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ABSTRACT
Semi-supervised node classification involves learning to classify
unlabelled nodes given a partially labeled graph. In transductive
learning, all unlabelled nodes to be classified are observed during
training and in inductive learning, the goal is to predict labels for
nodes are not seen at training. In this paper, we focus on both the
settings for node classification on attributed graphs, i.e., graphs
in which nodes have additional features. State-of-the-art models
for node classification on such attributed graphs use differentiable
recursive functions. These differentiable recursive functions enable
aggregation and filtering of neighborhood information from mul-
tiple hops (depths). These end-to-end learnable multi-hop graph
functions primarily vary in their neighborhood aggregation func-
tions as well as in the form of the weighted combinations of the
node and its neighbors’ information at each hop. Despite being
powerful, these variants are limited in their ability to combine in-
formation from different hops efficiently. In this work, we analyze
this limitation of recursive graph functions in effectively capturing
multi-hop neighborhood information. Further, we provide a fu-
sion component which is mathematically well motivated to address
this limitation and improve the existing models to explicitly learn
the importance of information from different hops. This proposed
mechanism is shown to improve over existing methods across 8
popular datasets from different domains. Specifically, our model
improves the Graph Convolutional Network (GCN) and a variant of
Graph SAGE by a significant margin providing highly competitive
state-of-the-art results.
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1 INTRODUCTION
Many real-life datasets have an underlying graph structure, where
along with the attributes of an entity a rich information is con-
tained in the relationships between them. Such datasets are widely
popular across various fields of science and engineering, like ge-
nomics, computer vision, social networks, neuroscience, molecular

MLG’18, Aug’18, London, UK
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

chemistry etc. Semantically categorizing such entities requires opti-
mally extracting information from it’s multi-hop neighborhood and
combining it efficiently with its own features. Thus defining and
finding the significance of neighborhood information over multiple
hops becomes an important aspect of the problem.

Recent deep learning approaches that attempt to learn relational
representation of nodes can be broadly categorized based on their
usage of structural information into methods that either learn to
aggregate neighbors’ information [9], [11] or into methods that
learn node representation with additional structural regularization
constraints [12], [14], [16]. The latter is limited to work only in
networks which exhibit high homophily, as they enforce the repre-
sentation of a node to be similar to its neighboring nodes. Former
methods avoid any such explicit assumption on homophily of the
network data.

Various attempts [4], [9] have been made to generalize the fa-
mous convolutional neural networks to be invariant to spatial trans-
formations such that they work on domains that have an inher-
ent graphical structure. But, an unrestricted number of neighbors
makes the problem more challenging. Graphs have widely varying
network topology within and across different domain. Transfer or
Inductive inference tasks on such graphs requires robust models
which are invariant to such changes.

To deal with the graph’s topological structure, [2] defined convo-
lutional operations in the spectral domain for graph classification
tasks, but required computationally expensive eigendecomposi-
tion of the graph Laplacian. To reduce this requirement, [4] ap-
proximated the higher order relational feature computation with
first order Chebyshev polynomials defined on the graph Lapla-
cian. Graph Convolutional Networks (GCNs) [9] adapted them to
semi-supervised node level classification tasks. GCN simplified
Chebyshev Nets by recursively convolving one-hop neighborhood
information with a symmetric graph Laplacian. Recently, [6] pro-
posed a generic framework called GraphSAGE with multiple neigh-
borhood aggregator functions. GraphSAGE works with a partial
(fixed number) neighborhood of nodes to scale to large graphs.
GCN and GraphSAGE are the current state-of-the-art approaches
for transductive and inductive node classification tasks in graphs
with node features. These end-to-end differentiable methods pro-
vide impressive results besides being efficient in terms of memory
and computational requirements.

Despite the impressive results, these models cannot efficiently
summarize relevant information from multi-hop neighborhood as
they cannot flexibly regulate the importance of information from
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different hops. Herein, we analyze the limitations of these models
and provide a solution to the same. The proposed solution signifi-
cantly boosts the performance of GCN and GraphSAGE model to
achieve new state-of-the-art results.

