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ABSTRACT
Many types of relations in physical, biological, social and informa-
tion systems can be modeled as homogeneous or heterogeneous
concept graphs. Hence, learning from and with graph embeddings
has drawn a great deal of research interest recently, but developing
an embedding learning method that is flexible enough to accommo-
date variations in physical networks is still a challenging problem.
In this paper, we conjecture that the one-shot supervised learning
mechanism is a bottleneck in improving the performance of the
graph embedding learning, and propose to extend this by intro-
ducing a multi-shot "unsupervised" learning framework where a
2-layer MLP network for every shot .The framework can be exten-
ded to accommodate a variety of homogeneous and heterogeneous
networks. Empirical results on several real-world data set show
that the proposed model consistently and significantly outperforms
existing state-of-the-art approaches on knowledge base completion
and graph based multi-label classification tasks.
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1 INTRODUCTION
Recent studies have highlighted the importance of learning dis-
tributed representations for symbolic data in a wide variety of
artificial intelligence tasks [2]. Research on word embeddings [13]
has led to breakthroughs in many related areas, such as machine
translation [1], question answering [24] and visual-semantic align-
ments [10]. However, learning to predict for large-scale knowledge
graphs (KGs) is still a challenging problem left, this is largely due to
the diversity of the ontologies, and the semantic richness of the con-
cepts which makes it really hard to generate proper and universally
applicable graph embeddings based on word-level embeddings [5].

Being able to generate reasonable and accurate distributed re-
presentations for large-scale KGs would be particularly valuable, in
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that it may help predict unobserved facts from limited concepts, un-
cover gaps in our knowledge, suggest new downstream applications,
which clearly reflects the central concerns of the artificial intelli-
gence [9, 16]. Therefore, massive attention has been devoted to the
potential of embedding entities and relationships of multi-relational
data in low-dimensional vector spaces in recent years [22].

In this paper, we consider the problem of developing simple and
efficient model for learning neural representation of generalized
knowledge graphs, including the multi-relational heterogeneous
graphs, and more specifically defined homogeneous graphs (such as
social and biological networks).

Following the pioneer work[4, 18], although almost all of the
state-of-the-art approaches have proven success in numerous ap-
plications by modeling the graph embedding learning problem as
supervised binary classification problems, their modeling goals only
consider a one-shot (single purpose) mapping from the embed-
ding space to the criterion space, which we conjecture, would be
vulnerable to loss considerable amount of the structured semantic
information and prevents the formulation of a methodology that is
objective enough to cope with the highly sparse knowledge graphs.
For instance, if given a fact (Elvis Presley, profession, singer), one
could immediately learn the following queries, which we call these
queries asmulti-shot briefly:

• Q1: What is the profession of Elvis Presley? A1: singer.
• Q2: Can you name a person whose profession is singer? A2:
Elvis Presley.

• Q3: What is the possible relationship in between Elvis Presley
and singer? A3: profession.

This is theNatural waywe humans learn themeaning of concepts
expressed by a statement. These self-labeled queries reflect the follo-
wing modeling philosophy: (1) (Subject , Predicate) ⇒ Object ; (2)
(Object , Predicate) ⇒ Subject ; (3) (Subject ,Object) ⇒ Predicate ,
respectively. This has been exclusively adopted by the previous
research. However, none of them have systematically investigated
the effect of combining such information, so we propose to handle
the embedded learning problem of KGs with a novelmulti-shot
unsupervised neural network model, called the Graph Embedding
Network (GEN).The primary motivation of this paper is to develop a
representation learning method that is suitable and flexible enough
for modeling different types of KGs from a universal perspective.
To achieve this objective, the most important problem is associated
with: how to define the optimization problem and how to solve it.We
consider modeling the facts conceptually instead of concretely (or
syntactically), which means that we will focus on the semantic
meanings of the embeddings, rather than their syntactic features.
Meanwhile, we call GEN unsupervised for we won’t give model
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the label of the data, but each of the triple is decomposed into three
self-labeled queries, so the model can be seen as supervised.

The major contributions are: (1) We propose GEN, a novel and
efficient embedding learning framework for generalized KGs. (2)We
consider multi-shot information for embedding learning simultane-
ously.(3) We show how GEN accords with established principles in
cognitive science and provides flexibility in learning representati-
ons that works on graphs conforming to different domains.

