
Watch Your Step: Learning Graph Embeddings Through
Attention

Sami Abu-El-Haija

Google Research

Mountain View, CA

haija@google.com

Bryan Perozzi

Google Research

New York City, NY

bperozzi@acm.org

Rami Al-Rfou

Google Research

Mountain View, CA

rmyeid@google.com

Alex Alemi

Google Research

Mountain View, CA

alemi@google.com

ABSTRACT
Graph embedding methods represent nodes in a continuous vector

space, preserving information from the graph (e.g. by sampling

randomwalks). There are many hyper-parameters to these methods

(such as random walk length) which have to be manually tuned

for every graph. In this paper, we replace random walk hyper-

parameters with trainable parameters that we automatically learn

via backpropagation. In particular, we learn a novel attention model

on the power series of the transition matrix, which guides the

random walk to optimize an upstream objective. Unlike previous

approaches to attentionmodels, the method that we propose utilizes

attention parameters exclusively on the data (e.g. on the random

walk), and not used by the model for inference. We experiment on

link prediction tasks, as we aim to produce embeddings that best-

preserve the graph structure, generalizing to unseen information.

We improve state-of-the-art on a comprehensive suite of real world

datasets including social, collaboration, and biological networks.

Adding attention to random walks can reduce the error by 20%

to 45% on datasets we attempted. Further, our learned attention

parameters are different for every graph, and our automatically-

found values agree with the optimal choice of hyper-parameter if

we manually tune existing methods.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Social networks;

KEYWORDS
Graph, Attention, Embedding, Context Distribution

ACM Reference format:
Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. 2018.

Watch Your Step: Learning Graph Embeddings Through Attention. In Pro-
ceedings of International Workshop on Mining and Learning wit Graphs,
London, UK, August 2018 (MLG’18), 9 pages.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MLG’18, August 2018, London, UK
© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06.

https://doi.org/10.475/123_4

Surfer

v1

v5
v1

v3

v9
v3

v9

v5
v9

v7 v1︸︷︷︸
anchor

→ v3 → v9 → v7 → . . .

C = 3 context choices

(a) DeepWalk[27]: (red) paths of randomwalks are passed to an algo-
rithm which iteratively selects an anchor, samples its context from
fixed choices andupdates embedding of anchor towards the context.

DeepWalk [27] Ours

social

graph

voting

graph

(b) Depiction of context distributions (shaded red) are assigned in
earlier work (left) compared to ours (right). Top: (triadic) social
graph. Bottom: (transitive) voting graph, both from the perspective
of anchor node (yellow). Rather than treating them the same, Our
algorithm learns left-skewed distribution the top graph and a long-
tail distribution for the bottom.

Figure 1: Our contibution. We propose to learn a context dis-
tribution per graph, rather than treating all graphs the same
like previous work (DeepWalk [27], node2vec[13], others).

https://doi.org/10.475/123_4

1 INTRODUCTION
Graph embedding methods based on random walks have demon-

strated outstanding performance on a number of tasks including

node classification [13, 27], knowledge-graph embedding [22], semi-

supervised learning [33], and link prediction [2]. These methods

operate by simulating many random walks on the graph and pro-

duce node embeddings based on co-occurrence statistics. However,

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MLG’18, August 2018, London, UK Abu-El-Haija, Perozzi, Al-Rfou and Alemi

1 2 3 4 5 6 7 8 9 10
C

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

RO
C-

AU
C

facebook

1 2 3 4 5 6 7 8 9 10
C

0.70

0.75

0.80

0.85

ppi

1 2 3 4 5 6 7 8 9 10
C

0.60

0.61

0.62

0.63

0.64

wiki-vote

Figure 2: Motivation - Embedding methods are sensitive
to hyper-parameters. Every graph prefers its own optimal
C value. We plot test ROC-AUC as a function of C using
node2vec [13] when embeddings are 128-dimensional. Each
point is the average of 7 runs.

despite their performance gains, they can be sensitive to the partic-

ular hyper-parameters used in their training.

For example, the quality of embeddings is affected by length of

the random walk and the procedure of how the context nodes are

selected from around the anchor node. Hyper-parameterC controls

the maximum context window size for two nodes to be considered

co-visited in a random walk. Perozzi et al. [27] show that C has

an impact on performance and the optimal context window size

is dependent on the specific graph. This is further confirmed by

Figure 2. Additionally, Levy et al. [19, their Section 3.1] show that

rather than using C as a constant, assembling context of all nodes

within distance C from anchor node, one should instead sample

the context distance c e.g. uniformly from 1 to C as in c ∼ U{1,C}.
Further, node2vec [13] designates two hyper-parameters for the

next hop in random walks. The ratio of the two hyper-parameters

determines depth versus breadth of the walk. Grover & Leskovec

[13] show that different graphs prefer different hyper-parameter

choices.

Implicitly, the choice of maximum window C , the context distri-
butionC (e.g.U), and random-walk hyper-parameters (e.g. node2vec’s),

all impose a distribution on every node’s neighborhood. In general,

the distrubution assigns higher weight to nearby nodes, but the

specific form of the distribution is determined by the forementioned

hyper-parameters. We aim to replace these hyper-parameters with

trainable parameters, so that we automatically learn them per graph.

We pose graph embedding as end-to-end learning, where the

random walk simulation and context sampling are replaced with a

closed-form expectation over the graph transition matrix. We show

mathematical equivalence between the context distribution and the

co-efficients of power series of the transition matrix. We are able to

learn the context distribution by learning an attention model on the

power series. The attention parameters “guide” the random walk,

by allowing it to focus more on short- or long-term dependencies,

as best suited for the graph, while optimizing an upstream objective.