Below, we list out our contributions:
• We show that the current state-of-the-art graph convolu-
tional models capture K-hop higher order neighborhood
information by a Kth order binomial.

• On analysis, we show that this binomial formulation assigns
a prior on the importance of different hops and enforces a
recursive weight dependency which restricts the model from
independently regulating information from different hops.

• We overcome this problem by introducing a minimal fusion
component, which can flexibly regulate information from
individual hops by learning to linearly combine the different
binomial bases corresponding to different hops.

• We present our results on 8 datasets from different domains.
Our proposed model F-GCN (GCN with fusion), outperforms
the previous state of the art models on 6 datasets and hence
provides the best overall results.

2 BACKGROUND
2.1 Notations
Let G = (V ,E) denote a graph comprising of vertices, V , and edges,
E with |V | = N respectively. Let X ∈ RN×F denote the nodes’
features and Y ∈ BN×L denote the nodes’ labels with F and L
referring to the number of features and labels, respectively. Let
A ∈ RN×N denote the adjacency matrix representation of the
set of edges, E and let D ∈ RN×N denote the diagonal degree
matrix defined as Dii =

∑
j Ai, j . Let L = I − D− 1

2 (A)D− 1
2 denote

the normalized graph Laplacian and L̂ = (D + I )−
1
2 (A+ I )(D + I )−

1
2

denote the re-normalized Laplacian [9].
In this paper, a Graph Convolutional Network defined to capture

K-hop information will have K graph convolutional layers with
d dimensional outputs, hk and an final label layer denoted by hL .
hL = hK if the last convolution is considered as the label layer
otherwise, hL = hK+1 . LetWk denote the weights associated with
the layer, k whereW1 ∈ RF×d is the first hidden layer’s weights,
WL ∈ Rd×L is the label layer’s weights and Wk ∈ Rd×d is the
intermediate layer’s weights. Let σk define the activation function
associated with layer, k .

2.2 Graph Convolutional Networks
Graph Convolutional Network (GCN), introduced in [9], is a multi-
layer convolutional neural network where the convolutions are
defined on a graph structure for the problem of semi-supervised
node classification. The conventional two-layer GCN which cap-
tures information up to the 2nd hop neighborhood of a node can be
reformulated to capture information up to any arbitrary hop, K as
given below in Eqn: 1.

h0 = X

hk = σk (L̂hk−1Wk ), ∀ k ∈ [1,K − 1].

Y = σK (L̂hK−1WL)

(1)

GCN was used for multi-class classification task with RELU
activation function, σk = ReLU ∀k ∈ [1,K − 1] and a softmax label
layer, σK = so f tmax . We can rewrite the GCN model in terms of
(K − 1)th hop node and neighbor features as below by factoring L̂.

hk = σ ((D̂− 1
2 I D̂− 1

2 + D̂− 1
2AD̂− 1

2 )hk−1Wk )

= σ (SUM(D̂−1hk−1, D̂
− 1

2AD̂− 1
2hk−1)Wk )

(2)

2.3 GraphSAGE
Graph Sample and Aggregator (GraphSAGE) proposed in [6] con-
sists of 3 models made up of different differentiable neighborhood
aggregator functions. GraphSAGE models were defined for multi-
label semi-supervised inductive learning task, i.e generalizing to
unseen nodes during training. Let the function Aддreдate() ab-
stractly denote the different aggregator functions in GraphSAGE,
specifically Aggregate ∈ {mean, max pooling, LSTM} and we will
refer to these models as GS-MEAN, GS-MAX and GS-LSTM, re-
spectively. Similar to GCN, GraphSAGE models also recursively
combine neighborhood information at each layer of the Neural
Network. GraphSAGE has an additional label layer unlike GCN, i.
e., hL = hK+1. Hence, σk = RELU∀k ∈ [1,K] and σL = sigmoid.
Here, the weightsWk̂ ∈ R2d×d .

h0 = X

hk = σk (CONCAT (hk−1,Aддreдate(hk−1,Neiдhbors)Wk̂ )

