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ABSTRACT
We introduce a framework for the modeling of sequential data cap-
turing pathways of varying lengths observed in a network. Such data
are important, e.g., when studying click streams in the Web, travel
patterns in transportation systems, information cascades in social
networks, biological pathways, or time-stamped social interactions.
While it is common to apply graph analytics and network analysis
to such data, recent works have shown that temporal correlations
can invalidate the results of such methods. This raises a fundamental
question: When is a network abstraction of sequential data justified?
Addressing this open question, we propose a framework that combines
Markov chains of multiple, higher orders into a multi-layer graphical
model that captures temporal correlations in pathways at multiple
length scales simultaneously. We develop a model selection technique
to infer the optimal number of layers of such a model and show that it
outperforms baseline Markov order detection techniques. An applica-
tion to eight real-world data sets on pathways and temporal networks
shows that it allows to infer graphical models that capture both topo-
logical and temporal characteristics of such data. Our work highlights
fallacies of network abstractions and provides a principled answer
to the open question when they are justified. Generalizing network
representations to multi-order graphical models, it opens perspectives
for new data mining and knowledge discovery algorithms.

1 INTRODUCTION
The modeling and analysis of sequential data is an important task
in data mining and knowledge discovery, with applications in text
mining, click stream analysis, bioinformatics and social network anal-
ysis. An interesting class of data relevant in these contexts are those
that provide us with collections of observed pathways, i.e. multiple
(typically short) sequences of vertices traversed by paths in an un-
derlying graph or network. Examples include traces of information
propagating in (online) social networks, click streams of users in hy-
perlinked documents, biochemical cascades in biological signaling
networks, or contact sequences emerging from time-stamped data on
social interactions.

The graph topology underlying these systems has enticed researchers
and practitioners to apply graph analytics and network analysis, e.g.,
to make statements about node centralities, cluster and community
structures, or subgraph and motif patterns. While these methods have
their merits, recent works have voiced concerns about their naive
application to complex data [2, 43]. In particular, network-analytic
methods make the fundamental assumption that paths are transitive,
i.e. that the existence of paths from a to b and from b to c implies a
transitive path from a via b to c . As shown recently, non-trivial tem-
poral correlations in pathways and temporal networks can invalidate

this assumption [15, 20]. As a result, network-based modeling and
mining techniques yield wrong results, e.g., about cluster structures,
the ranking of nodes, or dynamical processes such as information
propagation. Addressing this issue, recent works have thus argued for
higher-order network models that capture both temporal and topologi-
cal characteristics of sequential data [21, 22, 26, 27, 38, 41].

Contributions Going beyond these prior works, we advance the
state-of-the-art in sequential data mining as follows: (1) We introduce
a multi-order graphical modeling framework tailored to data captur-
ing multiple variable-length pathways in networks. Our approach
combines multiple higher-order Markov models into a multi-layer
model consisting of De Bruijn graphs with multiple dimensions. Dif-
ferent from previous approaches, this allows us to capture temporal
correlations with multiple correlation lengths simultaneously. (2) We
introduce a model selection technique that accounts for the structure
of pathway data and for topological constraints imposed by the under-
lying graph that were neglected in prior works. Using synthetic and
real-world data, we show that this approach dramatically improves
the modeling of pathways and temporal networks, opening new per-
spectives for the analysis of click streams, biological pathways and
time-stamped social networks. (3) Using PageRank as a case study,
we show that correlations in sequential data can invalidate the appli-
cation of graph-analytic methods. We finally demonstrate that our
framework allows to generalize such methods to higher-order models
that capture both topological and temporal patterns in a simple, static
representation.

Ourwork not only challenges naive applications of network-analytic
methods to sequential data. It also provides a principled method to
(i) decide when a network abstraction of such data is justified, and
(ii) infer optimal higher-order graphical models that can be used to
generalize network analysis techniques.

2 RELATEDWORK
The analysis of sequential data has important applications in areas like
natural language processing, data compression, behavioral modeling
or bioinformatics [6, 13, 42]. Considering the focus of this paper, here
we limit our review of the relevant literature to works addressing
the modeling of (i) sequential data on pathways in graphs, or (ii)
time-stamped data on temporal or dynamic graphs.

Click streams or user trails in the Web are one example for pathway
data, with important applications in user modeling and information
retrieval. A number of recent works have studiedMarkov chainmodels
of human click paths [4, 14, 23, 29, 35, 37]. Chierichetti et al. [4] study
whether the Markovian assumption underlying models that only take
into account the topology of the underlying Web graph is justified.
They find that accounting for non-Markovian characteristics, which
are due to correlations in the ordering of traversed pages, improves



the prediction performance of a variable-order Markov chain model.
Similarly, West and Leskovec [35] model navigation paths of users
playing the Wikispeedia game, finding that incorporating correlations
not captured by the topology of the Wikipedia article graph improves
the performance of a target prediction algorithm. Taking a model
selection approach, Singer et al. [29] argue that higher-order Markov
models are not justified for click stream data at the page level, while
they are warranted for coarse-grained data at a topic or category level.

Apart from click streams, the influence of order correlations has
also been studied in other types of pathway data such as, e.g., human
travel patterns [19, 21, 22, 27], knowledge flow in scientific communi-
cation [21], or cargo traces in logistics networks [38]. Like for click
streams, it was found that correlations in real data on networked
systems do not justify the Markovian assumption implicitly made by
typical graph-based modeling techniques. Similar results have been
obtained for high-frequency data on dynamic or temporal graphs, i.e.
relational data that capture the detailed timing and ordering of re-
lations. Thanks to improved data collection and sensing technology,
such data are of growing importance in various settings. Important
applications include, e.g., cluster detection in temporal graphs cap-
turing economic transactions or social interactions [16, 22], ranking
nodes in dynamic social networks [26, 40], or identifying frequent
interaction patterns in communication networks [39]. Despite their
importance, the analysis of such data is still a considerable challenge.
In particular, it has been shown that temporal correlations in the
sequence of time-stamped interactions shape connectivity, cluster
structures, node centralities, and dynamical processes in temporal
networks [12, 15, 20, 22]. This questions applications of data mining
techniques based on time-aggregated or time-slice abstractions, which
neglect the ordering of interactions.

