD (short for Label Distribution). For

these experiments we train a simple feed-forward neural network

which takes the label distribution based representations as input

and retrieves class probabilities as output.

Note that we omit the comparison to label propagation [45] since

Yang et al. already showed that the Planetoid model outperforms

this approach [42].

5.1 Multiclass Prediciton
5.1.1 Experimental Setup. For the multiclass label prediciton

task we use the following three text classification benchmark graph

datasets [28, 35]:

• Cora. The Cora dataset contains 2’708 publications from

seven categories in the area of ML. The citation graph con-

sists of 2’708 nodes, 5’278 edges, 1’433 attributes and 7 classes.

• CiteSeer. The CiteSeer dataset contains 3’264 publications

from six categories in the area of CS. The citation graph

consists of 3’264 nodes, 4’536 edges, 3’703 attributes and 6

classes.

• Pubmed. The Pubmed dataset contains 19’717 publications

which are related to diabetes and categorized into 3 classes.

The citation graph consists of 19’717 nodes, 44’324 edges,

500 attributes and 3 classes.

For each graph, documents are denoted as nodes and undirected

links between documents represent citation relationships. If node

attributes are applied, bag-of-words representations are used as

attribute vectors for each document.

We split the data as suggested in [42], i.e., for labeled data our

training sets contain 20 randomly selected instances per class, the

1
See 3.1 for the explanation why only one convolution layer makes sense

2
Unless stated differently we use for all competitors the parameter settings as suggested

by the corresponding authors. Except for minor adaptations, e.g., to include label

information in the one layer GCN models or to make the Planetoid models applicable

for multilabel prediciton tasks, we use the original implementations as published by

the correpsonding authors.

test sets consist of 1’000 instances, and the validation sets contain

500 instances for each method. The remaining instances are used

as unlabeled data. For comparison we use the prediction micro F1

scores which we collected over 10 different data splits.

Since the numbers of iterations for sampling the graph contexts

and the label contexts for Planetoid are suggested only for the Cite-
Seer data set, we adapted these values relative to the number of

nodes for each graph. For node2vec, we perform grid searches over

the hyperparameters p and q with p,q ∈ {0.25, 0.5, 1.0, 2.0, 4.0} and

use window size 10 as proposed by the authors. For all models ex-

cept Planetoid unless otherwise noted, we use one hidden layer with
16 neurons and regularization, learning rate and training procedure

as in [20]. Considering our model, we use α ∈ {0.1, 0.2, . . . , 0.9} as

values for the teleportation parameter and ϵ = 1e−5 as approxima-

tion threshold to compute the APPR vectors for each node.

We present results computed on the test sets for the best per-

forming hyperparameters. The best performing hyperparameters

for all models are determined by using the validation sets.

5.1.2 Results. Figure 2 shows boxplots depicting the micro F1

scores we achieved for the multiclass prediction task for each con-

sidered model on the Cora, CiteSeer and Pubmed networks.

The baseline approach GCN1_only_L, i.e., the one layer GCN

model which only uses the label distributions of the neighboring

nodes to predict a node’s label, shows worst results among the

considered models. However, these scores are still promising that

the labels may improve the task of learning “good” representations.

The baseline method which considers the corresponding rows of the

adjacency matrix as node representations, i.e., Adj, achieves slightly
better results for all three datasets. For the GCN and Planetoid
models that do not make recourse to attribute information, i.e.,

noFeat GCN2, resp. Planetoid-G, the retrieved micro F1 values are

slightly lower than the ones achieved by DeepWalk and node2vec.
Our model improves the results produced by node2vec, whichmeans

that the label distributions are indeed a useful source of information,

although the baseline GCN1_only_L shows, especially for Pubmed,
rather poor results. This may be reasoned by the fact that this model

only considers the label distribution of a very local neighborhood (in

fact one hop neighbors). However, collecting the label distribution

from a more spacious neighborhood gives a significant boost in

terms of prediction accuracy. Indeed the best results for the LD
approach are reached for α = 0.1, which corresponds to a rather

spacious neighborhood exploration.