2 RELATEDWORK
During the last few years, an increasing amount of research atten-
tion has been devoted to the challenge of representation learning on
KGs, especially focused on the potential benefits for the knowledge
base completion (KBC) tasks, including the entity prediction and
relation prediction problem. Among which, the relation translating
model TransE [4], the tensor factorization based semantic matching
model RESCAL [18], and the neural network based semantic mat-
ching model ER-MLP [7, 17], are probably the most heavily studied
from the methodology perspective. [16], [22], and [5] have provided
a good survey on such embedding learning algorithms.

Broadly speaking, related works can be divided into two catego-
ries: linear and non-linear, according to whether the output embed-
ding has a reasonable linear interpretation. State-of-the-art linear
models include the TransE, RESCAL, TranH [23], DistMult [25],
and ANALOGY [11], while the popular non-linear models include
the ER-MLP, ComplEx [21], HoIE [17], ProjE [20] and ConvE [6].
The proposed GEN model is also a non-linear model. Actually, the
ComplEx model can be seen as an extension of DistMult in the
complex space, albeit there is no nonlinear transformations applied,
we treat it as a non-linear model here.

The graph embedding learning models that is most closely rela-
ted to this work is probably the ProjE model, which makes use of
an embedding projection function defined as:

h(r, t) = д(w0 · f (wr
1r +w

t
1t + b1) + b0)

where h, r, t denote the embedding vectors, f (·) and д(·) are non-
linear activation functions, w0, wr

1 and wt
1 are learnable weight

matrices, b0 and b1 are bias vectors. ProjE model built upon the
query (?, r , t ) and the output ranking scores of entity h with re-
gard to the given query (?, r , t ) can be obtained through a softmax
function. ProjE is a one-shot solution which is distinctly different
from our GEN model. In order to save the computation cost, ProjE
introduced a negative sampling process, this could cause potential
risks for introducing additional bias. Besides, its candidate sampling
process is time-consuming and hard to work in parallel.

Another model that is closely related to the GEN model is the
ER-MLP model, which can be interpreted as creating representation
for each element of triples and deriving their existence from this
representation [16]. This model is built upon (h, r , t) ⇒ T /F and
it is a supervised solution, which is quite different from ours. One
well-known disadvantage of the ER-MLP is that, even properly
regularized, it is still easily prone to over-fitting on knowledge
graph datasets [17], therefore we do not compare with it in this
work, but instead with the ProjE model.

Simultaneously, in order to verify the validity of our solution on
heterogeneous networks, we further test it on multi-label classifica-
tion tasks with two state-of-the-art techniques: DeepWalk [19] and

node2vec [8]. Both of them are derived directly from the word2vec
model [13], which embeds nodes based on the skip-gram frame-
work, and trains the model with corpus generated through random
walking on that graph. However, it is shown that the random walk
sampling can be insufficient for supervised learning tasks in the
sparse network environment [12]. Our results support this conjec-
ture, the experimental results on benchmark tests provide strong
evidence that our model performs much better.

3 METHODS
3.1 The multi-shot Learning Framework
Most of the prevalent semantic knowledge databases are built upon
the Resource Description Framework (RDF) , in which the facts
are represented and stored in the form of SPO (Subject, Predicate,
Object) triples. Following the convention, we will use the symbol
(h, r , t ) to represent a unit of facts, in which h, r and t denote the
head entity, the relation, and the tail entity, respectively.

The proposed model (GEN) is designed to process data in sequen-
tial form. As shown in Fig.1, GEN consists of three components
(cells), each corresponding to an individual query with regard to
the given input triple. In this study, we propose to use a 2-layer
MLP network to deal with the parameter estimation problem for
each query individually, although it can be substituted by any ot-
her one-shot models, we only report the test results on MLP cells
for simplicity. In training mode, the training set is fed into the
system sequentially, each of the triple is decomposed into three
self-labeled queries: (h, r , ?) ⇒ t , (?, r , t) ⇒ h, and (h, ?, t) ⇒ r .
Each of the queries is fetched into the corresponding cell in order
to update the parameters. Since for any given triple, our model
would read it from three different perspective, we call it “multi-shot
model” to distinguish it from other related works.