In summary, these works show that autocorrelations in pathways
and temporal networks hinder topology-based modeling techniques,
with important consequences for sequential pattern mining and graph
analytics. Higher-order network modeling techniques, which build on
higher- or variable-order Markov models, have been proposed to ad-
dress this problem [19, 21, 22, 26, 27, 38]. While there is agreement
about the need for such techniques, principled methods to decide
(i) when the use of network-based methods is invalid and (ii) which
higher-order model should be used for a given data set were investi-
gated only recently [19, 29]. Moreover, existing works have mostly
focused on modeling techniques that account for temporal correla-
tions at a single fixed length, while real-world sequential data are
likely to exhibit multiple correlation lengths simultaneously. Finally,
using state-of-the-art Markov chain inference techniques, previous
works did not account for special characteristics of data on multiple,
independent paths with varying lengths that are observed in a known
graph topology. Proposing a model selection technique tailored to
such sequential data, this paper addresses this research gap. Interpret-
ing time-stamped data on temporal networks as one possible source
of pathway data that can be modeled with our framework, we further
highlight interesting and previously unknown relations between prob-
lems addressed in sequence modeling, pattern mining and (dynamic)
graph analysis.

3 PRELIMINARIES
We first introduce the problem addressed in our work and provide
some preliminaries on (higher-order) Markov chain models of path-
way data. Assume we are given a multi-set S = {p1, . . . ,pN } with N

independent observations of sequences pi , representing paths of vary-
ing lengths li ≥ 0 in a graphG = (V ,E) with vertices V and (directed)
edges E ⊆ V ×V . Each of these paths pi = (v0 → v1 → . . . → vli )
is an ordered tuple of li + 1 vertices such that (vi ,vi+1) ∈ E for all
i ∈ [0, li − 1]. The length li of path pi is the number of edges that
it traverses, i.e. a (trivial) path p = (v0) consisting of a single ver-
tex has length zero. Depending on the context, S could capture click
paths of users in the Web, chains of molecular interactions in a cell
or itineraries of passengers in a transportation network. We further
assume that the underlying graph G captures topological constraints
such as, e.g., hyperlinks between Web documents influencing click
paths, molecular structures limiting possible reactions, or possible
routes in a transportation network.

Interpreting vertices as categories, we can view paths as categorical
sequences and we can consider a probabilistic model that provides a
probability P(S) to observe a given multi-set S . Higher-order Markov
chains are a powerful class of probabilistic models, with applications in
data analysis, inference and prediction tasks [1, 31]. Considering paths
as multiple sequences of random variables, we can define a discrete
time Markov chain of order k over a discrete state spaceV that assigns
probabilities to each consecutive vertex. For this, we assume that the
Markov property holds, i.e. for each vi

P(vi |v0 → . . .→ vi−1) = P(vi |vi−k → . . .→ vi−1) (1)

where k is the “memory” of the model. I.e., the i-th vertex on a path
depends (only) on the k previously traversed vertices.

We call P (k ) := P(vi |vi−k → . . .→ vi−1) the transition probability
of a k-th order Markov chain. It probabilistically generates sequences
by means of repeated transitions between vertices, each extending
a sequence by a single vertex depending on the k previous vertices.
For k = 0 we obtain transition probabilities P (0)(vi ), i.e., each step
vi is independent of previous steps. Importantly, the independence
assumption of such a zero-order model does not allow us to selectively
generate paths constrained to a given graph, since any sequence of
vertices with non-zero probabilities can be generated, independent
of whether it corresponds to a path in the underlying graph or not.
For k = 1, the model keeps a memory of one step, i.e., the proba-
bility P (1)(vi |vi−1) to “move” to vertex vi depends on the “current”
vertex vi−1. The dyadic dependencies captured in such a first-order
model allow us to assign zero probabilities P (1)(vi |vi−1) = 0 to those
transitions for which no corresponding edge exists, i.e. (vi−1,vi ) < E.
Hence, first-order models are the simplest models able to generate
paths constrained to a graph. For k > 1, a k-th order model can ad-
ditionally capture higher-order dependencies, i.e. correlations in the
sequence of vertices that go beyond topological constraints imposed
by the underlying graph.

An important (and non-trivial) question in the study of categorical
sequence data is which order k of a Markov chain is needed to model
(or summarize) a given data set. It naturally relates to prediction and
compression tasks and has received attention from researchers in data
mining, signal processing and statistical inference. Specifically, higher-
order Markov chain models provide a foundation for (Bayesian) model
selection and inference techniques that are based on the likelihood
function [1]. For a given transition probability P (k ) of a k-th order
modelMk , the likelihood L(Mk |p) under an observed path p = (v0 →



. . .→ vl ) is given as:

L(Mk |v0 → . . .→ vl ) =
l∏

i=k

P (k )(vi |vi−k → . . .→ vi−1) (2)

For our scenario of a multi-set set S of (statistically independent) paths,
the likelihood of a k-th order modelMk is then

L(Mk |S) =
N∏
j=1

L(Mk |pj ) (3)

where pj is the j-th observed path in S . This allows us to perform a
maximum likelihood estimation (MLE) of transition probabilities P̂ (k )
for any order k based on a set of observed pathways S . In other words,
we can “learn” the parameters of a k-th order graphical model based on
the frequencies of paths in a data set. To formally define this, we first
introduce the notion of a sub path. For two paths p = (p0 → . . .→ pk )
and (q = q0 → . . . → ql ) with k ≤ l , we say that p is sub path of q
with length k (p ⊑ q) iff ∃a ≥ 0 such that qi+a = pi for i ∈ [0,k]. In
other words: p ⊑ q iff path p occurs in (or is equal to) path q. With this,
the transition probabilities P̂ (k) of a k-th order model that maximize
likelihood can be calculated as

P̂ (k )(vi |vi−k . . .→ vi−1) =
|{(vi−k . . .→ vi ) ∈ Sk }|∑

w ∈V |{(vi−k . . .→ vi−1 → w) ∈ Sk }|
(4)

where Sk is the multi-set of sub paths of length k of S , i.e. we define
Sk := {p ∈ V k : ∃q ∈ S : p ⊑ q}. Hence, we infer the transition proba-
bilities of a k-th order Markov chain based on the relative frequencies
of sub paths of length k .

