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ABSTRACT
Collaboration networks are a ubiquitous way to characterize the

interactions between people. In this paper, we consider the problem

of inferring social relations in collaboration networks, such as the

fields that researchers collaborate in, or the categories of projects

that Github users work on together.

Social relation inference can be formalized as a multi-label classi-

fication problem on graph edges, but many popular algorithms for

semi-supervised learning on graphs only operate on the nodes of a

graph. To bridge this gap, we propose a principled method which

leverages the natural homophily present in collaboration networks.

First, observing that the fields of collaboration for two people are

usually at the intersection of their interests, we transform an edge

labeling into node labels. Second, we use a label propagation algo-

rithm to propagate node labels in the entire graph. Once the label

distribution for all nodes has been obtained, we can easily infer the

label distribution for all edges. Experiments on three large-scale

collaboration networks demonstrate that our method outperforms

the state-of-the-art methods for social relation inference by a large

margin, in addition to running several orders of magnitude faster.
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1 INTRODUCTION
In collaboration networks, edges are formed between two people

with shared interests, which are also referred to as social rela-

tions [14]. Social relations in these networks are often complex and

nuanced, which cannot simply be characterized by a single label.

Consider a co-author network between researchers, where the so-

cial relations between two researchers are the research areas they

collaborate in. Since collaborations can occur in different research

areas, the social relation between two researchers is inherently

multifaceted.

Many applications on collaboration networks can benefit from

an awareness of social relations. First, for many collaboration net-

works, these social relations themselves are of direct interest. Con-

sider the network between Github users, where an edge is formed

when two users collaborate on a project. If the fields of collabora-

tion between users can be inferred from the collaboration network,
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it can be used for suggesting labels for Github projects. Second,

social relation information is beneficial for a wide spectrum of tasks

on networks, such as node classification [17], recommendation [13]

and anomaly detection [16]. However, in many collaboration net-

works, such label information (social relations) is far from complete.

It is thus desirable to learn to infer social relations associated with

the unlabeled edges.

We formalize the task of social relation inference as a semi-

supervised multi-label edge classification problem on networks.

Given the network structure and a limited amount of labeled edges,

our goal is to infer the labels of the rest of the edges. There are

several previous studies on inferring social ties from social net-

works, which is similar to our definition of social relations [10, 13].

However, these works assume that each edge corresponds to a

single relation type, which may not be the case in collaboration

networks. Moreover, they only consider first-order or second-order

relationships between nodes, but fails to model higher-order or

global relationships that play an important role in network infer-

ence tasks [2].

Another relevant area is network embeddings [4, 8, 11], which

aim at learning low-dimensional latent representations of nodes

in a network. Also, representations of larger-scale components of

networks (such as edges and subgraphs) can be composed from

these node representations. These representations can then be used

as features for a wide range of downstream tasks on networks,

including social relation inference. As a pioneering work, DeepWalk

[8] generates fixed-length random walk sequences in networks and

trains a skip-gram model [7] on these sequences to obtain node

embeddings. The random walk sequences characterize the long-

distance relationships between nodes which are many hops away

from each other, so the learned embeddings effectively capture

higher-order relationships in networks.

While achieving state-of-the-art results on a handful of network

inference tasks such as node classification and link prediction [4, 8],

the semantics of edges in networks are seldom exploited by network

embedding models. As the first attempt to model edge semantics,

Tu et al. [14] propose TransNet, which is a translational-based

network embedding framework that explicitly models different

combinations of relations between nodes. By considering edge

semantics, their model achieves state-of-the-art performance on

social relation inference.

Although network embedding methods are shown to be per-

formant, we find that they usually ignore the unique properties

possessed by different types of networks and by different types of

downstream tasks. Also, many of them are computationally expen-

sive: learning network embeddings of a one-million node network

can take several days on a single CPU.