In addition, we show that the optimal choice of context distribution

hyper-parameters for competing methods, found by manual tuning,

agrees with our automatically-found attention parameters.

Attention models have been explored in various research areas,

including Natural Language Processing (NLP) [e.g. 4, 34], image

recognition [24], and detecting rare events in videos [29]. We differ

from those attention models in that our attention parameters are

not part of the model. They are only part of the randomwalk, which

generate node sequences that are then used for embedding learning.

In other words, the attention parameters are not used for inference.

To the best of our knowledge, this work is the first application of

attention methods to random walks.

We propose two families of attentionmodels: (1) a softmaxmodel,

(2) a geometric-decaying distribution. The former can learn arbi-

trary (e.g. non-monotonic) context distributions, as it has one pa-

rameter for each position in the context, while the latter learns a

monotonically decaying functionwhere the decay value is parametrized

by a single trainable variable.

We evaluate our proposed attention mechanism on learning em-

beddings for preserving the graph structure. Strong embedding

methods should be able to recover the input graph, and also in-

fer missing edges. We evaluate on a number of challenging link

prediction tasks comprised of real world datasets, including social,

collaboration, and biological networks. Experiments show we sub-

stantially improve on our baselines, reducing link-prediction error

by 25%-67%.

2 RELATEDWORK
We review two broad classes of graph learning algorithms.

The first class is concerned with predicting labels over a graph,

its edges, and/or its nodes. Typically, these algorithms process a

graph (nodes and edges) as well as per-node features. These include

recent graph convolution methods [e.g. 3, 6, 14, 25, 28] with spectral

variants [6, 10, 15], diffusion methods [e.g. 8, 9, 11], including ones

trained until fixed-point convergence [20, 30] and semi-supervised

node classification [33] with low-rank approximation of convolu-

tion [17]. We differ from all these methods as (1) our algorithm is

trained exclusively from the graph structure (nodes and edges), not

utilizing per-node features or any labels during training, and (2) we

explicitly model the relationship between all node pairs.

The second class of algorithms consist of graph embedding meth-

ods. Their primary goal is to preserve the graph structure. They

explicitly model the relationship of all node pairs e.g. as dot product

of node embeddings. Some methods directly use the adjacency ma-

trix [7, 32], and others simulate random walks [2, 13, 27]. Our work

falls under this class of algorithms, where inference is a scoring

function V ×V → R, trained to score positive edges higher than

negative ones. Nonetheless, we differ from existing methods as

they specify the random walk and the context distribution using

hyperparameters, whereas we use differentiable parameters which

we jointly train while learning the embeddings, using an objective

that preserves the graph structure.

3 PRELIMINARIES
3.1 Graph Embeddings
We describe Graph-Preserving embedding methods in a general

framework (Eq. 1). An unweighted graph can be represented as an

Adjacency Matrix A ∈ {0, 1} |V |× |V |
, whereV is the set of all nodes.

In general, graph embedding methods minimize an objective:

min

Y
L(f (A),д(Y)); (1)

where Y ∈ R |V |×d
is a node embedding dictionary that the op-

timization wishes to learn, containing d dimensions per node;

f : R |V |× |V | → R |V |× |V |
is a transformation of the adjacency

matrix; д : R |V |×d → R |V |× |V |
is a pairwise edge function; and

Watch Your Step: Learning Graph Embeddings Through Attention MLG’18, August 2018, London, UK

L : R |V |× |V |×R |V |× |V | → R is a loss function. For instance, Matrix

Factorization (MF) [18] can be cast into this framework by setting

the adjacency transformation to identity f (A) = A; decompos-

ing Y into two halves, the left- and right-embedding dictionaries,

L ∈ R |V |× d
2 and R ∈ R |V |× d

2 , as Y = [L | R]; setting the edge

function to their outer product д(Y) = д ([L | R]) = L × RT ; and
setting the loss to Frobenius norm, yielding:

min

L,R
| |A − L × RT | |F (2)

3.2 Learning Embeddings via RandomWalks
Introduced by Perozzi et al.[27], this family of methods [incl. 13, 16]

induce random walks along E by starting from a random node

v0 ∈ sample(V), and repeatedly sampling an edge to transition to

next node as vi+1 := sample(E[vi]), where E[vi] are the outgoing
edges from vi . The transition sequences (v0,v1,v2, . . .) (i.e. ran-
dom walks) are used to learn embeddings by stochastically taking

every node along the sequence vi ∈ (v0,v1,v2, . . .), and the em-

bedding representation of this anchor node vi is brought closer
to the embeddings of its next neighbors, {vi+1,vi+2, . . . ,vi+c }, the
context1. In practice, the context window size c can be sampled

from a distribution e.g. uniformU{1,C} as explained in [19].

LetD ∈ R |V |× |V |
be the co-occurancematrix from randomwalks,

with each entry Dvu containing the number of times nodesv and u
are co-visited within context distance c ∼ U{1,C}, in all simulated

random walks. Embedding methods utilizing random walks, can

also be viewed using the framework of Eq. (1). For example, to get

Node2vec [13], we can set f (A) = D, set the edge function to the

embeddings outer product д(Y) = Y × YT , and set the loss function

to negative log likelihood of softmax, yielding:

min

Y

logZ −
∑

v ∈V ,u ∈V
Dvu (Y

T
v Yu)

 , (3)

where the normalizing constant Z =
∑
v,u exp(YTv Yu) can be esti-

mated using negative sampling [13, 23].