We conclude this section by commenting on the relation between
higher-order Markov chains and graph abstractions of pathway data.
For k = 1, inferred probabilities P̂ (1) capture relative frequencies
of traversed edges (i.e. sub paths of length one) in the graph. Such
a first-order model is given by a weighted graph, where edges cap-
ture the topology and weights capture relative frequencies at which
paths traverse edges. For k > 1, transition probabilities are calculated
based on relative frequencies of longer paths, capturing correlations
in sequences of vertices that are not due to the graph topology. Such
higher-order models can be visualized by a construction that resembles
high-dimensional De Bruijn graphs [5]. It is based on the common
representation of Markov chains of order k on state space V as first-
order Markov chains on an extended state space V k . Each transition
P(vi |vi−k → . . .→ vi−1) that corresponds to a path of length k is rep-
resented by an edge between two k-th order vertices (vi−k , . . . ,vi−1)
and (vi−k+1, . . . ,vi ) in an extended state space V k . The “memory” of
length k is then encoded by higher-order vertices and each transition
shifts it by one vertex.

This provides graphical models G(k ) for different orders k , where
the topology of the first-order model G = G(1) corresponds to com-
monly used network abstractions. For k > 1 we obtain higher-order
graphical modelsG(k ), which represent both the topology of the graph
as well as correlations in the sequence of vertices not captured by
G [27]. A k-th order graphical model particularly encodes deviations
from the path transitivity assumption that result from the statistics of
(sub) paths of length k , while its graphical interpretation corresponds
to the assumption that paths longer than k are transitive. Hence, k-th
order graphs G(k ) can be seen as natural generalization of network
abstractions for sequential data. They account for correlations that
invalidate the transitivity assumption made by a first-order model.

S = {(B → D), (B → C),

(D → A), (D → B), (A → B)

(B → C → A), (A → B → D)

(D → A → B), (B → D → B)

(C → A → B), (D → B → D)

(B → D → A), (A → B → C)

(B → D → B → D)

(D → A → B → D)

(A → B → C → A)

(A → B → D → B → D)

(D → B → D → B → D)

(C → A → B → D → B → D)

(B → D → B → D → B → D), . . . }

k=1

k=2

k=3

Figure 1: Example for three layers of (higher-order) graphical
models (right) for toy example S of paths (left) in a graph with
vertices V = {A,B,C,D,E} connected by six edges (G(1)).

Fig. 1 shows an illustrative example for a multi-set S of paths (left) and
the corresponding higher-order graphical models G(k ) for different
orders k ≥ 1.

4 MULTI-ORDER GRAPHICAL MODELS
We now introduce the multi-order graphical modeling framework that
constitutes the main contribution of our work. It relies on the capabil-
ity of higher-order models to capture correlations in sequential data
that are neglected by common graph or network abstractions. Going
beyond previous works, we (i) infer multi-layer graphical models that
consider multiple correlation lengths simultaneously and (ii) provide
a statistically principled answer to the question which order k of a
graphical model G(k ) should be used to analyze a given data set.

While it is tempting to address this problem with standard Markov
chain inference and order detection techniques, it is important to
take into account special characteristics of pathway data. We first
observe that the likelihood calculation for a k-th order Markov chain
neglects, by construction, the first k vertices on a path (cf. Eq. 2).
This is not an issue for a single long sequence. However, it poses
problems when modeling large numbers of (typically short) paths.
Depending on the distribution of path lengths, the number of paths
entering the likelihood calculation in Eq. 3 is likely to decrease as the
order k increases, which complicates model selection. This problem
is often addressed by concatenating multiple pathways to a single
sequence, possibly separated by a delimiter symbol. However, as we
show later, this introduces issues that question the use of standard
sequence mining techniques.

We address these issues by means of graphical models that combine
multiple layers of Markov chain models of multiple orders to a single
multi-order model. For this, we first infer multiple k-th order models
Mk fork = 0, . . . ,K up to amaximum orderK as described in section 3,
i.e. we “learn” the parameters of each k-th order modelMk using Eq. 4.
We then combine them into a multi-order graphical model M̄K , where
each model layer captures correlations in the sequence of vertices at a
specific length k . For the resulting model, we then iteratively define
the probability P̄ (K ) to generate a path (v0 → . . . → vl ) of length
l based on transition probabilities P (k ) of all model layers k up to



maximum order K as:

P̄ (K )(v0 → . . .→ vl ) =
K∏
k=0

P (k ) (vk |v0 → . . .→ vk−1)

l∏
i=K+1

P (K ) (vi |vi−K → . . .→ vi−1)

(5)

The first product multiplies the transition probabilities P (k ) in K + 1
model layers with increasing order and prefix length k = 0, . . . ,K .
For paths longer than the maximum order K , the second product
additionally accounts for l − K transitions in the layer with the max-
imum order K . To illustrate this, consider the probability of a path
p = (v0 → v1 → v2 → v3 → v4) of length l = 4 in a multi-order
model with maximum order K = 2. From Eq. 5, we get

P̄ (2)(p) =P (0)(v0) · P
(1)(v1 |v0) · P

(2)(v2 |v0 → v1)·

P (2)(v3 |v1 → v2) · P
(2)(v4 |v2 → v3)

where each of the first three products corresponds to a single transition
in the model layer k with increasing order and prefix length k . The
last two products are due to two additional transitions in the layer
with maximum order K = 2 and a prefix length of two.