In this paper, we propose a simple but effective method for social

relation inference on collaboration networks. Our method is based

on the observation that social relations between people in collabora-

tion networks are determined by their shared interests. As such, the

networks are highly homophilous and there is a natural connection
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Algorithm 1 GetNodeLabels(G,YL)

Input:
graph G
edge labels YL

Output: initial node label distribution P ∈ R |V |× |L |

Initialize P by assigning zeros

1: for e = (u,v) in EL do
2: for l in YL(e) do
3: P(u, l) ← P(u, l) + 1
4: P(v, l) ← P(v, l) + 1
5: end for
6: end for
7: return RowNormalize(P)

between the (hidden) labels of the nodes, and the provided edge

labels. Using this relationship, we first transform the edge labels

into node labels. Next, to alleviate any data sparsity problem, we

perform label propagation on the input network to obtain label

distribution for all nodes. Label propagation [15, 18] represents a

class of semi-supervised learning methods which find numerous

applications in graph mining. For social relation inference, we find

that label propagation has several desirable properties compared

to the neural methods mentioned before: it is extremely efficient

and it makes good use of the high level of homophily exhibited

in collaboration networks [9]. Finally, once node labels have been

obtained, the label distribution of edges can be easily inferred from

the label distribution of their endpoints. Experimental results on

three real-world collaboration networks show that our method

outperforms state-of-the-art methods by a large margin.

2 PROBLEM DEFINITION AND NOTATION
We hereby formalize the problem of social relation inference in

collaboration networks. Let G = (V ,E) be an undirected graph,

where V are the nodes in the graph and E represent its edges. Let

A be the adjacency matrix of G . Let L = (l1, l2, · · · , lk ) be the set of
relation types (labels). A partially labeled network is then defined

as G = (V ,EL ,EU ,YL), where EL is the set of labeled edges, EU
is the set of unlabeled edges with EL ∪ EU = E. YL represents

the relation types associated with the labeled edges in EL , with
∀YL(i) ∈ YL : YL(i) ⊆ L. The objective of social relation inference

is to predict the relation types YU of the unlabeled edges EU :

f : G = (V ,EL ,EU ,YL) → YU (1)

In terms of notation, for a matrixM , we denote its i-th row and the

ij-th element withMi andMi j respectively.

3 METHOD
3.1 Step 1: From Edge Labels to Node Labels
One challenge with social relation inference is that the labels we

seek to predict are associated with edges, instead of nodes. How-

ever, most machine learning algorithms on graphs only operate

on nodes. To bridge this gap, we note that collaboration networks

possess a unique property: edges are typically formed between two

people which have shared interests. Such shared interests can very

well be characterized by the labels of edges. This means that we

Algorithm 2 LabelProp(G, P )

Input:
graph G
initial node label distribution P
rounds of iteration k

Output: node label distribution after propagation ŶV ∈ R
|V |× |L |

1: Compute the degree matrix D: Dii ←
∑
j Ai j

2: Compute the transition matrix: Q ← D−1A

3: Y (0) ← P
4: for i = 0 to k − 1 do
5: Y (i+1) ← QY (i)

6: end for
7: ŶV = Y

(k )

8: return ŶV

should be able to infer the latent interests of nodes based on their

corresponding edge labels.

Formally, we seek to estimate the probability distribution ma-

trix P ∈ R |V |× |L | for all nodes over the label space L. For ease of
presentation, we assume that the training data is given in the form

of triplets t = (u,v, l), where u,v ∈ V , l ∈ L. In other words, if

an edge has several labels, then we construct one triplet for each

label. We define the set of all training triplets asT . Assume the label

distribution of u and v are independent, the strength of relation l
between u and v can be estimated as:

Pr (l |u,v) = Pul · Pvl (2)

Our objective is to maximize the probability of observing the rela-

tions in T as given by:

ℓ =
∏
u ∈V

∏
(v,l )

(u,v,l )∈T

Pr (l |u,v) (3)

Then, for a certain u ∈ V , our goal is to minimize the following

objective:

− log ℓu = −
∑
(v,l )

(u,v,l )∈T

(log Pul + log Pvl ) (4)

Since P is the probability distribution of labels, we have the con-

straint

∑
l ∈L Pul = 1. The Lagrangian function of Eq. (4) is:

L(Pu , λ) = −
∑
(v,l )

(u,v,l )∈T

(log Pul + log Pvl ) + λ(
∑
l ∈L

Pul − 1) (5)