We propose to use unsupervised learning techniques for graph
embedding learning tasks, because: (1) almost all of the large-scale
knowledge graphs are extremely sparse, which would unavoidably
degrade the quality and reliability of the supervised learning algo-
rithms. (2) Selecting negative examples for pair-wise training would
be tricky and expensive, since in practice, it is very hard to generate
a "proper and informative" negative sample responsive to each of
the positive examples. In order to avoid the sampling bias due to the
selection of uninformative entities, we use softmax cross-entropy
loss as a measure of the predictive discrepancy for model training,
because its probability interpretation is more objective than those
squared or logistic errors conventionally used in this area, and, it
has been proven to be convex for the MLP we used in this paper [3].

3.2 Definition of the GEN cells
The network structure of the E_CELLs and the R_CELLs are quite
similar, the only difference is that they have different number of
neurons in the hidden layer and the output layer, which are defined
as hyper-parameters as shown in Fig.1. For simplicity, we only
present the implementation details of the E_CELLs here. In order
to answer query (h, r , ?) ⇒ t , the hidden layer of the E_CELL takes
input from the embedding dictionary according to label h and r ,
the hidden layer is defined as:

x1 = f (We
o · x0 + b0) (1)
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Figure 1: GEN: A Graph Embedding Model

where x0 = [h ⊕ r], denotes the concatenation of the embedding
vectors, hence the x0 is a 2d × 1 real-value vector.We

o is a k × 2d
weights matrix, b0 is ak×1 bias vector,k denotes the number of neu-
rons in the hidden layer, and f (·) is a non-linear activation function,
in this work, we use the rectified linear unit (ReLU) function for
all the experiments [15]. The output layer takes the hidden state
vector x1 as input, mapping it to the target label space:

ŷ = д(We
1 · x1 + b1) (2)

whereWe
1 is a Ne × k weights matrix, b1 is a Ne × 1 bias vector,

Ne denotes the number of entities in the dictionary, д(·) denotes
the softmax function. Hence, ŷ is a Ne × 1 probability vector, when
training the model with a given fact (h, r , t ) to answer the query
(h, r , ?), the predictive results output by the model is a probabilistic
distribution over all of the possible candidate entities.

3.3 Model training
Parameters of the model can be logically divided into two parts. Fir-
stly, the distribution representation of the entities and the relations
are defined in the same d-dimensional space, which, as shown in
Fig.1, is organized together as a learnable dictionary of embeddings.
Secondly, there exist two types of MLP cells in the model, one de-
als with the entity prediction tasks, the other is responsible for
the relation prediction tasks, which are marked as “E_CELL” and
“R_CELL” respectively. Each individual cell has its own parameter
set {W0, b0;W1, b1} representing certain network structures. Ple-
ase note that two E_CELLs are introduced to learn from the labeled
entities, based on query (h, r , ?) and (?, r , t). According to our mo-
deling hypothesis, which claims that all of the relations should be
treated conceptually instead of syntactically, we propose to share
parameters between the E_CELLs, the intuition behind is to let
them share theirmemory of each known facts from both side of the
relation, so that after training with enough knowledge, the E_CELLs
will eventually be able to learn how to correctly distinguish valid
entities from invalid entities for the given queries.

In training, we update parameters by calculating the cross-entropy
loss with regard to each prediction result, which is defined as:

L(ŷ) = −

Ne∑
i=1

y[i]loд(ŷ[i]) + (1 − y[i])loд(1 − ŷ[i]) (3)

where y denotes the ground truth, which is a one-hot vector
exclusively activated by t . To speed-up the stochastic convex op-
timization process, we use a mini-batch setting, and rewrite the
averaged cross-entropy loss over a batch of multiple samples of
size N as following simplified form:

L(y) = −
1
N

N∑
i=1

loд(ŷi [ ti ]) (4)

ÆŠwhere i denotes the i-th sample of the batch, ti represent the
index of label t in the ground truth vector of that sample. Eq.4 is
computationally efficient, however, it tend to ignores the existing
knowledge for query (h, r , ?) other than the current fact (h, r , t),
which has been proven to be useful for improving performance [20].
But, our experimental results show that the impact of the problem
can be controlled by means of collaborative correction with related
facts under our framework, which further demonstrate the validity
of our modelling assumptions. Hopefully, the lessons learned for
designing reasonable and computationally efficient cost functions
in this study can serve as exemplars for future work.