Based on Eq. 5, we define the likelihood L(M̄K ) of a multi-order
model with maximum order K under a set S of observed paths as

L(M̄K |S) =
N∏
j=1

P̄ (K )(pj ) (6)

where pj is the j-th path in S . We can then perform a maximum
likelihood estimation analogous to Eq. 4. Here we use sub paths with
length exactly k to estimate transition probabilities of layers k < K ,
while paths with length longer or equal than K are used to estimate
transition probabilities of layer K . We obtain a multi-layer model for
paths of varying lengths, each layer being a higher-order graphical
model that captures correlations at length k (cf. Fig. 1).

4.1 Detection of optimal maximum order
The modeling framework above allows to develop a method to infer
the optimalmaximum orderKopt of amulti-order model for a given set
of pathways S . That is, we address the important question how many
layers of higher-order graphical models are needed to study a given
data set: An optimal maximum order Kopt = 1 signifies that pathways
do not contain correlations that break the transitivity assumption
made when using a first-order graphical model. This correspond to
situations where the structure (and frequency) of observed paths can
be explained based on the underlying (first-order) network. We argue
that in this (and only in this) case, the application of network-analytic
methods is justified. For data with Kopt > 1, their application is
misleading since order correlations break the transitivity of paths
in the first-order network [20, 26, 27]. In other words, for Kopt > 1
the observed pathways invalidate the assumption of path transitivity
implicitly made by standard network-analytic methods. We will show
that a generalization of these methods to the higher-order graphs that
constitute the layers of our multi-order model provides a simple yet
efficient way to analyze data that do not warrant standard network
abstractions.

Our method to infer the optimal maximum order of a multi-order
model is based on the likelihoods of candidate multi-order models,
which combine higher-order models up to different maximum orders
K (cf. Eq. 6). Clearly, simply maximizing L(M̄Kopt |S) would overfit the

data since the inclusion of additional model layers trivially increases
the likelihood at the expense of increased model complexity. Applying
Occam’s razor, we are instead interested in a multi-order graphical
model that balances model complexity and explanatory power for the
observed set of pathways.

Several techniques to avoid overfitting higher-order Markov chains
have been proposed and methods based on the Bayesian or Aikake
Information Criterion are frequently used for this purpose [11, 28, 31].
However, previous works have not accounted for special character-
istics of pathway data, which is why we introduce a different ap-
proach that utilizes the nested structure of multi-order models. For
this, consider two multi-order models M̄K and M̄K+1, which combine
higher-order graphical models up to order K and K + 1 respectively.
We consider the model M̄K as the null model, while M̄K+1 provides the
alternative model. The likelihood ratio L(M̄K |S )

L(M̄K+1 |S )
captures how much

more likely S is under the (more complex) model M̄K+1 compared to
the (simpler) null model M̄K . It also allows to calculate a p-value that
can be used to reject the alternative model M̄K+1 in favor of model
M̄K .

To calculate this p-value we must generally derive the distribution
of likelihood ratios, which is possible only in simple cases. We can
avoid this by considering that M̄K and M̄K+1 are nested, i.e. the model
M̄K is a special case in the parameter space of the more complex
model M̄K+1. This follows from the fact that probabilities of paths of
length k + 1 in layer k + 1 can be set to the probabilities resulting from
two transitions in the layer k . This nestedness allows to apply Wilk’s
theorem [36], which states that the distribution of likelihood ratios
between two nested models M̄K and M̄K+1 asymptotically follows a
chi-squared distribution χ2(x), where x is the difference in the degrees
of freedom between M̄K+1 and M̄K . With this, we calculate thep-value
of the null hypothesis M̄K using the cumulative distribution function
of the chi-squared distribution as

p = 1 −
γ

(
d (K+1)−d (K )

2 ,− log L(M̄K |S )
L(M̄K+1 |S )

)
Γ

(
d (K+1)−d (K )

2

) (7)

where d(K) are the degrees of freedom of model M̄K , Γ is the Euler
Gamma function and γ is the lower incomplete gamma function.

The degrees of freedom of a Markov chain of order k over a state
space |V | are commonly given as |V |k (|V | − 1) [1, 11, 29, 31]. This
reflects that (i) the transition matrix of a Markov chain of order k
has |V |k+1 entries, and (ii) the rows in this matrix must sum to one.
The latter reduces the free parameters by one for each of the |V |k

rows, which yields the above expression. While this has been used to
detect the Markov order in pathway data, this approach is not suitable
for pathways that are constrained by a given (and known) network
topology. It particularly neglects constraints due to the fact that not
every sequence of vertices is a feasible path in a given network. As a
simple example, for a graph consisting of two vertices A and B and
a single directed edge (A,B), the vertex sequence (A → B → A) is
not a valid path of length two, even though the transition matrix
of a second-order model contains a (zero) entry for the transition
between (second-order) vertices (A,B) and (B,A). Hence, rather than
calculating the degrees of freedom of a k-th order model based on
the size of a transition matrix, we must only account for entries that
correspond to paths in the underlying graph. The degrees of freedom
of the k-th layer of a multi-order model thus depend on the number of



different paths of length k in a given graph G. For a binary adjacency
matrixA ofG , the entries (Ak )i j in the k-th power ofA count different
paths of length k from i to j. Summing over the entries (Ak )i j thus
gives the total number of paths with length k . In the transition matrix
of a k-th order model, we are free to set the entries corresponding to
these paths, subject to the constraint that the matrix rows must sum
to one. This reduces the degrees of freedom of a k-th order model by
one for each non-zero row in the transition matrix. We thus get∑

i, j
(Ak )i j −

∑
j
Θ

(∑
i
(Ak )i j − 1

)
(8)

where the sum
∑
Θ(·) over the Heaviside function Θ counts non-zero

rows in Ak . For a fully connected graph, the topology does not impose
constraints on the possible paths of lengthk and in this case we recover
the degrees of freedom of a standard Markov chain of order k .1 Since
a multi-order model combines higher-order models from k = 0 up to
maximum order K , we sum the degrees of freedom of a zero-order
model (|V | − 1) with Eq. 8 for k ≥ 1:

d(K) = (|V | − 1) +
K∑
k=1


∑
i, j

(Ak )i j −
∑
j
Θ

(∑
i
(Ak )i j − 1

) (9)

The difference between the degrees of freedom d(K) of a multi-order
model and standard higher-order Markov chains has important conse-
quences for model selection: For sparse graphs (where a small fraction
of possible edges exists) d(K) calculated according to Eq. 9 increases
considerably slower than the exponential increase expected for stan-
dard Markov chain models. This counters the curse of dimensionality,
which has previously hindered the application of higher-order Markov
models to pathway data [29].