∀k ∈ [1,K]
Y = σK+1(hKWL)

(3)

GraphSAGE models, unlike GCN, are defined to work with par-
tial neighborhood information. For each node these models ran-
domly sample and use only a subset of neighbors (Neiдhbors) from
different hops. This choice to work with partial neighborhood in-
formation allows them to scale to large graphs but restricts them
from capturing the complete neighborhood information. Rather
than viewing it as a choice it can also be seen as restriction imposed
by the use of Max Pool and LSTM aggregator functions which re-
quire fixed input lengths to compute efficiently. Hence, GraphSAGE
constraints the neighborhood subgraph of a node to contain fixed
number of neighbors at each hop.

3 ANALYSIS OF RECURSIVE PROPAGATION
GRAPH MODELS

In this section, we first provide a unified formulation of GCN and
GraphSAGE as recursive graph propagation models. Then, we point
out two limitations of these models that can potentially restrict
their capacity to combine information from multiple hops.

3.1 Unified Recursive Graph Propagation
Kernel

GCN and GraphSAGE differ from each other in terms of their node
features, the neighborhood features and the combination function.
These differences can be abstracted to provide a unified formulation
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as below.
hk = σk (combine(Ωk ,Ψk )Wk )

Ωk = αhk−1

Ψk = F (A)hk−1

(4)

where Ωk and Ψk denote the (k − 1)th hop node and neighbor
features respectively, α denotes the scaling factor for node features,
F (A) denotes the neighbors’ weights and combine denotes the mode
of combination of node and neighbor features. For brevity, we have
made the neighbor’s weightage function to be independent of hk−1.

We can view GCN in terms of Eqn: 4 of node features, Ωk =
α · hk−1 with α = D̂−1, neighbor features, Ψk = F (A)hk−1Wk with
F (A) = D̂− 1

2 I D̂− 1
2hk−1 and combining by summation, combine =

SUM . Similarly, GraphSAGE can be viewed in terms of of Eqn: 4
with node features, Ωk = α ·hk−1 with α = I and neighbor features,
Ψk = F (A)hk−1Wk with concatenation, combine = CONCAT . Differ-
ent neighborhood aggregators of GraphSAGE yield different F (A)s.
Specifically, F (A) = D−1A for GS-MEAN, F (A) = concat(CiA)∀i for
GS-MAX where Ci is a one hot vector with 1 in the position of the
node with the maximum value for the ith feature and for GS-LSTM,
F (A) is defined by the LSTM gates which randomly orders neigh-
bors and gives weightage for a neighbor in terms of the neighbors
seen before.

The concatenation (denoted by square braces below) can also be
expressed in terms of a summation of node and neighbors features
with different weight matrices,W ω

k ,W
ψ
k ∈ Rd×d respectively by

appropriately padding zero matrices, (0) as shown below.

hk = σk ([αhk−1, F (A)hk−1][W
ω
k ,W

ψ
k ])

hk = σk ([α · hk−1W
ω
k , 0] + [0, F (A)hk−1W

ψ
k ])

(5)

The Ωk and Ψk terms for CONCAT and SUMMATION combina-
tions are similar if weights are shared in the CONCAT formulation
as shown in Eqn: 6 and Eqn: 7, respectively. Weight sharing refers
toW ω

k =W
ψ
k =Wk .

hk = σk (([αhk−1, 0] + [0, F (A)hk−1])[Wk ,Wk ]) (6)
hk = σk (αhk−1 + F (A)hk−1Wk ) (7)

For brevity of analysis made henceforth, we only consider the
summation model to discuss the limitations of the recursive prop-
agation kernels without losing any generality on the deductions
made. Further, we provide another abstraction to the summation
formulation as in Eqn: 7 by Eqn: 8. Henceforth, we refer to Eqn: 8 as
the generic recursive propagation kernel in the upcoming analysis.

Φ = (α + F (A))

hk = σk (Φhk−1Wk )
(8)

3.2 Limitations of recursive propagation
models

In this section we highlight two important issues with the recur-
sive propagation models: (i) No independent regulatory paths to
different hops and (ii) Bias in the importance of different hops.