4 EXPERIMENTAL RESULTS
4.1 Datasets
We evaluate the proposed model on two distinctly different types
of graph embedding learning tasks. The statistics of the data sets
are summarized in Table 1 and 2 .

Firstly, we evaluate GEN onknowledge base completion tasks
with two benchmark datasets: FB15K andWN181 and their upgrade
version FB15k-237 and WN18RR2. FB15K is a subset of Freebase,
which contains facts gathered from Wikipedia, mostly focused on
the topic of movies. WN18 is a subset of WordNet which is one of
1Available online at: https://everest.hds.utc.fr/doku.php?id=en:transe
2Available online at: https://github.com/TimDettmers/ConvE
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Table 1: Statistics of the complex network data sets

Dataset # nodes # edges # categories # labels
BlogCatalog 10,312 333,983 39 14,476
PPI 3,890 38,292 50 6,640
Wikipedia 4,777 184,812 40 6,770.

Table 2: Statistics of the knowledge graph data sets

Dataset WN18 WN18RR FB15K FB15K-327
# entities 40,943 40,943 14,951 14,541
# relations 18 11 1,345 237
# training 141,442 86,835 483,142 272,115
# validation 5,000 3,034 50,000 17,535
# test 5,000 3,134 59,071 20,466

the largest online English lexical databases, in which each distinct
concept(synset) is interlinked by means of rigidly defined (hence
limited) conceptual-semantic or lexical relations. Since the test set
of FB15K andWN18 contains a lot of reversed triples that have been
presented in the training set which can lead to biased estimation of
model parameters [19]. Therefore we provide results on FB15K237
and WN18RR where the reversing relations are removed.

Secondly, we evaluate GEN on graph based multi-label classifica-
tion tasks with two benchmark datasets from the complex network
research area: BlogCatalog and Protein-Protein Interaction (PPI)3.
In the training set of these networks, every node is assigned one
or more labels from a finite set. BlogCatalog is a social network
sampled from the BlogCatalog website, which consists of the social
connection between the blog authors. The labels represent the in-
terested topic categories provided by the users. PPI is a biological
network sampled from the PPI network for Homo Sapiens, which
consists of the existence of interactions between the proteins, where
the labels represent the biological states of the proteins.

4.2 Evaluation Protocol
Formulti-relational inference task, we optimized the hyper-parameters
of all the datasets via extensive grid search and selected the model
with the best filtered Hits@10 score on the validation set. Hyper-
parameter ranges for the grid search were the following: embed-
ding dimension d in {50, 100, 200, 300}, hidden layer dimension k
in {256, 512, 1024, 2048} , MLP dropout rate p in {0.0, 0.1, 0.2, 0.3},
learning rate η in {0.001, 0.01, 0.1, 1, 5, 10}, learning rate decay λ
in {0.75, 0.8, 0.85, 0.9, 0.95}. In this study, we use the following
combination of parameters for all graph embedding learning tasks :

• E_CELLS: {d : 200,k : 2048,p : 0.2,η : 5, λ : 0.9}.
• R_CELLS: {d : 200,k : 512,p : 0.2,η : 5, λ : 0.9}.
• Mini-batch Settings: {batch_size : 512, epoch : 50}

For multi-label classification tasks, we implemented a single
layer perceptron model with: {k : 128,η : 0.1, λ : 0.9}, which is
selected through grid search with the best averaged Macro-F1 score
on randomly sampled validation set from the labeled nodes. The
source codes have been released on GitHub4.

3Available online at: https://snap.stanford.edu/node2vec/
4Available at: https://github.com/uestcnlp/GEN

4.3 Knowledge Base Completion Tasks
The first evaluation was to assess the performance of GEN in link
prediction tasks, by comparing it with other state-of-the-art approa-
ches. We report the filtered Hits@N scores following the protocols
proposed by [4] and the numerical results are presented in Table 3,
where the highest scores in each column are presented in bold.