In summary, we can detect the optimal maximum order Kopt of a
multi-order graphical model by repeatedly calculating the p-value for
consecutive pairs of (nested) models in the sequence M̄1, M̄2, . . .. We
then choose the maximum value Kopt = K above which we reject the
alternative model M̄K+1 in favor of M̄K , i.e. the largest K for which
p is below a significance threshold ϵ . We note that, since the total
number of likelihood ratio tests is Kopt , a small ϵ should be used to
hinder false positives due to multiple hypothesis testing.

4.2 Experimential validation
We now validate our method using synthetically generated pathways.
For this, we use a stochastic model generating a configurable number
of variable-length paths, constrained by a random (directed) graph
of variable size, based on a Markov chain with known order k . We
omit the implementation details due to space constraints, however the
full code of our model (along with all other code used in our work)
is available in an online repository [24]. We then apply our method
to these synthetically generated paths, showing that it (i) recovers
the “correct” Markov order used to generate them, (ii) outperforms
previously used Markov order detection techniques, and (iii) allows to
infer an optimal higher-order graphical abstraction that can be used,
e.g., to rank vertices.

Correctness and efficiency We compare our approach to two
baseline Markov order detection techniques, which have previously

1This follows from the fact that, for an n × n unit matrix J = (1)i j of a fully connected
graph, we have Jk = (nk−1)i j and thus

∑
i j Jki j = n

2 ·nk−1 = |V |k . Since all |V |k rows
in Jk are different from zero we recover |V |k ( |V | − 1).
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Figure 2: (a) shows detectedMarkov order (y-axis) for N synthetically
generated paths (x-axis) and knownMarkov order four. (b-d) show the
minimum sample size N (y-axis) needed to detect the correct Markov
order for (b) paths in graphs with 20 vertices, 60 edges and with dif-
ferent Markov order (x-axis), (c) Markov order two, fixed edge density
and varying graph size n (x-axis), and (d) Markov order two, graphs
with 40 vertices and varying edge density ρ (x-axis). Results are aver-
ages of 20 experiments in random graphs, inferring the order based on
Bayesian (BIC) and Aikake’s (AIC) Information Criterion and Multi-
order Graphical Models (MOG) proposed in this paper. Error bars indi-
cate standard deviation.

been used to study pathways as categorical sequences. We specifi-
cally consider Markov order detection using (i) Aikake’s Informa-
tion Criterion (AIC) [32], and (ii) the Bayesian Information Criterion
(BIC) [11, 29]. We apply both techniques to a single sequence of con-
catenated paths, where paths are separated by a special stop token
(see, e.g., [19]). Fig. 2(a) compares the optimal maximum order Kopt
inferred using our multi-order graphical models (MOG) to the order
detected based on (BIC) and (AIC). Results are shown for different sam-
ples of N paths with known Markov order of four, generated in a toy
random graph with 10 vertices and 30 directed edges. For moderately
large samples AIC and BIC underfit the data, detecting the correct
order only for N > 50, 000 and N > 350, 000 respectively, despite the
small size of the graph. In contrast, our approach recovers the correct
order for N > 300. We further recover the known result that BIC has
a stronger tendency to underfit compared to AIC [11].

We next study how the sample size N required to detect the correct
order depends on (i) the Markov order, (ii) the number of vertices and
(iii) the density of edges in the graph. Fig. 2(b) shows the results for
different (true) Markov orders k used to generate paths in random
graphs with 20 vertices and 60 directed edges. For AIC and BIC, N
quickly grows for k > 1, while it remains small for our method. We
further study how N depends on the size n (Fig. 2(c)) and density ρ
(Fig. 2(d)) of the graph. As the number of vertices n in a sparse graph
with 3n edges grows, the sample size needed by the BIC and AIC-based
methods to detect the correct order two quickly exceeds N = 106. Our
method yields the correct order also for small sample sizes (cf. Fig. 2(c)).
We finally study how the minimally required sample size N depends
on the density ρ of a graph with fixed size n = 40 (Fig. 2(d)). We define
the density ρ as fraction of possible edges existing in a graph, i.e. ρ = 0
corresponds to an empty and ρ = 1 to a fully connected graph. As



expected, the number of samples required by our method increases as
the density, and thus the degrees of freedom of higher-order models,
grow. For the BIC and the AIC we observe a mild decrease as the
(real) degrees of freedoms in the fully connected graph approach those
of a categorical sequence model. Interestingly, our method requires
a smaller number of samples also for fully connected graphs, even
though in this case the degrees of freedom of our model coincide with
those used in the BIC and AIC-based methods. We attribute this to
the fact that our method correctly accounts for multiple independent
paths rather than aggregating them to a single sequence.

Ranking inHigher-Order GraphsWe now show how our frame-
work improves network-analytic methods, focusing on the ranking
of vertices using PageRank [18]. We first recall that layer k = 1 of a
multi-order model captures the topology of the graph and the (rela-
tive) frequencies of edges traversed by paths, while the layers k > 1
account for order correlations (of multiple lengths) that can break path
transitivity. Hence, our framework can be viewed as a natural higher-
order generalization of the common network abstraction of relational
data, which not only captures the topology and frequency of links, but
also order correlations in sequential data. From this perspective, the
optimal maximum order Kopt allows to decide (i) if the (first-order)
topology is sufficient to explain observed paths, or (ii) whether higher-
order graphical models are needed. Moreover, we argue that Kopt is
the optimal order of a higher-order graphical abstraction of pathway
data.