3.2.1 No independent regulatory paths to different hops
. Though these propagation models can combine information from
multiple hops, they are restricted by their formulation from inde-
pendently regulating them. This is a consequence of recursively
computing K th hop information in terms of (K − 1)th hop informa-
tion. This creates an interdependence among weights associated
with the different hop information. We can view this problem by
recursively expanding the unified formulation below:

hK = σ (Φ · ...σ (Φ · (σ (Φ · h0W1)W2)...WK ) (9)

To better understand the problemwith this recursive formulation,
let’s consider a 3-hop linear kernel with K = 3 and σk = I which
on expansion yields the following equation:

h3 = α3h0

k=3∏
k=1

Wk + 3α2F (A)h0
k=3∏
k=1

Wk

+ 3αF (A)2h0
k=3∏
k=1

Wk + F (A)
3h0

k=3∏
k=1

Wk

(10)

This expansion makes it trivial to note that all the different
hop information (h0, F (A)h0, F (A)2h0 and F (A)3h0) are influenced
by all the weights in the model. For example, if we take the case
where only first-hop information (only F (A) term) is required then
there exists no combination ofWk s that can provide it under the
current model. It should be noted that we cannot obtain the 1st
hop information alone by using a 1-hop kernel as that would also
include 0-hop information, F (A)0h0 = h0.

From the above analysis, we can say that the model cannot cap-
ture information from a particular subset of hops without including
information from other hops. This lack of flexibility in these graph
convolutional neural networks to regulate information from dif-
ferent hops independently is certainly undesirable. The limitation
of these networks can be attributed to the specific formulation of
recursion used to compute output at every layer. As with every
layer, k of graph convolutional nets a new information about the
kth hop is introduced as Φ = I + F (A) in hk = σ (Φhk−1Wk ).

The remainder of this subsection shows that adding conventional
neural network components to the base model such as bias, skip
connections and having different weights for node and neighbors
does not fix the limitations completely.

Inclusion of bias: An inclusion of bias term in the recursive
propagation kernel as in Eqn: 11 is not useful.

hk = σ (Φ · hk−1Wk + bk−1) (11)

The model still cannot regulate the relative magnitude of infor-
mation independently as information at each hop, hk (with the
bias) is still computed recursively in terms of the previous hop. The
resultant inter-dependency can be seen in Eqn: 12 with expansion
of Eqn: 11. This was also observed empirically that the addition of
bias did not result in any significant change in results (not reported
here).

hK = (Φ)KΠK
i=1h0Wi +

K∑
j=2

(Φ)j (ΠK
l=k−j+1Wi )bk−j (12)



MLG’18, Aug’18, London, UK Priyesh Vijayan, Yash Chandak, Mitesh Khapra, and Balaraman Ravindran

Inclusion of skip connections: A possible way to improve the
flexibility of the model is by adding the popular skip connections
[7] to these models as in Eqn: 13.

hk = σ (Φ · hk−1Wk ) + hk−1 (13)

On recursively expanding the above equation, it can be seen
that adding skip connections to a layer, k results in directly adding
information from all the lower hops, i < k as shown in Eqn: 14.

hk = σ (Φ · hk−1WK ) + σ (Φ · hk−2WK−1) + hk−2

=

k∑
i=1

σ (Φ · hi−1Wi )
(14)

Unlike Eqn: 8 where the output at each layer, k was only de-
pendent on the previous layer, hk−1 accounting to only one com-
putational path; now adding skip connections allows for multiple
computational paths. As it can be seen that at the K th layer the
model has the flexibility to select output from any or all hk∀k < K .