3.2.1 Graph Likelihood. [2] learn embeddings by maximizing

the graph likelihood:∏
v,u ∈V

σ (д(v,u))Dvu (1 − σ (д(v,u)))1[(v,u),E], (4)

where function д : V × V → R scores edges e.g. д(v,u) = LTvRu ;
σ (.) is the standard logistic, σ (x) = (1 + exp(−x))−1; and indicator

function1[.] takes binary predicates and outputs= 1 if its argument

is true and = 0 otherwise. Maximizing the graph likelihood pushes

σ (д(v,u)) towards 1 if value Dvu is large and pushes it towards 0

if (v,u) < E.
Using our matrix notation, we write our main objective: the

Negative Log Graph Likelihood (NLGL), as:������−D ◦ log

(
σ (L × RT)

)
− 1[A = 0] ◦ log

(
1 − σ (L × RT)

)������
1

, (5)

1
Our definition of context differs [27] and [13]. We use context nodes that strictly

follow their anchor, whereas those methods use define their context that surrounds the
anchor, like {vi−c , . . . , vi−2, vi−1, vi+1, vi+2, . . . , vi+c }. Our definition preserves
the direction of edges.

which we minimize w.r.t model embedding parameters L,R ∈

R |V |× d
2 , where logistic σ (x) and indicator 1[.] functions applied

element-wise; ◦ is the hadamard product; and the L1-norm | |.| |1
of a matrix is the sum of its entries. The entries of this matrix are

positive because 0 < σ (.) < 1.

4 METHOD
following our general framework (Eq 1), we setд(Y) = д ([L | R]) =
L×RT and model f (A) = E[D], as an expectation on co-occurrence

matrix produced from simulated random walk. Using this closed

form, we introduce attention parameters on the random walk,

which live in an extended version of NLGL (Eq. 5).

4.1 Walk Co-occurance Expectation E[D]
Let T be the transition matrix for a graph, which can be calculated

by normalizing the rows of its adjacency matrix A to one
2
. Given

an initial probability distribution p(0) ∈ R |V |
of a random surfer,

it is possible to find the distribution of the surfer after one step

conditioned on p(0) as p(1) = p(0)
T
T and after k steps as p(k) =

p(0)
T
(T)k , where (T)k multiplies matrix T with itself k-times. We

are interested in an analytical expression for E[D], the expectation
over co-occurrence matrix produced by simulated random walks.

A closed form expression for this matrix will allow us to perform

end-to-end learning.

In practice, random walk methods based on DeepWalk [27] do

not useC as a hard limit; instead, given walk sequence (v1,v2, . . .),
they sample c ∼ U{1,C} separately for each anchor nodevi and use
context nodes (vi+1,vi+2, . . . ,vi+c), that are within c-steps away
from anchor nodevi . In expectation, nodesvi+1,vi+2,vi+3, . . . , will
appear as context for anchor nodevi , respectively with probabilities
1, 1 − 1

C , 1 −
2

C , We can write an expectation on D:

E
[
DDeepWalk[C]

]
=

C∑
k=1

Pr(c ≥ k)P̃(0) (T)k , (6)

where DDeepWalk[C]
is the co-occurrence matrix, if DeepWalk sim-

ulated random walks with maximum context window C ; Pr(c ≥ k)
indicates the probability of node with distance k from anchor to be

selected; and P̃(0) ∈ R |V |× |V |
is the initial starting positions matrix,

described in next subsection.

Since Pr(c = k) = 1

C for all k = {1, 2, . . . ,C}, we can expand

Pr(c ≥ k) =
∑C
j=k P(c = j), and re-write the expectation as:

E
[
DDeepWalk[C]

]
= P̃(0)

C∑
k=1

[
1 −

k − 1

C

]
(T)k . (7)

Eq. (7) is derived, step-by-step, in the Appendix. The term

[
1 − k−1

C

]
imposes a linear decay on the distribution of context nodes, with

a decay factor of
1

C . Therefore, given a random walk sequence

(v0,v1, · · ·), the embedding for each node vi along the sequence,

in expectation, is updated closer to the convex combination of

vi+1 + (1 −
1

C) ×vi+2 + (1 −
2

C) ×vi+3 + · · · +
1

C ×vi+C .
As an aside, we note that this word2vec-style linear decay in

Eq. (7) is not the only possible choice. Another example comes from

2
Weuse right stochastic transition. See https://en.wikipedia.org/wiki/Stochastic_matrix

https://en.wikipedia.org/wiki/Stochastic_matrix

MLG’18, August 2018, London, UK Abu-El-Haija, Perozzi, Al-Rfou and Alemi

GloVe [26], which uses the harmonic series. Using our notation, we

can write the expectation on D, obtained by GloVe’s decay, as:

E
[
DGloVe[C]

]
= P̃(0)

C∑
k=1

1

k
(T)k . (8)

4.1.1 Choice of P̃(0). Random walk simulation of node2vec [12]

starts 80 walks from every graph node v ∈ V . Therefore, in our ex-

periments, we set P̃(0) := diag(80, 80, . . . , 80). This initial condition

yields Dvu to be the expected number of times that u is visited if

we started 80 walks from v . There can be other reasonable choices.

Nonetheless, we use what worked well in practice for [13, 27]. We

leave the search for a better P̃(0) as future work.