For all l ∈ L, we take the derivative of Eq. 5 w.r.t. Pul and set it

to zero, which leads to:

−
#(u, l)

Pul
+ λ = 0 (6)

where #(u, l) is the number of co-occurrences ofu and l inT , withv

being marginalized out. It is now clear that Pul =
#(u,l )
λ . Combined

with the constraint

∑
l ∈L Pul = 1, we have λ =

∑
l ∈L #(u, l). Finally,

the closed-form estimation of Pul is calculated as follows:

Pul =
#(u, l)∑
l ∈L #(u, l)

(7)
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Dataset Arnet-Small Arnet-Medium Arnet-Large

# Vertices 187,939 268,037 945,589

# Edges 1,619,278 2,747,386 5,056,050

# Train 1,579,278 2,147,386 3,856,050

# Test 20,000 300,000 600,000

# Valid 20,000 300,000 600,000

# Classes 100 500 500

Table 1: Statistics of the networks used in our experiments.

The process for estimating P is outlined in Algorithm 1. Con-

cretely, we compute the relative frequency that each node co-occur

with each label, which gives us the label distribution of nodes.

3.2 Step 2: Label Propagation
Labeled edges are often scarce in real-world collaboration networks.

As a result, using the procedure outlined above, we may get an

empty label distribution for most of the nodes (as they have no

edges). To alleviate this problem, we propose using label propaga-

tion [18] onG to spread the information from labeled edges around

the graph. Algorithm 2 details the process. We start from the initial

label distribution obtained in Step 1 and repeatedly distribute node

labels to the neighboring nodes.

3.3 Step 3: From Node Labels to Edge Labels
Once we have obtained the label distribution for all nodes, we can

easily compute the label distribution for edges by reusing Eq. 2.

For each edge e = (u,v), the strength of relation l is Pul · Pvl .
The ranking of relation strengths serves as our prediction of social

relations.

4 EXPERIMENT
In this section, we describe the datasets for social relation inference

and compare our method against a number of baselines.

4.1 Dataset
Weuse the processedArnetMiner [12] datasets provided by TransNet

[14], which is the state-of-the-art method for social relation infer-

ence. ArnetMiner is a large-scale co-author network with over a

million authors and four million collaboration relations. The social

relations between researchers can be reflected by the research areas

or topics they collaborate in. Concretely, for each co-author rela-

tionship, the authors of TransNet extract representative research

interest phrases from the abstracts of co-authored papers as edge

labels. Three collaboration networks of different scales and different

amount of labels are provided in this dataset to better investigate

the characteristics of different models. The statistics of the datasets

used in our experiments are presented in Table 1.

4.2 Baseline Methods
We compare our method against both the translational methods

from the knowledge graph embedding community and the network

embedding methods. The baseline methods we use are as follows:

Algorithm Metrics(%)
hits@1 hits@5 hits@10

DeepWalk 13.88 36.80 50.57

LINE 11.30 31.70 44.51

node2vec 13.63 36.60 50.27

TransE 39.16 78.48 88.54

TransNet 47.67 86.54 92.27

Our Method 48.89 90.13 93.90

Table 2: Social relation inference results on Arnet-Small.

DeepWalk [8]: This is a network embedding method that learns

latent representations of nodes in a graph. It captures node co-

occurrence information via performing short random walks, and

employs the Skip-gram [7] model to learn node representations.

LINE [11]: This is a network embedding method that preserves

both first-order and second-order proximities in networks. LINE

uses Skip-gram with negative sampling (SGNS) to obtain node

representations.

node2vec [4]: This is a network embedding method that im-

proves DeepWalk with a biased random walk phase.

TransE [1]: This is a knowledge base embedding method which

simultaneously learns latent representations of nodes and relations.

Since TransE models each relation separately, we split each edge

with k labels into k training instances, one for each label.

TransNet [14]: This method is an extension to TransE which

explicitly models edges with multiple labels. It is also the state-of-

the-art method for social relation inference. Specifically, TransNet

constructs an autoencoder to learn representations of label sets.