We reproduced the results of the existing studies (mostly with
the released code), whereas some of which are below the reported
record. For a fair comparison of the models, we cite those num-
bers from the original publications (marked with ⋆ symbols). Also,
it seems that results reported by [6] only consider the tail entity
prediction scenario (without averaging with the head entity pre-
diction results), hence we report two version of the test results
of our model, the averaged version is named as GEN(avg.), and
the tail entity prediction results are reported with model named
GEN(tail). Besides, we found that our model tends to remember
the reverse facts with regard to the triples that has been processed
during the training phase. We argue that this is an inherent charac-
teristic of our modeling methodology, since multi-shot would treat
such reverse facts as conceptually correct. Therefore, we also report
Hits@N scores after screening out such reverse facts, this model
is named as GEN(opt). We consider that under certain practical
circumstances, it is reasonable to care about such results, because
the reverse facts are direct reflections of the known facts, and in
many scenarios, they themselves are useful and effective facts.

From Table 3 one could see that the performance of ComplEX
seems much more competitive than other models on both of the
WordNet subset, however, according to our tests, TransE and HoIE
perform (generalized) more stable than others for all of the subtasks.
Also please note that, after filtering out the reverse facts from the
ranking list, we recorded a significant increase in Hits@1 score
on WN18, which was not observed in other models. Since most
of the semantic relations defined in WordNet are reflexive [14],
we believe that these results help verify the efficacy of our model
framework. Further evidence can be found by looking at evaluation
results on FB15K and FB15K-237, in which our model consistently
and significantly outperforms others for all settings.

The goal of the second evaluation was three-folded: (1) To as-
sess the entity prediction performance of our model. (2) To verify
the validity of the multi-shot learning framework. (3) To evaluate
the quality(representability) of different embedding schemes. To
achieve this goal, we carried out a group of experiments depicted in
Table 4, where the model name shown in the parentheses indicate
that the test is based on the embeddings generated by that model,
but being re-trained with our framework for fair comparison. For
example, GEN(TransE) means training a GEN model with TransE
embeddings, but the pre-trained embeddings will not be updated
during the training process, such that the quality of the different em-
bedding schemes can be assessed more objectively. The pre-trained
word2vec embedding5 and GloVe embedding6 are obtained from
the publicly available dictionaries released respectively by Google
and Stanford NLP Group, which are also heavily studied by recent
researches. For entities and relations consisting of many words, we

5Available at: https://code.google.com/archive/p/word2vec; version: GoogleNews-
vectors-negative300.
6Available at: https://nlp.stanford.edu/projects/glove/; file version: glove.42B.300d.
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Table 3: Link prediction results on WN18, FB15K and WN18RR, FB15K-237 (symbols: ⋆ denotes the value is cited from the
original source, † denotes the result comes from [6])

Datasets WN18 WN18RR FB15K FB15K-237
Measures Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10 Hits@1 Hits@3 Hits@10
TransE 44.5 85.9 93.8 2.7 33.1 42.7 36.1 59.0 76.2 17.6 29.6 44.6
TransH 33.7 79.3 87.4 1.9 33.7 40.4 33.0 59.1 70.7 19.3 34.0 44.7
HoIE 93.0⋆ 94.5⋆ 94.9⋆ 35.6 37.8 39.3 40.2⋆ 61.3⋆ 73.9⋆ 8.2 15.2 26.1
Analogy 93.9⋆ 94.4⋆ 94.7⋆ 37.9 39.2 41.0 64.6⋆ 78.5⋆ 85.4⋆ 13.2 22.8 37.2
DistMult 72.8⋆ 91.4⋆ 93.6⋆ 38.9† 43.9† 49.1† 54.6⋆ 73.3⋆ 82.4⋆ 15.5† 26.3† 41.9†

ComplEX 93.6⋆ 94.5⋆ 94.7⋆ 41.1† 45.8† 50.7† 59.9⋆ 75.9⋆ 84.0⋆ 15.2† 26.3† 41.9†
ER-MLP 86.3 91.8 94.2 28.0 34.2 41.9 42.6 64.9 80.1 23.3 36.3 54.0
ConvE 93.5† 94.7† 95.5† 30.6† 36.0† 41.1† 67.0† 80.1† 87.3† 22.0† 33.0† 45.8†
ProjE 75.7 87.8 95.1 31.8 41.7 46.0 57.5 66.32 88.4⋆ 17.3 28.0 43.0
GEN(avg.) 64.2 91.8 94.1 37.8 40.2 43.0 76.4 84.1 88.8 20.4 31.3 45.8
GEN(opt) 90.6 94.1 94.5 38.3 40.5 43.1 77.7 84.7 89.0 20.8 32.1 46.2
GEN(tail) 65.0 91.8 94.2 39.0 41.7 44.5 78.9 86.9 91.6 29.5 42.3 57.7