To validate this claim, we use a set S of paths synthetically gener-
ated by the model above. The idea of our validation is to test whether
the PageRank [18] calculated in a graphical model with order Kopt
detected by our framework best captures the “ground truth” impor-
tance of vertices. For this, we recall that PageRank is a graph-based
algorithm to calculate the stationary node visitation probabilities of
random surfers in a (web) graph. In other words, it utilizes (i) the
topology of the web graph, and (ii) a Markov chain model for random
walks in the graph to estimate the (unknown) frequencies at which
surfers visit web pages. Interpreting paths in our set S as trajectories
of independent “surfers” in a graph, we can calculate the frequency
at which a given vertex v is visited by these “surfers”. With Sk denot-
ing the multi-set of sub paths of length k , and considering that each
vertex v is a zero-length sub path in S0, we can thus calculate vertex
“visitation frequencies” as

pv =
|{v ∈ S0}|∑
p∈S lp + 1

. (10)

The denominator simply counts all vertex traversals by summing up
the number of vertices traversed by all paths p ∈ S . Interpreting pv as
the “ground truth” for the vertex visitation frequencies estimated by
PageRank, we can subject the claim that our inference method yields
an “optimal” graphical model of pathways to a numerical validation.
For this, we generalize PageRank to a higher-order graph G(k ) in a
multi-order model. Let A(k ) be the binary adjacency matrix of G(k ).
We define Q(k ) as the matrix obtained by (i) dividing entries in A(k )

by row sums, and (ii) replacing zero rows by 1/n, where n is the
number of (higher-order) vertices in G(k ). We then calculate a k-th
order PageRank vector x (k ) by solving the equation

x (k ) = x (k )
(
αQ(k ) + (1 − α)B

)
whereB is ann×nmatrix with entries 1/n andα = 0.85 is a dampening
factor. x (k ) contains the PageRanks of k-th order vertices inG(k ). Due
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Figure 3: Kendall’s rank correlation between k-th order PageRank
PR(k ) and ground truth vertex visitation frequencies pv (y-axis) in
paths with different detected ordersKopt (x-axis). Results are averages
of 100 runs, fitting a multi-order model to N = 20000 synthetically gen-
erated paths of length L = 10 in random graphs with 100 vertices and
350 edges. Error bars indicate standard deviation.

to the De Bruijn graph construction (cf. Fig. 1), each k-th order vertex
corresponds to a path (v0 → . . .→ vk−1) of length k −1. A projection
to first-order vertices v can be defined as

PR(k)[v] :=
∑

p∈Sk−1
v⊑p

1
k
x
(k )
p (11)

where x (k )p is the PageRank of k-th order vertex p.2 We can now test
for which order k PR(k) best captures the ground truth visitation
frequencies pv calculated in a given synthetically generated set of
pathways S . Fig. 3 shows the results for synthetically generated paths
with different detected Markov orders (x-axis). Each of the five lines
gives Kendall’s rank correlation measure (y-axis) between a vertex
ranking based on (i) “ground truth” visitation frequenciespv calculated
in actual pathways and (ii) the PageRank PR(k) for given order k .
Naturally, the stochastic model underlying the PageRank calculation
cannot perfectly reproduce the true frequencies at which vertices
are “visited” by pathways. However, the results in Fig. 3 show that
the PageRank in a k-th order graphical model reproduces ground
truth visitation frequencies best if k corresponds to the optimal order
Kopt detected by our framework. Thisconfirms that (i) a first-order
PageRank yields suboptimal results for sequential data with order
correlations, and (ii) the models learned by our approach are optimal
to rank vertices.

5 APPLICATIONS
Having validated our method in synthetic examples, we now apply
it to eight real data sets from different scenarios: We start with data
that provide pathway statistics, namely (i) passenger itineraries in
transportation networks, (ii) click streams of users on the Web, and
(iii) career paths of scientists. We then show how our method can
be used to analyze time-stamped interactions, commonly studied as
temporal or dynamic networks. Key characteristics and sources of the
data sets are shown in Table 1. All are freely available for research
and details on how they have been collected are introduced along
the way. Results in this section have been obtained using pathpy, an
OpenSource python implementation of our framework [25]. The full
code of our analysis is available online [24].

5.1 Pathway Data
We study five pathway data sets: (AIR) captures 280k passenger itineraries
along flight routes between US airports in 2001 [27, 33], (TUBE) con-
tains 4.2 million passenger trips in the Londonmetro [7, 27], (CAREER)
2Since x (k ) is a stochastic vector, Eq. 11 ensures that entries of PR(k) sum to one.



Pathway Data Vertices ( |V |) Edges ( |E |) Paths (N ) [Min, Max] li Kopt (p-value)
Scientist career paths (CAREER) [30] 1,932 (institutes) 6,474 33,576 [0, 12] 1 (p ≈ 0)
Wikispeedia click paths (WIKI) [35] 100 (Wikipedia pages) 1,790 39,846 [0, 21] 2 (p ≈ 0)

US airflight itineraries (AIR) [33] 175 (US airports) 1,598 286,810 [1, 13] 2 (p ≈ 0)
MSNBC clickstreams (MSNBC) [3] 17 (page categories) 289 989,818 [0, 99] 3 (p ≈ 0)
London Tube itineraries (TUBE) [7] 276 (metro stations) 663 4,295,731 [1, 35] 6 (p ≈ 0)

Temporal Network Data Vertices ( |V |) Edges ( |E |) Paths (N ) δ /[Min, Max] li Kopt (p-value)
Company E-Mails (EMAIL) [17] 167 (employees) 5,784 80,504 30/[1, 13] 1 (p ≈ 0)