4.2 Parametrizing the Power Series of the
Transition Matrix

We propose to parameterize the importance of different terms in the

power series of the transition matrix. Instead of pre-determining

the coefficient to each (T)k , our coefficients are learnable and come

from probability distribution Q = (Q1,Q2, · · · ,QC) with Qk ≥ 0

and

∑
k Qk = 1, assigning weightQk to (T)k . Formally, we propose

the parametrized conditional expectation:

E [D | Q1,Q2, . . .QC] = P̃(0)
C∑
k=1

Qk (T)k . (9)

Existing random walk methods can be viewed as using a fixed dis-

tribution forQ , which has been hand engineered by their designers.

In the case of DeepWalk, Qk =
[
1 − k−1

C

]
. Correspondingly for

GloVe, Qk =
1

k .

4.3 Attention Models on RandomWalks
Rather than using an engineered distribution Q , we are interested
in estimating Q automatically, via backpropagation. To that end,

we propose two attention models, which guide the random surfer

on “where to attend to” as a function of distance from the source

node.

4.3.1 Softmax Attention. We first propose modeling the context

distribution Q as output of softmax:

(Q1,Q2,Q3, . . .) = softmax((q1,q2,q3, . . .)), (10)

where the variables qk are trained via backpropagation. Our hy-

pothesis is as follows. If we don’t impose a specific formula on

Q = (Q1,Q2, . . .QC), other than regularized softmax, then we can

use very large values of C and allow every graph to learn its own

form of Q with its preferred sparsity and own decay form. Should

the graph structure require a small C , then the optimization would

discover a left-skewed Q with all of probability mass on {Q1,Q2}

and

∑
k>2Qk ≈ 0. However, if according to the objective, a graph

is better preserved by making longer walks, then they can learn to

use a large C (e.g. using uniform or even right-skewed Q distribu-

tion), focusing more attention on longer distance connections in

the random walk.

To this end, we propose to train softmax attention model on

the infinite power series of the transition matrix. We define an

expectation on our proposed random walk matrix Dsoftmax[∞]
as

3
:

E
[
Dsoftmax[∞]

��� q1,q2,q3, . . .]
= P̃(0) lim

C→∞

C∑
j=1

1

eqj

C∑
k=1

eqk (T)k ,
(11)

where q1,q2, . . . are jointly trained with the embeddings to mini-

mize our objective. To reduce notation, we also refer to the expec-

tation (Eq. 11) as Dsoftmax[∞]
.

4.3.2 λ Geometric Decay Attention. We propose a second atten-

tion mechanism. Contrary to the softmax attention, which assumes

that every step has its own (learnable) importance, our λ-decay

attention assumes that coefficients of (T)k must geometrically de-

cay with k . Specifically, we assume that vertices closer to anchor

nodes in random walks are more important than further ones. We

propose context distribution Q :

Qk =
σ (λ)k∑C
j=1 σ (λ)

j
, (12)

where the logistic
4
output range is in [0, 1]. This yields a conditional

expectation on D, parametrized with λ:

E
[
Dλ-decay[C]

��� λ] = P̃(0)
1∑C

j=1 σ (λ)
j

C∑
k=1

σ (λ)k (T)k . (13)

This allows tuning the attention of a random walker to specific

distances for each graph, relying only on a single learned parameter.

We compare both attention mechanisms in the Section 5.

4.4 Training Objective
The final training objective for the Softmax attention mechanism,

coming from the NLGL Eq. (5),

min

L,R,q
β | |q| |2

2
+

������−E[D | q] ◦ log
(
σ (L × RT)

)
− 1[A = 0] ◦ log

(
1 − σ (L × RT)

)������
1

is minimized w.r.t attention parameter vector q = (q1,q2, . . .) and

node embeddings L,R ∈ R |V |× d
2 . Hyper-parameter β ∈ R applies

L2 regularization on the attention parameters. We emphasize that

our attention parameters q live within the expectation over data

D, and are not part of the model (L,R) and are not required for

inference. The constraint

∑
k Qk = 1, through the softmax activa-

tion, prevents E[Dsoftmax] from collapsing into a zero matrix. The

objective for the λ-decay attention model is similar, except that we

don’t regularize the λ parameter.

5 EXPERIMENTS
5.1 Link Prediction Experiments
We evaluate the quality of embeddings produced when random

walks are augmented with attention, through experiments on link

3
We do not actually unroll the summation in Eq. (11) an infinite number of times. Our

experiments show that unrolling it 10 or 20 times is sufficient to obtain state-of-the-art

results.

4
In practice, rather than setting Q ∝ σ (λ)k , we set Q ∝ 0.99σ (λ)k + 0.01, to avoid

numerical errors.

Watch Your Step: Learning Graph Embeddings Through Attention MLG’18, August 2018, London, UK

Dataset |V | |E | nodes edges directed?

wiki-vote 7, 066 103, 663 users votes yes

ego-Facebook 4, 039 88, 234 users friendship no

ca-AstroPh 17, 903 197, 031 researchers co-authorship no

ca-HepTh 8, 638 24, 827 researchers co-authorship no

PPI [31] 3, 852 20, 881 proteins chemical interaction no

Table 1: Datasets used in our experiments.