Table 4: Empirical comparison of the embedding schemes
on FB15K dataset

Tasks Predict h Predict t Predict r
Measures(Hits) @1 @10 @1 @10 @1 @10
GEN(GloVe) 39.79 68.80 44.64 74.72 85.24 98.57
GEN(word2vec) 48.05 75.81 52.09 81.34 86.50 98.77
GEN(HoIE) 30.55 58.86 35.66 64.84 92.28 99.68
GEN(TransE) 47.91 77.58 52.25 82.75 93.15 99.71
GEN 73.85 86.01 78.86 91.64 93.99 99.75
GEN(h, r ⇒ t ) 36.18 62.88 36.85 63.38 86.61 98.49
GEN(t , r ⇒ h) 32.47 58.11 40.40 67.72 86.44 98.41
GEN(h, t ⇒ r ) 26.34 49.42 30.11 54.41 94.11 99.75

use the weighted sum of the word embeddings as their distributed
representation for the test. The three models listed in the bottom
of Table 4 demonstrate the one-shot learning capability of GEN,
for instance, the results of GEN(h, r ⇒ t ) were obtained by only
considering the query (h, r , ?) during the training stage.

4.4 Multi-label Classification Tasks
In previous section, the term “knowledge graph” was used to refer
to a multi-relational database, in which the entities were engaged
in one or more heterogeneous relations, which means the relations
related with a entity may range over different domains. In this
section, we consider the problem of embedding learning on another
type of graph — the homogeneous graphs, in which the entities
were engaged in a specific relationship, which is a natural structure
people use to model the physical world, such as the various so-
cial network and the biological information systems. In this study,
we consider it as a generalized form of the KGs, and attempt to
come up with a general-purpose framework that could be used for
embedding learning on different graphs.

To verify the validity of the proposed model, we evaluate GEN
by comparing its performance on multi-label classification tasks
with the state-of-the-art DeepWalk and Node2vec models. Besides,
we report results on TransE, HoIE and ER-MLP embeddings for

comparison purpose, the supervised model used for multi-label
classification are identical to each other (but differ from the embed-
dings). For fair comparison, the results of the DeepWalk [19] and
Node2vec [8] are cited from their original sources.

Following the convention of previous authors, we randomly
sample a portion of the labeled nodes as training set (and the rest
are used for test), we repeat this process 9 times (with the training
ratio increased from 10% to 90%), and report two of the averaged
measures (w.r.t. recall, precision, and F1-measure) on each of the test,
namely, macro-average and micro-average. The Macro-F1 weights
equally all the categories regardless of how many labels belong to
it, while the Micro-F1 weights equally all the labels, thus favouring
the performance on common categories.

Numerical results are presented in Table 5 and 6, the highest
scores in each column are presented in bold face. From Table 5 one
could see that the performance of DeepWalk proves much more
competitive than other models when labeled data is sparse, but GEN
still consistently outperforms when given 50% of the data, which
demonstrates the validity of the proposed embedding learning fra-
mework for modeling author connections on social networks. Next,
we investigate the performance of our model on even more sparse
graphs, i.e. the Protein-Protein Interactions network. Table 6 shows
that GEN performs consistently and significantly better than ot-
her baselines. In fact, when trained with only 20% of the labeled
proteins, GEN performs significantly better than other approaches
when they are given 90% of the data. We argue that this strong
performance not only indicates our model is flexible enough to
the biological networks, but also provides new insights into their
underlying biological mechanisms. Also please note that Macro-F1
scores in Table 5 and 6 demonstrate that, comparing with other
embedding schemes, GEN performs more stable (and better) in both
common and rare categories, which indicates that the embeddings
generated by GEN are probably more representative and informa-
tive than other solutions, thus the supervised model built on top of
it is less vulnerable to global under-fitting and local over-fitting.
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Table 5: Multi-label classification results on BlogCatalog dataset