Though adding Skip connections improves the model, it should
be noted that it allows to capture information only up to a partic-
ular hop, hk and is still not sufficient to individually regulate the
importance of information from each hop as all hops i < k have
inter-dependencies. Lets us consider the same example as earlier
to capture information from 1st hop alone ignoring the rest with
a 3-hop model. The best, the 3-hop model with skip connection
can do is to learn to ignore information from 2nd and 3rd hop by
settingW2 =W3 = 0 and considering h1 and h0. It can be reasoned
as before to see thatW0 cannot be set to 0 as h1 depends on the
result of h0 thereby having no means to ignore information from
h0. This limits the expressive power to efficiently span the entire
space of Kth order neighborhood information. To summarize, skip
connections at best can obtain information up to a particular hop
by ignoring information from later hops. CONCAT operation for
combination can be perceived as linear skip connection as noted
by the authors of GraphSAGE.

3.2.2 Bias on the importance of each hop
. TheK-hop generic propagation kernel defined in Eqn: 8 with a lin-
ear activation function can be recursively rolled out and expressed
as a binomial in terms of node and neighbor features raised to the
K th power as in Eqn: 15.

hK = (αI + F (A))Kh0

K∏
k=1

Wk (15)

The higher order binomial term in Eqn: 15 when expanded as-
signs different weights to different F (A)kh0 terms. These weights
correspond to the binomial coefficients of the binomial series, (αI +
F (A))K . For example, refer to Eqns: 16 and 17 corresponding to a
2-hop and 3-hop kernel with α = I andWK = I for simplicity. It can
be seen that for 2-hop kernel the weights are [1, 2, 1] and for the
3-hop kernel it is [1, 3, 3, 1]. Thus, these recursive propagation ker-
nels combines different hop information weighed by the binomial
coefficients.

h2 = h0 + 2F (A)h0 + F (A)2h0 (16)
h3 = h0 + 3F (A)h0 + 3F (A)2h0 + 3F (A)3h0 (17)

These weights induce a bias on the importance of each hops.
Any such fixed bias over different hops cannot consistently provide
good performance across numerous datasets. In the limit of infinite
data, we can expect theWk parameters to correct these scaling
factors induced by these biases. But as with most graph based semi-
supervised learning applications where the amount of labeled data
is very less, an undesirable bias can result in a sub-optimal model.
The experimental performance improvement and the theoretical
advantage for re-normalized graph convolutional model over the
mean model provided in [9] along with our results validates that
these biases affect the learning.

Existing propagation kernels defined overK-hop information, ex-
tract relational information by performing convolution operations
on differentk-hop neighbors based on their respectiveK-th order bi-
nomial. As discussed earlier, biasing the importance of information
along with recursive weight dependencies hinder the model from
learning relevant information from different hops. These limitations
constrain the expressive power of these models from spanning the
entire space of Kth order neighborhood information. Hence, it is
restricted to only a subspace of all possible Kth order polynomial
defined on the neighborhood of nodes. Though the above analysis
is done on a linear propagation model, the insight can be carried
over to the non-linear models. The Empirical results in later section
seem to support this.

4 PROPOSED MODEL
To overcome the limitations put forth in the analysis earlier, it is
clear that the differentiable graph kernels should have the power
to effectively span the entire space of a K th order function. Thus
to mitigate these issues with existing models we propose a mini-
malist additional component for these models, fusion component.
This fusion component would consists of parameters to combine
the existing binomial bases defined on different hop information
to effectively scale the entire space of a Kth order neighborhood.
We define the fusion component in Eqn: 18 as a linear weighted
combination over K-hop neighborhood space spanned by the bi-
nomial bases, hk s ([h0,Φh0,Φ2h0, . . . ,ΦKh0] with K coefficients
[θ0,θ1,θ2, . . . ,θK ]). The θ coefficients allow the neural network
to explicitly learn the optimal combination of information from
different hops. As the hk s are binomials, a parameterized linear
combination of these binomials can obtain any combination of the
individual hop information. This can be verified by the fact that the
coefficients of the binomial equation which form the Pascal matrix
is a non-singular lower triangular matrix. Thus in the linear neural
network case, we can see that the binomial system of equations
can be solved to obtain any combination of F (A) terms. Though the
proposed component, in theory, is an optimal solution in the linear
activation case, it seems to be experimentally useful with piece-wise
linear RELU activation too as shown with the experiments.
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y =
K∑
k=0

hkθk (18)