5.2 Multilabel Classification
5.2.1 Experimental Setup. We also perform multilabel node clas-

sifications on the following two multilabel networks:

• BlogCatalog [38]. This is a social network graph where

each of the 10,312 nodes corresponds to a user and the

333,983 edges represent the friendship relationships between

bloggers. 39 different interest groups provide the labels.

• IMDbGermany. This dataset is taken from [13]. It consists of

32,732 nodes, 1,175,364 edges and 27 labels. Each node repre-

sents an actor/actress who played in a German movie. Edges

connect actors/actresses that were in a cast together and

the node labels represent the genres that the corresponding

actor/actress played.

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD
0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD

0.2

0.4

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

Adj
GCN1 only L

noFeat GCN2
DeepWalk

node2vec
Planetoid-G

LD
0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 2: Micro F1 scores for the three benchmark data sets.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB
0.0

0.1

0.2

0.3

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for BlogCatalog.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB
0.00

0.05

0.10

0.15

0.20

M
ac

ro
F1

Sc
or

e

(b) Macro F1 scores for BlogCatalog.

Figure 3: Micro F1 and macro F1 for BlogCatalog.

Since the fraction of positive instances is relatively small for most of

the classes, we use weighted cross-entropy as loss function. There-

fore, the loss caused by erroneously classified positive instances

is weighted higher. We use weight 10 in all our experiments. For

the same reason we report micro F1 and macro F1 score metrics

to measure the quality of the considered methods. We compare

our model to the featureless models that we already used for the

multiclass experiments
3
.

We split the data into training, validation and test set so that 70%

of all nodes were used for training, 10% for validation and 20% of

the data were used to test the model. Note that we could not use

stratified sampling splits for these experiments since we optimize

for all classes simultaneously instead of using one-vs-rest classifiers

4
. The hyperparameter setting is as described above. For this set of

experiments we ran each model, except for Planetoid-G, 10 times

on five different data splits. Due to the long runtime of Planetoid-G
we trained this model only three times on two data splits.

3
To adapt the Planetoid-G implementation for multilabel classification, we use a sigmoid
activation function at the output layer and also slightly changed the embedding

learning step. Entities that are used as context and have the same labels as the node

itself are sampled from all classes to which the node belongs to.

4
That is why our results for node2vec and DeepWalk on the BlogCatalog network are

slightly worse than reported in [16]

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB

0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for IMDb Germany.

Adj
GCN1 only L

DeepWalk
node2vec

Planetoid-G
LD

LD+EMB

0.2

0.4

0.6

0.8

M
ac

ro
F1

Sc
or

e

(b) Macro F1 scores for IMDb Germany.

Figure 4: Micro F1 and macro F1 for IMDb Germany.

5.2.2 Results. The results for the BlogCatalog graph are shown

in Figure 3. For this network, only using the label information from

the direct neighborhood of a node is not useful to infer its labels,

c.f., GCN1_only_L. However, incorporating the label distribution of

somewhat larger neighborhoods as for our model (again, we also

use the APPR matrix calculated for small values of α to determine

the label distribution in neighborhoods that span more than 1-hop

neighbors) seems to improve the results for the prediciton task

significantly. In fact, our model achieves similar, but slightly worse

performance than node2vec and DeepWalk. Given these results, we

also combined the node embeddings based on local label distri-

butions with embeddings that capture structural properties. To

capture the structural properties we select a very simple approach:

we multiply an embedding matrix with the preprocessed adjacency

matrix as in Kipf et al. [20]. The embedding matrix is randomly

initialized. Note that the structural similarity is defined via direct

neighbors. The resulting representation is concatenated with the

hidden layer of the LD model and the rest of the LD model remains

the same. The embedding weights are learned jointly with the rest

of the model. The hidden layer H for the resulting model, denoted

as LD+EMB, can be formalized as

H = ReLU
([
EÂ,�APPR · Ytrain ·W1

])
,

Semi-Supervised Learning on Graphs Based on Local Label Distributions MLG’18, August 2018, London, UK