Dataset dim

Adjacency Matrix D by Simulation Attention Walks (ours) Error

ReductionEigen

Maps

SVD DNGR

node2vec

C = 2

node2vec

C = 5

Asym

Proj

λ-decay (13) softmax (11)

64 61.3 86.0 59.8 64.4 63.6 91.7 93.5 ± 0.62 93.8 ± 0.13 25.2%

wiki-vote

128 62.2 80.8 55.4 63.7 64.6 91.7 92.9 ± 0.73 93.8 ± 0.05 25.2%

ego-Facebook

64 96.4 96.7 98.1 99.1 99.0 97.4 99.3 ± 0.02 99.4 ± 0.10 33.3%

128 95.4 94.5 98.4 99.3 99.2 97.3 99.3 ± 0.03 99.5 ± 0.03 28.6%

64 82.4 91.1 93.9 97.4 96.9 95.7 98.6 ± 0.03 97.9 ± 0.21 46.2%

ca-AstroPh

128 82.9 92.4 96.8 97.7 97.5 95.7 98.6 ± 0.03 98.1 ± 0.49 39.1%

ca-HepTh

64 80.2 79.3 86.8 90.6 91.8 90.3 91.4 ± 0.17 93.6 ± 0.06 22.0%

128 81.2 78.0 89.7 90.1 92.0 90.3 92.2 ± 0.18 93.9 ± 0.05 23.8%

64 70.7 75.4 76.7 79.7 70.6 82.4 90.0 ± 0.03 89.8 ± 1.05 43.5%

PPI

128 73.7 71.2 76.9 81.8 74.4 83.9 90.4 ± 0.06 91.0 ± 0.28 44.2%

Table 2: Results on Link Prediction Evaluation. Shown is the ROC-AUC. Note that both our proposed attentionmodels perform
well on the task, and substantially better than all baselines. Error Reduction is calculated as (1−them)−(1−us)

(1−them)
, where “them” the

best performer from prior methods and “us” is the best performer of the attention mechanisms.

ca-AstroPh

ego-Facebook

PPI
ca-HepTh

wiki-vote

10 3

10 2

10 1

100

A
tte

nt
io

n
P

ro
ba

bi
lit

y
M

as
s -decay

ca-AstroPh

ego-Facebook

PPI
ca-HepTh

wiki-vote

softmax

Q1 Q2 Q3 Q4 Q5

Figure 3: Log-scale of learned Attention weights Q across datasets for both λ-decay (left) and softmax (right). Auotmatically-
found attention agrees with manual tuning node2vec on hyper-parameter C, as shown in Figure 2. We note that increasing β
will tend to push the distribution towards Uniform and less spiky.

prediction [21]. Link prediction is a challenging task, with many

real world applications in information retrieval, recommendation

systems and social networks. As such, it has been used to study the

properties of graph embeddings [13, 27]. Such an intrinsic evalua-

tion emphasizes the structure-preserving properties of embedding.

Our experimental setup is designed to determine how well the

embeddings produced by a method captures the topology of the

graph. We measure this in the manner of [13]: remove a fraction

(=50%) of graph edges, learn embeddings from the remaining edges,

and measure how well the embeddings can recover those edges

which have been removed. More formally, we split the graph edges

E into two partitions of equal size Etrain and Etest such that the

training graph is connected. We also sample non existent edges

((u,v) < E) to make E−
train

and E−
test

. We use (Etrain, E
−
train

) for train-

ing and model selection, and use (Etest, E
−
test

) to compute evaluation

metrics. We train our models using TensorFlow, with PercentDelta

optimizer [1]. For the results Table 2, we use β = 0.5 and we tried

various values forC in {5, 10, 20, 30}, and the results made no differ-

ence, confirming that our method effectively uses a portion of the

context distribution. To ensure repeatability of results, we release

our evaluation scripts
5
.

Datasets: Table 1 describes the datasets used in our experiments.

Datasets available from SNAP https://snap.stanford.edu/data.

Baselines: We evaluate against many baselines. For all meth-

ods, we calculate д(Y) ∈ R |V |× |V |
, and extract entries from д(Y)

5
To be uploaded to github, by camera-ready submission, if paper gets accepted.

https://snap.stanford.edu/data

MLG’18, August 2018, London, UK Abu-El-Haija, Perozzi, Al-Rfou and Alemi

1 2 3 4 5 6 7 8 9 10
Q

0.0

0.5

1.0

A
tte

nt
io

n
P

ro
ba

bi
lit

y
M

as
s

ego-Facebook

1 2 3 4 5 6 7 8 9 10
Q

PPI

1 2 3 4 5 6 7 8 9 10
Q

wiki-vote

= 0.3
= 0.5
= 0.7

Figure 4: Affect of varying the regularization β of the softmax attention mechanism when C = 10, drawn in linear scale. Note
that distributions can quickly tail off to zero (ego-Facebook and PPI), but some graphs prefer to use thewhole space (wiki-vote).

corresponding to positive and negative test edges, then use them

to compute ROC AUC. We compare against following baselines:

– EigenMaps [5]. Uses A and minimizes Euclidean distance of

adjacent nodes embedding vectors. We use sk-learn’s eigendecom-

position. Inference is through д(Y)uv = exp(−||Yu − Yv | |
2).

– SVD. Singular value decomposition of A. Eq. (2) with added or-

thonormality constraints. We use scikit-learn’s SVD decomposition.

д(Y) = д ([L | R]) = L × RT .
– DNGR [7]. Non-linear (i.e. deep) embedding of nodes, using an

auto-encoder on A. We use author’s code to learn the deep embed-

dings Y and use for inference д(Y) = YYT .
– node2vec [13]. Simulates random walks and uses word2vec to

learn node embeddings. Minimizes objective in Eq. (3). For Table 2,

we use author’s code to learn embeddings Y then use д(Y) = YYT .
We run with C = 2 and C = 5. We sweep C in Figure 2, showing

indeed that there are no good default for C that works best across

datasets.

– AsymProj [2]. Learns edges as asymmetric projections in a deep

embedding space, trained by maximizing the graph likelihood (Eq.