4.1 Fusion Graph Convolutional Network
We propose a Fusion Graph Convolutional Network, F-GCN in
equations in 19. F-GCN is a minimalist architecture that adds the
fusion component defined in Eqn: 18 to GCN defined in Eqn: 1. It
can be seen to combine different kth hop information by the fusion
component. The fusion component mentioned in the last two lines
of equations 19 can be seen to fuse information at the label layer as
label prediction scores from each propagation step of the GCN are
linearly combined before being normalized.

h0 = σk (XW1)

hk = σk (L̂hk−1Wk + hk−1), ∀ k ∈ [2,K].

y =
K∑
k=0

hkθk

L = so f tmax(y) or siдmoid(y)

(19)

The dimensions of hk , θk , Y ,W0,Wk are in RN×d , Rd×L , RN×L ,
RF×d , Rd×d , respectively. F-GCN uses ReLU activation layers and
a softmax label layer accompanied by a multi-class cross entropy if
it is a multi-class classification problem or a sigmoid layer followed
by a binary cross entropy layer if it is a multi-label classification
problem. Since predictions are obtained from every hop, we also
subject h0 to a non-linear activation function with weights same as
W1 from h1.

This simple architectural design provides miscellaneous benefits
besides explicitly allowing to capture different hop information.
F-GCN has additional direct gradient flow paths to each of the
propagation steps allowing it learn better discriminative features
at the lower hops too and also improves its chances of mitigating
vanishing gradient. F-GCN, is a multi-resolution architecture which
simultaneously looks at information from different resolutions/hop
and also models the correlations among them.

Our particular choice of this simple fusion architecture over a
complex gated combination of hop information is primarily mo-
tivated by the reason that existing gating and attention mecha-
nism are defined for positive combination of different informa-
tion sources. As we have already motivated with the linear fusion
component, we need a combination function that would combine
different bases (hk )s to obtain any combination of F (A)k compo-
nents. Positive combination of hk s cannot span the entire space of
F (A)kh0 and hence are not suited directly. Besides this, scalar gat-
ing functions are also less flexible as it assumes that all labels have
similar neighborhood dependency. Our preliminary experiments
with scalar gating mechanism also backed this as we obtained infe-
rior performances compared to the simple fusion component (not
reported).

We also introduce a F-MEAN architecturewhich is essentially the
Fusion component added to GraphSAGE’s mean model, GS-MEAN.
The fusion component is similar in spirit to the Chebyshev filters
introduced in [4] for complete graph classification task. The primary

difference is that the Chebyshev filters learn coefficients to combine
Chebyshev polynomials defined over neighborhood information
whereas in Fusion models the coefficients of the filter are used
to combine different binomials defined by GCN or GraphSAGE’s
MEAN functions. And an additional difference is that the Chebyshev
polynomial basis is not associated with weightsWk to filter kth
hop information which can potentially enable the model to learn
complex non-linear feature basis. F-GCN also enjoys the benefit of
the re-normalization trick of GCN that stabilizes the learning to
diminish the effect of vanishing or exploding gradient problems
associated with training Neural Networks.

5 EXPERIMENTS
We provide experimental results on a number of datasets from
social, citation, movie, product and biological networks on semi-
supervised multi-class and multi-label tasks.

5.1 Datasets
The description of the datasets we have used are provided below
and their statistics are mentioned in Table 1.

Social networks: We use Facebook (FB) [11, 13] and BlogCat-
alog (BLOG) [15] dataset. In the Facebook dataset, the nodes are
Facebook users and the task is to predict the political views of a user
given the gender and religious view of the user as features. In the
BlogCatalog dataset, the nodes are users of a social blog directory,
the user’s blog tags are treated as node features and edges corre-
spond to friendship or fan following. The task here is to predict the
interests of users.

Citation Networks: We use three citation graphs: Cora, Cite-
seer, and Cora_ML. In all the three datasets, the articles are the
nodes and the edges denote citations. The bag-of-word representa-
tion of the article is used as node attributes. The task is to predict the
research area of the article. Cora-ML is the multi-label classification
dataset [1], unlike the others which are multi-class.