Feat
GCN2

Chebychev3
Planetoid-T

LD
0.00

0.25

0.50

0.75

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

Feat
GCN2

Chebychev3
Planetoid-T

LD

0.2

0.4

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

Feat
GCN2

Chebychev3
Planetoid-T

LD
0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 5: Comparison against attribute-based methods: micro F1 scores for the three benchmark data sets.

with [·, ·] denoting the concatenation operation, E being the em-

bedding matrix and Â being the preprocessed adjacency matrix as

in [20]. Again, the bias is omitted for better readability. Having a

look at the scores for the LD+EMB model, this combination further

improves the outcome of the prediction.

For the IMDbGermany network, for which the results can be seen
in Figure 4, the labels of even very local neighborhoods are already

very expressive. Recalling how this network is constructed, we can

expect the latter fact and also the superior performance of ourmodel

over the two random walk based methods. Particularly noteworthy

for this network is the gain of accuracy that the combination of

information from both sources, label distribution and structural

properties, achieves.

5.3 Comparison to Attribute-Based Methods
To show the power of incorporating label information into the gen-

eration process for node embeddings, we also compare our model

against the following state-of-the-art attribute-based methods:

• Feat: a baseline approach which predicts node labels only

based on the node attributes without considering the under-

lying graph structure (borrowed from [42])

• GCN2: the standard 2-layer GCN as published in [20]

• Chebychev3: the spectral convolution method which uses

chebychev filters as presented in [12]; as in [20] we also use

3rd order chebychev filters

• Planetoid-T : the semi-supervised Planetoid frameworkwhich

uses attribute information as proposed in [42]

For this set of experiments, we again perform multiclass prediciton

on the three benchmark text classification datasets and report the

prediction accuracy in terms of micro F1 scores to measure the

quality of the retrieved node representations. Note that in contrast

to the competitors, our model still does not make use of the node at-

tribute information. The results are depicted in Figure 5 and clearly

show that our model can definitely compete with the attribute-

based methods and hence is a powerful alternative in cases when

no node attributes are present.

5.4 Impact of the α Parameter
Figure 6 depicts the micro F1 scores achieved for different values of

the teleportation parameter α on the three benchmark datasets. As

can be seen, particularly for the Pubmed network, the model is quite

sensitive to the choice of this parameter. Recall that the teleportation

parameter determines how far the neighborhood of each node shall

be taken into consideration to get the label distributions for each

node. Therefore it might make sense to set the α parameter to a

small value so that more labels are collected which in turn leads to

a more accurate estimation of the local label distribution. On the

other hand, this may not hold in every scenario, for instance if the

distribution of classes is heterogeneous, i.e., some classes may only

appear in areas of the graph where classes are concentrated locally,

while other classes may appear in areas where many classes are

mixed even within local neighborhoods. An interesting direction

for future work is therefore to optimize for some “good” α value in

a data-driven manner. This may be done either by pre-defining a

set of different values of α and approaching for the best of these, or

by trying to optimize for some “good” α value during the learning

procedure. Also, the underlying task, e.g., node classification, may

benefit from finding “good” values of α for each node individually

rather than relying on a global solution.

6 CONCLUSION
In this paper, we have introduced a novel label-based approach

for semi-supervised node classification. In particular, our method

aggregates labels from local neighborhoods using APPR. Most ex-

isting approaches consider nodes to be similar, if they are closely

related in the graph. Methods for attributed graphs additionally take

attributes of the neighboring nodes into account. In contrast, our

method can relate nodes even if they are not close-by in the graph

and makes more effective use of the labels provided for training to

improve the classification quality for graphs with and without node

attributes. It is further applicable to nodes unseen during train-

ing. The results of our experiments on various real-work datasets

demonstrate that local label distributions are able to significantly

improve classification results in the multiclass and multilabel set-

ting. Our model is even competitive with state-of-the-art models,

which take node attributes into consideration. In a first experiment

on multilabel datasets, we were already able to significantly boost

the performance by using a simple combination of our model with

node embeddings.