4). We take results from authors.

Results: Our results, summarized in Table 2, show that our

proposed methods substantially outperform all baseline methods.

Specifically, we see that the error is reduced by up to 45% over

baseline methods which have fixed context definitions. This shows

that by parameterizing the context distribution and allowing each

graph to learn its own distribution, we can better preserve the graph

structure (and thereby better predict missing edges).

Discussion: Both attention models frequently perform quite

similarly, despite the fact that the softmaxmodel has more flexibility

over its distribution. This implies that in many cases, the geometric

decay assumption over the context holds. Interestingly, the two

datasets where the attention models differ the most (ca-AstroPh and

ca-HepTh) are the most similar to each other (both are collaboration

networks of researchers). This illustrates the importance of the

attention models we propose – seemingly similar networks may

require drastically different context distributions in order to best

preserve their individual graph structure.

Figure 3 shows how the learned attention weightsQ vary across

datasets for both the softmax model and the λ-decay model. Each

dataset learns its own attention form, and they look similar for the

two attention mechanisms except that the λ has less degrees of

freedom. The hyper-parameter C determines the highest power of

the transitionmatrix, and hence themaximum context size available

to the attention model. We suggest using large values for C , since
the attention weights can effectively use a subset of the transition

matrix powers. For example, if a network needs only 2 hops to be

accurately represented, then it is possible for the softmax attention

model to learn Q3,Q4, · · · ≈ 0. Figure 4 shows how varying the

regularization term β allows the softmax attention model to “attend

to” only what each dataset requires. We observe that for most

graphs, the majority of the mass gets assigned toQ1,Q2. This shows

that shorter walks are more beneficial for most graphs. However,

on wiki-vote, better embeddings are produced by paying attention

to longer walks, as its softmax Q is uniform-like, with a slight

right-skew.

5.2 Sensitivity Analysis
As we remove context hyper-parameters, maximum window size

and form of distribution: C and e.g.U, we introduce other hyper-

parameters, specifically walk length (also C) and regularizer β for

the softmax attentionmodel. Nonetheless, we show that ourmethod

is robust to various choices of these two. Figures 3 (left) and 4

show that the softmax attention weights drop to almost zero if the

graph can be preserved using shorter walks, which is not possible

with fixed-form distributions (e.g. U). In addition, we show the

model test accuracy when sweeping our hyper-parameters C and

β in Figure 6. We observe that all the accuracy metrics are within

1% to 2%, when varying these hyper-parameters, and are all still

well-above our baselines which sample from a fixed-form context

distribution.

5.3 Node Classification Experiments
We conduct node classification experiments, on two citation datasets,

Cora and Citeseer, with the following statistics: Cora contains

(2, 708 nodes, 5, 429 edges and K = 7 classes); and Citeseer contains

(3, 327 nodes, 4, 732 edges and K = 6 classes). We learn embed-

dings from only the graph structure (nodes and edges), without

observing node features nor labels during training. Figure 5 shows

t-SNE visualization of the Cora dataset, comparing our method

Watch Your Step: Learning Graph Embeddings Through Attention MLG’18, August 2018, London, UK

(a) node2vec (b) Ours (softmax attention)

Figure 5: t-SNE visualization of node embeddings for Cora dataset. We run node2vec and our softmax model, and both do not
accept labels during training. However, the labels are used to color nodes. Both algorithms are doing a decent job in discovering
clusters that correspond to node labels. However, qualitatively, our embeddings acheives better separation.

0.3 0.5 0.7 0.9

0.965

0.970

0.975

0.980

0.985

R
O

C
-A

U
C

ca-AstroPh

0.3 0.5 0.7 0.9

0.90

0.91

0.92

0.93

0.94

ca-HepTh

0.3 0.5 0.7 0.9

0.70

0.75

0.80

0.85

0.90

PPI

0.3 0.5 0.7 0.9
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
wiki-vote

softmax[C=5] softmax[C=10] softmax[C=20] softmax[C=30] node2vec[best C] node2vec[worst C]

Figure 6: SensitivityAnalysis of softmax attentionmodel.We show4 (dashed) lines, each for a choice ofC, plotting test accuracy
against regularization parameter β . For reference, we show the best and worst node2vec performer for C ∈ [1, 10], detailed in
Figure 2 (here lines are horizontal as they do not depend on β). Our method is robust to reasonable choices of these hyper-
parameters. All experiments trained a 128-dim embedding, Y ∈ R |V |×128.

with node2vec [13]. For classification, we follow the data splits of

[33], with only 140 and 120 nodes for training, respectively, for the

Cora and Citeseer dataset. Test partitions include 1000 nodes. We

predict labels L̃ ∈ R |V |×K
as:

L̃ = exp (αд(Y)) × Ltrain, (14)

where binary Ltrain ∈ {0, 1} |V |×K
contains rows of ones corre-

sponding to nodes in training set and zeros elsewhere. The scalar

α ∈ R is manually tuned on the validation set. The classification

results, summarized in Table 3, show that our model learns a better

unsupervised representation than previous methods, that can then

be used for supervised tasks. We do not compare against other

methods that utilize node features during training and inference

[incl. 17, 33], as our method is able to predict labels given only the

graph structure.

Our classification prediciton function (Eq. 14) contains only one

scalar parameter α . It can be thought of a “smooth” k-nearest-

neighbors, as it takes a weighted average of known labels, where

the weights are exponential of the dot-product similarity.