This autoencoder is trained jointly with a TransE model to obtain

node representations. To infer social relations between two nodes,

TransNet takes the difference between tail representation and head

representation as the estimated edge representation, and uses the

autoencoder to decode it into a set of labels.

We follow the same experimental setup as in TransNet [14]. For

all baseline methods, we use the default hyperparameter settings

described in their papers. For TransE, we use the similarity-based

method to predict social relations as described in [1]. For TransNet,

we follow the inference algorithm in their paper. For the three

network embedding methods, we concatenate node representations

as the feature vector for edges. For social relation inference, we

train a one-vs-rest logistic regression model with L2 regularization

implemented in LibLinear [3].

It is also worth mentioning that there are some recent works on

building graph neural networks for semi-supervised learning on

graphs [5, 6]. These methods require an additional feature matrix

for all nodes, which is not available in our problem. Also, these

methods suffer from a memory bottleneck caused by recursive

neighborhood expansion, which prevents them from running on

large-scale networks [6].

4.3 Results and Analysis
In Tables 2, 3 and 4, we summarize the experimental results using

the same data split as TransNet. Results for all baseline methods

(including TransNet) are taken from the TransNet paper. We can

clearly see that our simple method outperforms all baseline meth-

ods by a large margin. The performance gain over the best baseline
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Algorithm Metrics(%)
hits@1 hits@5 hits@10

DeepWalk 7.27 21.05 29.49

LINE 5.67 17.10 24.72

node2vec 7.29 21.12 29.63

TransE 19.14 49.16 62.45

TransNet 27.90 66.30 76.37

Our Method 29.47 74.67 85.38

Table 3: Social relation inference results on Arnet-Medium.

Algorithm Metrics(%)
hits@1 hits@5 hits@10

DeepWalk 5.41 16.17 23.33

LINE 4.28 13.44 19.85

node2vec 5.39 16.23 23.47

TransE 15.38 41.87 55.54

TransNet 28.85 66.15 75.55

Our Method 29.91 72.32 80.86

Table 4: Social relation inference results on Arnet-Large.

% Labeled Nodes 1% 5% 10% 50%

hits@1 18.14 28.15 31.32 44.39

hits@5 41.48 60.13 66.19 79.32

hits@10 52.72 71.82 78.12 83.39

Table 5: The performance of our method under different
amount of training data in percentage.

method, TransNet, is at least 3.5% and up to 8.4% in terms of hits@5.

We note that the TransNet data split uses 98%, 76% and 78% edges

as training data for Arnet-Small, Arnet-Medium and Arnet-Large

respectively. With such a large amount of training data, our algo-

rithm achieves the reported performance even without performing

label propagation, which proves the effectiveness of the node label

inference algorithm. Moreover, our algorithm is orders of magni-

tude faster than all baseline methods. Using a single CPU core at

2.0GHz, our method finishes in 5 minutes on Arnet-Small while all

baseline methods take more than 24 hours.

To demonstrate the robustness of our method on sparse data, we

vary the ratio of training data and report the performance of our

method in Table 5. We can see that our method achieves reason-

able performance even with just 1% labeled data, outperforming

DeepWalk, LINE and node2vec with more than 98% of labeled data

(result shown in Table 2). This demonstrates the effectiveness of our

label propagation algorithm. Additionally, we note that TransNet

and TransE cannot leverage unlabeled edges EU ; they only work

when every node v ∈ V is incident to at least one labeled edge

e ∈ EL . As a result, both methods cannot be used when labeled data

is scarce. In contrast, our label propagation algorithm makes good

use of EU to propagate node labels in the network.

The only hyperparameter in our algorithm is the number of

rounds of iterations k for label propagation, which is tuned on the

validation set. We observe that even with only 1% of labeled edges,

our label propagation algorithm converges within five iterations.

5 CONCLUSION
We study the problem of inferring social relations in collaboration

networks, formulated as a semi-supervised learning problem on

graphs where edges have multiple labels. Observing that edges in

collaboration networks represent the shared interests of two people,

we transform edge labels to node labels and perform label propaga-

tion to deal with the label sparsity problem. Experimental results

on three real-world collaboration networks show the superiority

of our method in terms of both accuracy and efficiency.
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