For future work, we plan to address the problem of selecting a

suitable teleportation parameter α . The α parameter controls the

extend of the considered local neighborhood and often has a sig-

nificant impact on the prediction quality. Performing a grid search

to determine a good parameter value is a time consuming task.

Furthermore, for different classes varying teleportation parameters

might yield the best results.

We also aim at further improving the prediction accuracy by fur-

ther investigating how to effectively combine label-based features

with different other kinds of features, such as node attributes, edge

attributes or node embeddings in a semi-supervised model. Our

MLG’18, August 2018, London, UK E. Faerman, F. Borutta, J, Busch, M. Schubert

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.6

0.7

0.8

M
icr

o
F1

Sc
or

e

(a) Micro F1 scores for Cora.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.3

0.4

0.5

0.6

M
icr

o
F1

Sc
or

e

(b) Micro F1 scores for CiteSeer.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.2

0.4

0.6

0.8

M
icr

o
F1

Sc
or

e

(c) Micro F1 scores for Pubmed.

Figure 6: Micro F1 scores for the three benchmark data sets when considering different locality levels for node neighborhoods.

approach could also be extended to solve additional graph learn-

ing tasks, such as link prediction or identification of nodes with

unexpected labels for detecting labeling errors or outlier nodes.

REFERENCES
[1] Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. 2017. Watch

your step: Learning graph embeddings through attention. arXiv preprint
arXiv:1710.09599 (2017).

[2] Saba A Al-Sayouri, Pravallika Devineni, Sarah S Lam, Evangelos E Papalexakis,

and Danai Koutra. 2016. GECS: Graph Embedding Using Connection Subgraphs.

(2016).

[3] Reid Andersen, Fan Chung, and Kevin Lang. 2006. Local graph partitioning using

pagerank vectors. In Proc. of IEEE FOCS. IEEE, 475–486.
[4] James Atwood and Don Towsley. 2015. Search-Convolutional Neural Networks.

CoRR abs/1511.02136 (2015). arXiv:1511.02136 http://arxiv.org/abs/1511.02136

[5] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. 2006. Manifold regulariza-

tion: A geometric framework for learning from labeled and unlabeled examples.

Journal of machine learning research 7, Nov (2006), 2399–2434.

[6] Pavel Berkhin. 2006. Bookmark-coloring algorithm for personalized pagerank

computing. Internet Mathematics 3, 1 (2006), 41–62.
[7] Aleksandar Bojchevski and StephanGünnemann. 2017. Deep gaussian embedding

of attributed graphs: Unsupervised inductive learning via ranking. arXiv preprint
arXiv:1707.03815 (2017).

[8] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral

Networks and Locally Connected Networks on Graphs. CoRR abs/1312.6203

(2013). http://arxiv.org/abs/1312.6203

[9] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. Grarep: Learning graph repre-

sentations with global structural information. In Proc. of CIKM. ACM, 891–900.

[10] Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth.

2017. Neural Embeddings of Graphs in Hyperbolic Space. arXiv preprint
arXiv:1705.10359 (2017).

[11] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2017. HARP: Hier-

archical Representation Learning for Networks. arXiv preprint arXiv:1706.07845
(2017).

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). 3844–3852.

[13] Evgeniy Faerman, Felix Borutta, Kimon Fountoulakis, and Michael W Mahoney.

2017. LASAGNE: Locality And Structure Aware Graph Node Embedding. arXiv
preprint arXiv:1710.06520 (2017).

[14] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E

Dahl. 2017. Neural message passing for quantum chemistry. arXiv preprint
arXiv:1704.01212 (2017).

[15] David F Gleich and Michael W Mahoney. 2015. Using local spectral methods to

robustify graph-based learning algorithms. In Proc. of the ACM SIGKDD. 359–368.
[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In Proc. of ACM SIGKDD. 855–864.
[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS. 1025–1035.
[18] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In Proc. of

the 12th WWW. ACM, 271–279.