Biological network: We use the Human tissue protein-protein
interaction (PPI) network introduced in GraphSAGE [6]. The dataset
contains PPI from 24 human tissues, the task is to predict the gene’s
functional ontology. Positional gene sets, motif gene sets, and im-
munology signatures were considered as features.

Movie network:We construct amovie network frommovielens-
2k dataset available as a part of HetRec 2011 workshop [3]. The
dataset is an extension of theMovieLens10M dataset with additional
movie tags. The nodes are themovies and edges are created between
movies if they share a common actor. Themovie tags form themovie
features. The task here is to predict genres of movies.

Product network:We constructed anAmazonDVD co-purchase
network which is a subset of co-purchase data, Amazon_060 [10].
The network construction procedure is similar to the one created
in [11]. The nodes correspond to DVDs and edges are constructed
if two DVDs are co-purchased. The DVD genres are treated as
DVD features. The task here is to predict whether a DVD will have
Amazon sales ≤ 7500 or not.

5.2 Experiment Setup
We set the experiments in a semi-supervised manner with a random
20% of data set aside for testing. For training we only use 10% of the
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Table 1: Dataset statistics

Dataset Network Nodes Edges Classes Multi-label Features
CORA Citation 2708 5429 7 FALSE 1433
CITE Citation 3312 4715 6 FALSE 3703
CORA_ML Citation 11881 34648 79 TRUE 9568
HUMAN Biology 56944 1612348 121 TRUE 50
BLOG Social 69814 2810844 46 TRUE 5413
FB Social 6302 73374 2 FALSE 2
AMAZON Product 16553 76981 2 FALSE 30
MOVIE Movie 7155 388404 20 TRUE 5297

labeled data. To have a realistic setup, we create the training sets
by randomly sampling five sets of 10% nodes from the entire graph.
Further, 20% of these training nodes are chosen as the validation
set. We do not use the validation set for (re)training. It is ensured
that these training samples are mutually exclusive from the held
out test data. For all transductive experiments the reported results
are an average over these 5 different training sets. For the Inductive
learning experiment, we use the PPI network where we reuse the
setup of GraphSAGE [6], where the test nodes and validation nodes
have no path to the nodes in the training set.

The hyperparameters for the models are the number of layers of
neural network or number of neighborhood hops, dimensions of
the layers, dropouts for all layers and L2 regularization, similar to
[9]. We set the same starting learning rate for all the models across
all datasets. We train all the models for a maximum of 2000 epochs
using Adam [8] with learning rate set to 1e-2. We use a variant of
patience method with learning rate annealing for early stopping
of the model. Specifically, we train the model for a minimum of 50
epochs and start with a patience of 30 epochs and drop the learning
rate and patience by half when the patience runs out (i.e when
the validation loss does not reduce within the patience window).
We stop the training when the model consecutively loses patience
for 2 turns. We added all these components to the baseline codes
too. In fact, we observed an improvement of 25.91 percentage for
GraphSage on their dataset.

For hyper-parameter selection, we search for optimal setting
on a two-layer deep feedforward neural network with the node
attributes (NODE) alone. We then use the same hyper-parameters
across all the other models. We observed this way of hyper param-
eter search to be effective in terms of performance and compute
power as node only classifier is simple and fast to run compared
to other relational models. We row-normalize the node features
and initialize the weights with [5]. Since the percentage of different
labels in training samples can be significantly skewed, like [11]
we weigh the loss for each label inversely proportional to its total
fraction. We ensure that all models have the same setup in terms of
the weighted cross entropy loss, the number of layers, dimensions,
patience based stopping criteria and dropouts. The best results for
models across multiple hops were reported, 3 hops for Amazon,
4 hops for Cora_ML and HUMAN and 2 hops for the remaining
datasets.

Our implementation is mini-batch trainable, similar to Graph-
SAGE. We compare our models: F-GCN and F-mean against node

only classifier, our mini-batch version of GCN along with Mean,
Maxpool and LSTM models of GraphSAGE. We use skip connec-
tions for our model and GCN baseline and we use the CONCAT
combination for GraphSAGE models.