Workplace Contacts (WORK) [10] 92 (office workers) 755 10,939 180/[1, 4] 2 (p ≈ 0)
Hospital Contacts (HOSP) [34] 75 (healthcare workers) 1,139 353,449 300/[1, 9] 3 (p ≈ 0)

Table 1: Summary statistics and detected maximum order Kopt of multi-order graphical model for real-world data sets.

contains sequences of affiliations in the career of more than 30k sci-
entists publishing in journals of the American Physical Society [30],
and (WIKI) provides more than 76k click paths of users playing the
Wikispeedia navigation game [35]. For (WIKI) the small number of ob-
served paths compared to size and density of the underlyingWikipedia
article graph renders a detection of higher Markov orders impossible.3
To overcome this problem, we limit our analysis to click paths that
traverse the 100 most frequently visited articles. We finally consider
(MSNBC), a data set with close to one million click streams of visitors
of the MSNBC portal [3].

For (AIR), (TUBE), and (WIKI) observed pathways are, by definition,
constrained to an underlying network of available flight routes, Lon-
don metro lines, and Wikipedia article links used in the Wikispeedia
game respectively. For (CAREER), the situation is more difficult: On
the one hand, researchers can, in principle, move between any pair
of affiliations. On the other hand, geographic locations, research dis-
ciplines, and hiring strategies of affiliations render some of these
theoretically possible affiliation changes unlikely (or even impossible).
For the following analysis we thus take a simple approach, assuming
that affiliation changes are constrained to those that have been ob-
served at least once. Finally, (MSNBC) contains user click streams at
the level of page categories. Different from (WIKI), these click streams
are not constrained to paths in a given (article or web) graph. For
(MSNBC) we thus assume a fully connected graph topology, for which
the degrees of freedom in our model coincide with those commonly
used in standard Markov order detection techniques (cf. section 4.1).
We still include (MSNBC) in our analysis to confirm that, for such
unconstrained path, our method recovers the results reported in [29].

For each data set, we first learn a multi-order graphical model,
inferring the maximum order Kopt as described in section 4 (using
ϵ = 0.001). Notably, BIC and AIC-based order detection yield order
one for all data sets, except for (MSNBC) where both recover order
three thanks to a small number of categories and large sample size.
Table 1 shows that, in contrast, our method yieldsKopt > 1 for all data
sets except for (CAREER). This indicates that a first-order network
model is not justified for four of the five data sets. We validate this
using the approach introduced in section 4.2, i.e. we use pathways to
calculate ground truth vertex visitation frequencies pv and check for
which order k a k-th order PageRank best recovers this ground truth.4
Fig. 4(a) reports Kendall’s rank correlation coefficient (τ ) between
a ranking obtained from (i) ground truth visitation frequencies pv
and (ii) PageRank PR(k) computed for different k as described in 4.2.
While the extent to which PageRank reproduces this ground truth
naturally varies, our results confirm that Kopt inferred by our method
is indeed the “optimal” order of a graphical model: For (CAREER),
where our method yields Kopt = 1, we observe a maximum τ ≈ 0.59
3Note that the small sample size in (WIKI) also poses challenges for variable Markov order
modeling techniques as well as for AIC/BIC-based Markov order detection.
4Since it only provides data on 17 page categories connected via a (trivial) fully connected
topology, we omit this analysis for (MSNBC).

for k = 1, while τ drops for k > 2. For (AIR) and (TUBE) τ increases
for k > 1, saturating at the detected orders Kopt = 2 and Kopt = 6
respectively. We highlight that a first-order model of (TUBE) yields
misleading results, which raises interesting questions about network-
based studies of transportation systems. Interestingly, increasing k
beyond Kopt does not necessarily decrease τ . For (TUBE) and (WIKI)
we even observe slight increases of τ for k > Kopt . However, since
our method accounts for model complexity it correctly determines
the order Kopt beyond which additional layers are not justified by the
(small) increase in “explanatory power”.

To corroborate this interpretation, we study the predictive power
of higher-order graphical models. Here, we want to predict most
frequently visited vertices, i.e. vertices v for which pv is largest. Our
prediction is based on the top-ranked vertices according to PageRank,
calculated in graphical models with different orders k . For each k this
yields a predictor for which we calculate the Area under the Curve
(AUC) shown in Fig. 4(c). For (CAREER), where we infer Kopt = 1,
higher-order models do not yield better predictions than a first-order
model. For (TUBE), the performance of a first-order model is low
(AUC(1) ≈ 0.69), while we find AUC(Kopt = 6) ≈ 0.96. For (TUBE)
and (WIKI) we find that, despite τ slightly increasing for k > Kopt ,
such larger k do not translate to better predictions. For (WIKI) AUC
increases considerably in a second-order model, even though τ shows
only a small increase. This confirms that the predictive quality of
PageRank is optimal for graphical models with order Kopt .
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Figure 4: (a-b) show Kendall’s rank correlation between visita-
tion frequencies pv and PageRank (y-axis) calculated in k-th
order model for different k (x-axis) in pathways (a) and tempo-
ral networks (b). (c-d) show Area Under Curve (AUC) for pre-
diction of 15% most frequently visited vertices based on PageR-
ank computed for different k . Values k that correspond to the
detected order Kopt are highlighted (cf. Table 1).