Measures Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

DeepWalk 36.00 38.20 39.60 40.30 41.00 41.30 41.50 41.50 42.00
Node2vec 34.64 36.15 36.63 37.01 37.20 37.38 38.05 38.27 40.91
TransE 16.71 17.10 17.44 17.64 17.77 18.50 19.13 19.62 20.50
HoIE 30.88 33.31 34.63 35.70 36.17 37.31 40.21 38.79 40.69

ER-MLP 23.39 29.53 32.44 35.76 39.42 42.49 45.70 47.84 49.73
GEN 27.61 31.38 35.02 38.55 41.19 44.40 45.78 48.87 51.84

Macro-F1

DeepWalk 21.30 23.80 25.30 26.30 27.30 27.60 27.90 28.20 28.90
Node2vec 16.52 18.81 19.81 20.09 20.97 21.50 22.37 23.16 24.60
TransE 2.69 3.09 3.33 3.52 3.41 3.85 4.14 4.63 5.33
HoIE 13.86 17.10 18.98 20.84 20.77 22.65 25.64 23.06 27.79

ER-MLP 15.86 21.32 24.67 28.46 31.64 34.66 37.42 39.74 42.47
GEN 19.32 23.26 26.74 31.06 33.53 36.57 38.83 40.27 44.60

Table 6: Multi-label classification results on PPI dataset

Measures Models 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

DeepWalk 15.36 17.40 18.26 19.41 19.75 20.23 20.46 21.52 21.79
Node2vec 16.32 17.94 19.14 19.68 20.32 21.80 21.76 22.50 22.88
TransE 12.80 17.69 20.94 23.57 24.58 27.32 30.42 31.84 35.20
HoIE 14.85 18.95 21.52 24.58 27.55 29.34 31.03 33.56 35.71

ER-MLP 9.49 14.90 19.03 23.76 25.71 32.60 35.16 36.70 46.06
GEN 16.36 27.31 27.97 32.73 38.10 42.85 46.43 51.09 55.16

Macro-F1

DeepWalk 12.93 14.46 15.94 17.05 17.74 18.05 18.41 18.52 20.03
Node2vec 13.00 15.56 16.82 17.28 17.92 18.37 19.60 20.72 21.28
TransE 8.71 11.45 16.43 19.00 20.37 22.69 25.42 27.35 30.53
HoIE 9.36 16.10 17.55 20.76 23.96 24.92 26.82 30.26 32.45

ER-MLP 7.25 12.46 16.53 20.70 21.70 28.75 30.10 34.25 40.81
GEN 14.74 25.83 27.04 31.27 35.98 40.82 45.02 50.35 52.92
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Figure 2: Visualization analysis of the GEN embedding space by using of the principal component analysis on embedding of
the entities for relation prediction tasks. The case is taken from the FB15K test set, with all of the triples related to relation
#425: /location/location/time_zones.

4.5 Investigating and Visualizing
In this section, we provide qualitative analysis on four typical em-
bedding schemes (GEN, HoIE, TransE and word2vec) with the inten-
tion of better understanding the connection between the existing
graph embedding schemes, and highlighting areas that remain
poorly understood for further investigation. The reason we choose

GEN, HoIE and TransE is because, according to our tests, they have
demonstrated to be efficient and scalable to large-scale problems
and are also exhibiting good generalization ability on real data
sets. We also consider the word2vec embeddings because with the
help of our multi-shot learning model, it achieves state-of-the-art
performance on most of the knowledge base completion tasks (see
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Figure 3: Visualization analysis of the TransE, HoIE and word2vec embedding schems by using of the principal component
analysis on embedding of the entities for relation prediction tasks. The case is taken from the FB15K test set, relation #425:
/location/location/time_zones.

Section 4.3), which is interesting and worth some consideration
(probably indicates a promising potential for transfer learning).

To verify the claim that the embeddings generated by GEN are
more representative and informative than other embedding sche-
mes, we provide a case study on a randomly selected relation from
FB15K, namely “/location/location/time_zones”. There are 137 tri-
ples related to this relation in the test set, all of the head entities
are countries or regions, and the tail entities are the corresponding
time zones. The heads are uniquely different from each other, while
there are only 10 different time zones existed in the tails.