Dataset DeepWalk

node2vec

C = 5

softmax

(ours)

Cora 67.2 63.1 67.9
Citeseer 43.2 45.6 51.5

Table 3: Classification accuracy for two citation datasets. Re-
sults for DeepWalk are copied from [17]. We generated re-
sults for node2vec and ours, using Equation 14

6 CONCLUSION
In this paper, we propose an attention mechanism for learning

the context distribution used in graph embedding methods. We

derive the closed-form expectation of DeepWalk [27] co-occurance

statistics, showing an equivalence between the context distribution

hyper-parameters, and the co-efficients of the power series of the

graph transition matrix. Then, we propose to replace the context

hyper-parameters with trainable models, that we learn jointly with

the embeddings on an objective that preserves the graph structure

MLG’18, August 2018, London, UK Abu-El-Haija, Perozzi, Al-Rfou and Alemi

(Negative Log Graph Likelihood, NLGL). Specifically, we propose

two attention models: softmax and geometric decay. The first allows

learning a free-form contexts distribution with a parameter per step,

and the second imposes a geometric decay as a function of distance

from anchor with one model parameter: the decay rate.

We show significant improvements on link prediction and node

classification over state-of-the-art baselines (that use a fixed-form

context distribution), reducing error on link prediction and classifi-

cation, respectively by up to 40% and 10%. In addition to improved

performance (by learning distributions of arbitrary forms), our

method can obviate the manual grid search over hyper-parameters:

walk length and form of context distribution, which can drastically

fluctuate the quality of the learned embeddings and are different

for every graph. On the datasets we consider, we show that our

method is robust to its hyper-parameters, as described in Section

5.2. Our visualizations of converged attention weights convey to

us that some graphs (e.g. voting graphs) can be better preserved by

using longer walks, while other graphs (e.g. protein graphs) contain

more information in short dependencies and require shorter walks.

We believe that our contribution in replacing these sampling

hyperparameters with a learnable context distribution is general

and can be applied to many domains and modeling techniques in

graph representation learning.

REFERENCES
[1] Sami Abu-El-Haija. 2017. Proportionate gradient updates with PercentDelta. In

arXiv.
[2] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. 2017. Learning Edge

Representations via Low-Rank Asymmetric Projections. In ACM International
Conference on Information and Knowledge Management (CIKM).

[3] James Atwood and Don Towsley. 2016. Diffusion-Convolutional Neural Networks.

In Advances in Neural Information Processing Systems (NIPS).
[4] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. 2015. Neural Machine

Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations (ICLR).

[5] Mikhail Belkin and Partha Niyogi. 2003. Laplacian Eigenmaps for Dimensionality

Reduction and Data Representation. In Neural Computation.
[6] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spec-

tral networks and deep locally connected networks on graphs. In International
Conference on Learning Representations.

[7] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2016. Deep Neural Networks for Learn-

ing Graph Representations. In Proceedings of the Association for the Advancement
of Artificial Intelligence.

[8] Liang-Chieh Chen, Alexander Schwing, Alan Yuille, and Raquel Urtasun. 2015.

Learning Deep Structured Models. In International Conference on Machine Learn-
ing.

[9] Hanjun Dai, Bo Dai, and Le Song. 2016. Discriminative Embeddings of Latent

Variable Models for Structured Data. In International Conference on Machine
Learning.

[10] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In

Advances in Neural Information Processing Systems (NIPS).
[11] D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-

Guzik, and R. Adams. 2015. Convolutional Networks on Graphs for Learning

Molecular Fingerprints. In Advances in Neural Information Processing Systems
(NIPS).

[12] Aditya Grover. 2016. GitHub: node2vec code. Technical Report. https://github.
com/aditya-grover/node2vec

[13] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for

Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

[14] W. Hamilton, R. Ying, and J. Leskovec. 2017. Inductive Representation Learning

on Large Graphs. In NIPS.
[15] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep Convolutional Networks

on Graph-Structured Data. In arXiv:1506.05163.
[16] Ganesh J, Soumyajit Ganguly, Manish Gupta, Vasudeva Varma, and Vikram Pudi.

2016. Author2Vec: Learning Author Representations by Combining Content and

Link Information. In Proceedings of the International Conference Companion on

World Wide Web (WWW) (WWW ’16 Companion).
[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[18] Y. Koren, R. M. Bell, and C. Volinsky. 2009. Matrix factorization techniques for

recommender systems. In IEEE Computer.
[19] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving Distributional

Similarity with Lessons Learned from Word Embeddings. In TACL.
[20] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. 2016. Gated Graph Sequence

Neural Networks. In International Conference on Learning Representations.
[21] D. Liben-Nowell and J. Kleinberg. 2007. The Link-Prediction Problem for Social

Networks. In Journal of American Society for Information Science and Technology.
[22] Y. Luo, Q. Wang, B. Wang, and L. Guo. 2015. Context-Dependent Knowledge

Graph Embedding. In Conference on Emperical Methods in Natural Language
Processing (EMNLP).

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeff Dean. 2013.

Distributed Representations of Words and Phrases and their Compositionality.

In Advances in Neural Information Processing Systems NIPS.
[24] Volodymyr Mnih, Nicolas Heess, Alex Graves, and koray kavukcuoglu. 2014. Re-

current Models of Visual Attention. In Advances in Neural Information Processing
Systems (NIPS).

[25] M. Niepert, M. Ahmed, and K. Kutzkov. 2016. Learning Convolutional Neural

Networks for Graphs. In International Conference on Machine Learning (ICML).
[26] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors for Word Representation. In Conference on Empirical Methods in
Natural Language Processing, EMNLP.