5.2 Temporal Network Data
Apart from settings where we have access to pathway data, we finally
discuss how our framework can be applied to time-stamped data on
temporal or dynamic networks. I.e., we consider triplet data of the form
(v,w ; t), which capture that two vertices v andw were connected at
(discrete) time t . Despite their growing importance, e.g., in social net-
work analysis, analyzing such data is still a challenge [9]. A number of
works have shown that standard network-analytic and algebraic meth-
ods yield wrong results, e.g., about dynamical processes, centralities or
cluster structures in temporal networks [15, 19–22, 27, 38]. These lim-
itations have been attributed to temporal correlations in the sequence
of edges and their effect on so-called time-respecting paths [12]. We
consider a sequence (v0,v1; t1), (v1,v2; t2), . . . , (vl−1,vl ; tl ) of time-
stamped edges a time-respecting path (v0 → . . .→ vl ) iff the ordering
of edges respects causality, i.e. t1 < . . . < tl . Importantly, this implies
that the ordering of time-stamped edges can invalidate the transitivity
of paths implicitly assumed by time-aggregated analyses: Specifically,
two time-stamped edges (A,B; t) and (B,C ; t ′) give rise to a transitive
path (A → B → C) only if (A,B; t) occurs before (B,C; t ′). Hence,
correlations in the ordering of edges can break transitivity and thus
invalidate network-analytic methods [15, 20, 27].

We now show that our framework (i) detects these correlations and
(ii) infers a multi-order graphical model that captures both temporal
and topological characteristics of temporal networks. For this, we
follow the common approach and consider – in addition to their
ordering - the actual timing of time-stamped edges in the definition of
time-respecting paths [9]. We particularly require that edge sequences
contributing to time-respecting paths are consistent with a maximum
time difference δ between consecutive edges, i.e. 0 < ti+1 − ti ≤ δ (i =
0, . . . , l). This is important since we are typically interested in paths
that mediate processes evolving at time scales much shorter than the
observation period [9]. With this definition of a time-respecting path
at hand, we apply the following procedure: We first use time-stamped
edges to extract time-respecting paths for a given δ , obtaining a multi-
set of (time-respecting) paths S . We then use the method discussed in
section 4 to infer a multi-order model, where (i) layers k = 0 and k = 1
model “activities” of vertices as well as the topology and frequency
of time-stamped edges and (ii) layers k > 1 capture correlations in
the ordering of edges that influence longer (time-respecting) paths.
Kopt > 1 indicates that these correlations invalidate a (first-order)
network abstraction. In this case, Kopt further provides us with the
optimal order of a (higher-order) graphical representation.

We apply this to three temporal network data sets, summarized in
Table 1: (EMAIL) captures time-stamped E-Mail exchanges between
167 company employees [17], (HOSP) contains time-stamped contacts
between 75 healthcare workers in a hospital [34], and (WORK) cap-
tures time-stamped contacts between 92 office workers [8]. (HOSP)
and (WORK) were recorded using badges sensing face-to-face encoun-
ters at high temporal resolution [8, 34]. For each data set we first
extract time-respecting paths for a given maximum time difference δ .
The optimal choice of δ is a difficult research problem by itself. Here
we use a simple approach, choosing δ based on the inter-event time
distribution (which captures “inherent” time scales of the data, cf. Ta-
ble 1). We then infer the optimal maximum orderKopt of a multi-order
model. Table 1 shows that a first-order model is justified for (EMAIL),
while (HOSP) and (WORK) exhibit temporal correlations that warrant
higher-order models. We subject the intuition that correlations in the
ordering of edges necessitate higher-order models to a simple sanity

check: We randomly shuffle time stamps of edges to destroy temporal
correlations, extract time-respecting paths for the shuffled data, and
again infer the optimal maximum order of a multi-order model. We get
Kopt = 1 for all shuffled data sets, confirming that first-order graphi-
cal abstractions of temporal networks are justified only if temporal
correlations in the sequence of time-stamped edges are absent.

Our results indicate that first-order network models of (HOSP)
and (WORK) likely yield wrong results, while they seem justified in
(EMAIL). We again validate this by checking the correlation between
(i) ground truth vertex visitation frequencies by time-respecting paths
and (ii) the PageRank PR(k) calculated for different orders k . Like
above, we study the AUC of higher-order PageRanks for different
orders k . Fig. 4(b) shows that for higher-order models with k > 1
the rank correlation does not increase for (EMAIL), while it strongly
increases for (HOSP) and (WORK). For the latter two, first-order PageR-
ank is uncorrelated with the ground truth, while graphical models
with order Kopt yield τ ≈ 0.71 and τ ≈ 0.67 respectively. For (HOSP)
and (WORK), Fig. 4(d) shows a strong increase of AUC for PR(Kopt )
to values of 0.91 and 0.89 respectively. For (EMAIL) we observe no
increase. We attribute this to strong temporal correlations in (HOSP)
and (WORK), which affect time-respecting paths and render first-order
network abstractions useless. This confirms (i) that the optimal order
inferred by our method is meaningful and (ii) that it allows to decide
when a first-order representation of time series data is justified.

6 CONCLUSION
Graph- and network-analytic methods are widely applied to data that
capture relations between elements. While researchers in data sci-
ence raised concerns about their application to data with complex
characteristics, we lack principled methods to decide when network
abstractions are justified and when not. Addressing this issue, we pro-
pose a solution for data on pathways and temporal networks. Going
beyond previous works, we generalize common network abstractions
to multi-order graphical models. We advance the state-of-the-art in
sequential data mining by proposing a model selection technique that
accounts for the characteristics of data carrying multiple observa-
tions of paths in a graph. A comparison to previously used methods
shows that it considerably improves the inference of optimal graph-
ical models that balance model complexity and explanatory power.
These models can be seen as optimal graphical “summarizations” of
sequential data, which can be used to improve network analysis and
modeling techniques. We demonstrate the relevance of our method in
real data on click streams, career paths, and transportation networks.
We highlight implications for the study of temporal networks, which
are often analyzed using time-aggregated or time-slice graphs. We
show that temporal correlations invalidate such analyses and demon-
strate that our method can be used to learn optimal graph models that
capture temporal and topological characteristics of time series data.

In conclusion, our work highlights fallacies of network abstractions
of sequential data. Principled model selection is a crucial first task
that must precede any application of network-analytic methods. The
proposed framework is a step in this direction. It points out relations
between network analysis and sequential pattern mining that call
for further research. To facilitate its application and to ensure the
reproducibility of our results, an OpenSource python implementation
of our framework is available [25].
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