We plot all of the 137 triples in Fig.2, in which (Fig.2a and
Fig2b) the input multi-dimensional vectors are projected to a 2-
dimensional subspace spanned by x and y, by using of the principal
component analysis (PCA), then we choose the first two principal
components as the principal axes. In Fig.2a, the input is the concate-
nation of the head and tail entity of each triple, i.e. (h ⊕ t), with the
intention of investigating the patterns of such feature vectors for
relation prediction tasks. Hence, we choose the name of the tails as
legend labels. As can be seen from Fig.2a, the feature vectors of the
137 triples show clear clustering tendencies with regard to the cate-
gories in their tail entities. Based on this observation, we further
plot the hidden layer of the R_CELL (which is a 512-dimensional
vector in this case) located before the output layer in our GEN
model, as depicted in Fig.2b. From Fig.2b one could see that the
distance between the data points is amplified, and the distinction

becomes more prominent. We plot the cumulative softmax in Fig.2c,
in which the X-axis represents the 1,345 type of relations in FB15K,
Y-axis denotes the cumulative softmax values. The curve is obtained
by adding all of the softmax vectors output by GEN with regard
to the 137 triples. Obviously, the only peak observed in Fig.2c cle-
arly exhibit that GEN can make good use of these (concatenated)
features to identify the corresponding relations correctly.

For comparison purpose, we also visualize the other three embed-
ding schemes with the same protocol, as illustrated in Fig.3. Since
the corresponding models do not use MLP for relation prediction,
we can not plot their “hidden state” and “accumulate softmax” for
the second and the third subplots, hence we choose to visualize
their predictive criterion vectors and output ranking list instead.
The processing practice is consistent with the protocol of the origi-
nal literature. Specifically, for TransE, we plot (t − h) as the hidden
state for relation prediction, and calculate the ℓ1-norm distance
|ri − (t −h)|1 w.r.t each of the relation ri in FB15K, then we process
the distance vector with the softmax function for calculation of the
accumulate softmax. While for HoIE, we plot the circular correlation
vector (h⋆ t) as the hidden state, and calculate the cosine similarity
of (h ⋆ t) · ri w.r.t each of the relation ri , then we use the obtained
(cosine) vector to calculate the accumulate softmax. For word2vec
embeddings, we use the same protocol as dealing with TransE.
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In Fig.3, the concatenated embedding vectors of TranE and HoIE
shows similar clustering pattern as the GEN case, which help ex-
plaining the reason that under our multi-shot learning framework,
the embeddings generated by these models perform similar in en-
tity prediction tasks (see Table 4). It also provides evidence for our
conjecture that these two embedding schemes could be inherently
similar to each other. Their criterion vectors (the second subplot for
each models) show that their clustering pattern is not as clear as the
case of GEN, which help explain their performance on relation pre-
diction tasks (as shown in the third subplot. The alternative peaks
appeared in subplot Fig.3c and Fig.3f are: #891: “/base /schemasta-
ging/phone_open_times/time_zone”, and #583: “/time/time_zone/
locations_in_this_time_zone”). We consider this as a solid support
for the validity of the proposed multi-shot learning framework.

5 CONCLUSION
Representation learning of KGs is a key concern for artificial intel-
ligence and cognitive science. Many types of relations in physical,
biological, social and information systems can be modeled with
concept (knowledge) graphs. In this paper, we present an efficient
scalable framework for learning conceptual embeddings of entities
and relations in generalized KGs, including the homogeneous and
heterogeneous graphs. We give evidence that the proposed mo-
del learns good representations of all these graphs for knowledge
inference and supervised learning. For future work, we plan to
investigate more thoroughly the efficacy of the proposed modeling
framework, with respect to the decomposition of the semantic
information conveyed by the linked concepts into elementary infor-
mation, i.e. the four Q&A pairs. Also, we seek to enhance the quality
of scientific investigations and theoretical conceptualizations on
graph embedding learning in the context of semantic interopera-
bility, for there is usually no possibility to interpret the embedded
information meaningfully and accurately in order to produce useful
results as defined by existing algorithms.
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