[19] Thorsten Joachims. 2003. Transductive learning via spectral graph partitioning.

In Proc. of ICML. 290–297.
[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[22] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied

to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[23] Ron Levie, Federico Monti, Xavier Bresson, and Michael M. Bronstein. 2017. Cay-

leyNets: Graph Convolutional Neural Networks with Complex Rational Spectral

Filters. CoRR abs/1705.07664 (2017). arXiv:1705.07664

[24] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2016. Gated

Graph Sequence Neural Networks. In ICLR.
[25] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[26] Yann LeCun Mikael Henaff, Joan Bruna. 2015. Deep Convolutional Networks on

Graph-Structured Data. arXiv preprint arXiv:1506.05163 (2015).
[27] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda,

and Michael M. Bronstein. 2016. Geometric deep learning on graphs and mani-

folds using mixture model CNNs. CoRR abs/1611.08402 (2016). arXiv:1611.08402

http://arxiv.org/abs/1611.08402

[28] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. 2012.

Query-driven active surveying for collective classification. In 10th International
Workshop on Mining and Learning with Graphs.

[29] Sharad Nandanwar and M Narasimha Murty. 2016. Structural neighborhood

based classification of nodes in a network. In Proc. of ACM SIGKDD. 1085–1094.
[30] Jennifer Neville and David Jensen. 2000. Iterative classification in relational data.

In Proc. AAAI-2000 Workshop on Learning Statistical Models from Relational Data.
13–20.

[31] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: bringing order to the web. (1999).

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proc. of ACM SIGKDD. 701–710.
[33] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:

Learning node representations from structural identity. In Proc. of ACM SIGKDD.
ACM, 385–394.

[34] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2009. The graph neural network model. IEEE Transactions on Neural
Networks 20, 1 (2009), 61–80.

[35] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93.

[36] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and Michael W.

Mahoney. 2016. Parallel Local Graph Clustering. Proc. VLDB Endow. 9, 12 (Aug.
2016), 1041–1052.

[37] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. Line: Large-scale information network embedding. In Proc. of WWW. ACM,

1067–1077.

[38] Lei Tang and Huan Liu. 2009. Relational learning via latent social dimensions. In

Proc. of ACM SIGKDD. ACM, 817–826.

[39] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2017. Graph Attention Networks. arXiv preprint
arXiv:1710.10903 (2017).

[40] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural deep network embed-

ding. In Proc. of ACM SIGKDD. ACM, 1225–1234.

[41] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. 2012. Deep

learning via semi-supervised embedding. In Neural Networks: Tricks of the Trade.
Springer, 639–655.

[42] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting Semi-

Supervised Learning with Graph Embeddings. In Proc. of ICDM. 40–48.

[43] Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, and Christian Böhm. 2017.

Learning from Labeled and Unlabeled Vertices in Networks. In Proc. of ACM
SIGKDD. ACM, 1265–1274.

[44] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard

Schölkopf. 2004. Learning with local and global consistency. In Advances in
neural information processing systems. 321–328.

[45] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. 2003. Semi-supervised

learning using gaussian fields and harmonic functions. In Proc. of ICML. 912–919.

http://arxiv.org/abs/1511.02136
http://arxiv.org/abs/1511.02136
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1705.07664
http://arxiv.org/abs/1611.08402
http://arxiv.org/abs/1611.08402

	Abstract
	1 Introduction
	2 Problem Setting
	3 Semi-supervised learning on graphs based on local label distribution
	3.1 Labels as Attributes
	3.2 General Approach

	4 Related Work
	4.1 Unsupervised Node Embedding
	4.2 Semi-Supervised Learning on Graphs

	5 Evaluation
	5.1 Multiclass Prediciton
	5.2 Multilabel Classification
	5.3 Comparison to Attribute-Based Methods
	5.4 Impact of the Parameter

	6 Conclusion
	References