5.3 Results
We report the performances in terms of Micro-F1 for transductive
and inductive experiments in Tables 2 and 3, respectively. To com-
pare the overall performance andmeasure robustness in term of con-
sistent performance across datasets, we introduce a statistic, penalty,
that is a measure of a model’s absolute loss from the best performing
model in terms of Micro-F1. Penalty is defined as, Penalty[model]
= mean(Best_results[dataset] - result[model][dataset]) ,
where Best_result[dataset] is the micro_f1 of the best perform-
ing model for the dataset and result[model][dataset] is the
model’s performance for that dataset. Lower penalty indicates more
consistent performance overall.

Among the baselines, GraphSAGE models with more complex
aggregator functions and no shared weights for node and neigh-
borhood featues significantly outperform the GCN model with no
shared weights and a limiting scaling factor, α . GCN model per-
forms poorly in datasets where the number of edges is high. This
is primarily due to the fact that, when the degree of a node is high
the scaling factor associated with node features is heavily under
weighed (α = D̂−1) relative to the neighbors’ information. This
can be observed from the datasets: Blog, FB, Amazon, and Movie,
as it performs poorly than the classifier which only uses the node
attributes.

In the results for transductive experiments in Table 2, the pro-
posed Fusion models outperform their base models (GCN and GS-
MEAN) significantly. The F-GCN model has seem to have learned
to avoid the bias induced by the scaling factor by learning to effec-
tively combine the node features along with other hop information
resulting in improved performances over GCN by up to an absolute
≈ 15%. Similarly, F-MEAN improves over GS-MEAN by up to ≈ 4%
on datasets. The GCN model which was poorly under perform-
ing among the propagation kernels not only obtained significant
boost in performance with addition of fusion component but also
achieved best overall consistent score with a penalty as low as
0.241%. As it can be seen F-GCN performs best on 6 datasets while
falling short by only 0.241% from the best on the other 2 datasets.
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Table 2: Transductive Experiments: Micro-f1 scores for semi-supervised node classification

NODE GCN Mean Max LSTM F-MEAN F-GCN
CORA 60.222 79.039 76.821 73.272 65.730 76.858 79.039
CITE 65.861 72.991 70.967 71.390 65.751 70.393 72.266
CORA_ML 40.311 63.848 62.800 53.476 OOM 62.064 63.993
HUMAN 41.459 62.057 63.753 65.068 64.231 65.308 65.538
BLOG 37.876 34.073 39.433 40.275 OOM 39.467 39.069
FB 64.683 49.762 64.127 64.571 64.619 63.714 64.857
AMAZON 63.710 61.777 68.266 70.302 68.024 70.163 72.550
MOVIE 50.712 39.059 50.557 50.569 OOM 51.450 52.021

Penalty 10.804 06.082 01.818 02.793 05.324 01.481 00.241

Table 3: Inductive learning task in PPI: Micro-f1 scores for semi-supervised node classification

NODE GCN Mean Max LSTM Mean* Max* LSTM* F-MEAN F-GCN
44.644 85.708 79.634 78.054 87.111 59.800 60.000 61.200 79.049 88.942

Similarly, F-GCN performs best on the inductive learning task
too where it improves over the base GCN by ≈ 3% and beats all
other complex aggregation methods of GraphSAGE.

To note: Our experiment setup for training improved the origi-
nally reported results for GraphSAGEmodels (Mean*, LSTM*, Max*)
as mentioned in the table.

6 CONCLUSION
In this work, we have shown that the current state-of-the-art models
for node classification can be viewed as higher order binomial
combinations of node and neighborhood information. Further, we
have analytically shown potential limitations of the current state-
of-the-art methods in node classification due to their inability to
effectively capture multi-hop information. To address this issue,
we have proposed a simple fusion component that can be added to
existing models. The fusion component linearly combines different
binomial basis defined for different hop information.We empirically
demonstrate that the proposed fusion component improves existing
models by a significant margin providing highly competitive state-
of-the-art results across 8 datasets from different domains.
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