[27] B. Perozzi, R. Al-Rfou, and S. Skiena. 2014. DeepWalk: Online Learning of Social

Representations. In Knowledge Discovery and Data Mining (KDD).
[28] Arantxa Casanova Adriana Romero Pietro LiÃš Yoshua Bengio

Petar VeliÄŊkoviÄĞ, Guillem Cucurull. 2018. Graph Attention Networks. In

International Conference on Learning Representations (ICLR).
[29] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban,

Kevin Murphy, and Li Fei-Fei. 2016. Detecting Events and Key Actors in Multi-

Person Videos. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[30] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. 2009. The

Graph Neural Network Model. In IEEE Trans. on Neural Networks.
[31] C. Stark, B.J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers.

2006. BioGRID: A General Repository for Interaction Datasets. In Nucleic Acids
Research. https://www.ncbi.nlm.nih.gov/pubmed/16381927

[32] D. Wang, P. Cui, and W. Zhu. 2016. Structural Deep Network Embedding. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[33] Z. Yang, W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting Semi-Supervised

Learning with Graph Embeddings. In International Conference on Machine Learn-
ing (ICML).

[34] Zichao Yang, Diyi Yang1, Chris Dyer, Xiaodong He, Alex Smola, and Eduard

Hovy. 2016. Hierarchical Attention Networks for Document Classification. In

Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL).

https://github.com/aditya-grover/node2vec
https://github.com/aditya-grover/node2vec
https://www.ncbi.nlm.nih.gov/pubmed/16381927

Watch Your Step: Learning Graph Embeddings Through Attention MLG’18, August 2018, London, UK

7 APPENDIX
7.1 Step-by-step Derivation of Equation (7)
Let x(k) be the position of random surfer at time k . Speficically,
x : Z+ → V . We assume a Markov chain: The value of x(k) only
depends on previous step: x(k − 1). To calulate the expectation

E[D], the square node-to-node co-occurence matrix, we start by

calculating one entry at a time: E[Duv], the expected number of

times that u is selected inv’s context. LetWv (k) be the context that
gets sampled if v is visited at the kth step. Concretely, if x(k) = v ,
and the random walker continues the sequence, x(k + 1) = v ′

1
→

x(k+2) = v ′
2
→ x(k+3) = v ′

3
. . . , then the context set of DeepWalk

can be defined asWv (k) = {vj | j ≥ c}, where c ∼ U{1,C} We

would like to count the event u ∈Wv (k) for every k ∈ {1, 2, . . . ,C}.
Using Markov Chain, we can write:

Pr (x(i + k) = u | x(i) = v) = Pr (x(k) = u | x(0) = v)

=
(
T k

)
uv

(15)

Now, if node u was visited k steps after node v , then the proba-

bilitiy of it being sampled is given by:

Pr (u ∈Wv (k) | x(k) = u,x(0) = v). (16)

In case of DeepWalk [27], probability above equals:

Pr (k ≤ c | x(k) = u,x(0) = v) where c ∼ U{1,C}, (17)

and eventk ≤ c is independant of the condition (x(k) = u ∩ x(0) = v).
Further, event k ≤ c can be partitioned and Eq. (17) can be written

as

Pr (c = k ∪ c = k + 1 ∪ · · · ∪ c = C) (18)

=

C∑
j=k

Pr (c = j) (19)

= (C − k + 1)

(
1

C

)
= 1 −

k − 1

C
, (20)

where second line is trivial since the events c = j are disjoint. We

can now use Bayes’ rule to derive the probability of u being visited

k steps after v and being selected in v’s sampled context, as:

Pr (u ∈Wv (k),x(k) = u | x(0) = v)

= Pr (u ∈Wv (k) | x(k) = u,x(0) = v) Pr (x(k) = u | x(0) = v)

=

(
1 −

k − 1

C

) (
T k

)
uv

(21)

Now, let Evku be the event that a walker visits v and after k
steps, visits u and selects it part of its context. This event happens

with the probability indicated in Equation 21. Concretely,

E [Evku | x(0) = v] =

(
1 −

k − 1

C

) (
T k

)
uv
. (22)

Let Ev∗u count the events {Evku : k ∈ [1,C]}, then:

E [Ev∗u | x(0) = v] = E

[C∑
k=1

Evku

����� x(0) = v
]

(23)

=

C∑
k=1

E [Evku | x(0) = v] =
C∑
k=1

(
1 −

k − 1

C

) (
T k

)
uv
. (24)

Suppose we run DeepWalk, startingm random walks from each

node v , then the expected number of times that u is present in the

context of v is given by:

E
[
DDeepWalk

uv

]
=mE [Ev∗u | x(0) = v] =m

C∑
k=1

(
1 −

k − 1

C

) (
T k

)
uv
.

Finally, we can write down the expectation over the square ma-

trix D:

E
[
DDeepWalk

]
= diag(m,m, . . . ,m)

C∑
k=1

(
1 −

k − 1

C

) (
T k

)
= Equation (7)

□

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph Embeddings
	3.2 Learning Embeddings via Random Walks

	4 Method
	4.1 Walk Co-occurance Expectation E[D]
	4.2 Parametrizing the Power Series of the Transition Matrix
	4.3 Attention Models on Random Walks
	4.4 Training Objective

	5 Experiments
	5.1 Link Prediction Experiments
	5.2 Sensitivity Analysis
	5.3 Node Classification Experiments

	6 Conclusion
	References
	7 Appendix
	7.1 Step-by-step Derivation of Equation (7)

