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ABSTRACT
Network motifs are crucial building blocks of understanding and
modeling complex networks for their capacity in characterizing
higher-order interactions. Meanwhile, heterogeneous information
networks (HINs) are ubiquitous in real-world applications, which
o�en come with rich temporal information. We are hence moti-
vated to study temporal motifs in the context of heterogeneous
information networks. With examples from real-world datasets, we
demonstrate HIN motifs can be armed with substantially more dis-
criminability by incorporating temporal information. Furthermore,
counting temporal HIN motif instances in large-scale networks is
time consuming. We therefore develop e�cient counting algorithm
for the HIN motifs that are of the most interests in the literature.
Empirical observations in the experiment have shown that interest-
ing motif instances can be identi�ed from large-scale HINs thanks
to the improved discriminability of temporal HIN motifs, and the
proposed e�cient counting algorithm enjoys linear complexity that
is multiple orders of magnitude faster than the baseline method in
three real-world HINs.

CCS CONCEPTS
•Information systems → Data mining; •�eory of computa-
tion→ Graph algorithms analysis;

KEYWORDS
Heterogeneous information networks, network motifs, algorithms,
graph mining.

1 INTRODUCTION
Networks in real world applications are complex in nature, wherein
higher-order interactions re�ect certain mechanisms that can not be
revealed merely by analyzing nodes and edges [2, 12, 14, 17, 23, 24].
As a result, network motifs have been studied to characterizing
such higher-order interactions and have been proved to be useful
in various classic network mining tasks such as clustering [2, 25]
and representation learning [15, 27]. Meanwhile, the complex, real
world networks are o�en heterogeneous due to the ubiquitous
heterogeneity in the human society and the physical world [16,
19]. �erefore, we are motivated to study network motifs in the
context of heterogeneous information networks (HINs) in the hope
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Figure 1: (a) An example temporalmotif. (b) Amotif instance under
the example temporalmotif. (c) An instance that does notmatch the
example temporal motif for violating the time constraint.

of developing motif-based network mining techniques that can
be�er model heterogeneous network data.

A large portion of real world HINs are abstractions of the dy-
namic world, and their accompanying temporal information hence
becomes an indispensable aspect of these networks. For instance,
the heavily studied bibliographic network, DBLP, centers on the
nodes that represent research papers, and each paper has its own
publication time. Two authors jointly publishing two papers in
consecutive years implies a higher likelihood of close collaboration
than their coauthoring another paper �ve years a�er the �rst joint
paper. Likewise, in the Twi�er social network, each post is tweeted
at a certain timestamp. A user using a tag in multiple posts that are
tweeted within a few days may be a good indication that the user
is engaged in an ongoing event. Hence, it is of interest to study the
problem of incorporating temporal information into HIN motifs.

However, the time space is continuous. One method to deal with
the continuity is to discretize it into several intervals, each repre-
sented by a node in the network. An event node is connected to a
time node if the event has a time stamp that belongs to the time in-
terval. �e problem with this approach is that trivially mapping the
temporal information into nodes of an HIN would inevitably result
in information loss in the discretization process. Also, in order to be
of pragmatic use, the a�empt to incorporate time into HIN motifs
should be accompanied by practical algorithms that could count
such motifs in large-scale datasets. �erefore, we approach this
problem by de�ning temporal motifs in HINs with time constraints.
We use an example from a real-world bibliographic newtork, DBLP,
to illustrate the idea. As shown in Figure 1, Jianchao Yang was an
advisee of �omas Huang who used to frequently co-author paper
during Yang’s Ph.D. study; while Dan Roth and �omas Huang are



both renowned professors who have published many papers and
have co-authored papers for multiple times over the years. If the
temporal information is neglected, both the instances in Figure 1 (b)
and Figure 1 (c) would be considered as legit motif instance under
the example motif in Figure 1 (a). However, by considering the
time constraint, the instance for Roth and Huang in Figure 1 (c) no
longer matches the example motif. In other words, an HIN motif
can be armed with more discriminability by the temporal informa-
tion, so that it would identify the close collaboration between Yang
and Huang from that between Roth and Huang. Despite the utility
of temporal information, it can be challenging to count temporal
HIN motif instances in large networks. To tackle this challenge,
we propose an e�cient algorithm for a class of temporal HIN mo-
tifs, which is of the most interest according to our survey into the
related work.

Lastly, we summarize our contributions as follows:

(1) We propose to study the problem of temporal motifs in the
context of heterogeneous information networks, which cap-
ture the pervasive and informative temporal higher-order
interactions in HINs.

(2) We identify a class of temporal HIN motifs that are of the
most interests by surveying related work, and develop e�-
cient algorithms to count instances of this motif class.

(3) Experiments with three real-world large-scale datasets demon-
strate the utility of temporal HIN motifs and the superior
e�ciency of the proposed algorithms.

2 RELATEDWORK

Networkmotif. Higher-order structures are crucial building blocks
of complex networks [2, 12, 24], the understanding of which has
been shown to be instrumental in many research domains such as
neuroscience [17], biological networks [14], and social networks
[23]. Such high-order structures are o�en referred to as network
motifs or graphlets. One line of data mining research on network
motifs has centered on e�ciently counting motif instances includ-
ing triangles and more complex motifs [1, 3, 8, 18]. Researchers have
also found applications of motifs in clustering and network parti-
tioning [2, 11, 22, 25]. One recent work [13] discusses the utility of
temporal information in network motifs, which has been proven
instrumental in various mining tasks for homogeneous networks.

Motifs inheterogeneous informationnetwork. Heterogeneous
information network (HIN) has been extensively studied as a power-
ful and e�ective paradigm to model networked data with rich and in-
formative type information [16, 19], upon which a great many meth-
ods have been proposed for applications such as classi�cation, clus-
tering, recommendation, and outlier detection [16, 19, 20, 26, 30].

Motifs in the context of HINs have been studied very recently
[5–7, 9, 15, 27–29], where meta graphs and meta structures are
sometimes used as synonyms to HIN motifs. Many of these works
focus their scope on pairwise relationship such as relevance or
similarity [5–7, 28, 29], while others tackle the problem of label
propagation [9] or representation learning [15, 27]. Note that some
of these prior works de�ne meta graphs or meta structures to be
directed acyclic graphs [7, 27–29], while in general the de�nition
of HIN motifs, meta graphs, or meta structures is not restricted

Co-Author TCount TRank Count Rank Percentage
Yun Fu 586 1 861 1 0.681

Shuicheng Yan 277 2 406 2 0.682
Ming Liu 240 3 406 2 0.591
Hao Tang 207 4 406 2 0.510
Xi Zhou 170 5 300 6 0.567
Mark H-J 158 6 406 2 0.389

Table 1: Co-authors with �omas S. Huang and the temporal motif
counts and non-temporal motif counts between Huang and each of
them. �e last co-author’s full last name is Hasegawa-Johnson.

as such. One recent work [15] proposes a convolutional neural
network method via motif and its application in HINs. �e type of
motif discussed in this work is de�ned to always have a target node,
a context node, and multiple auxiliary nodes, which is a subset of
motifs that are shown to be useful in heterogeneous networks.

3 PRELIMINARIES
In this section, we de�ne related concepts and notations.

De�nition 3.1 (Temporal Heterogeneous Information Network). An
information network is a directed graph G = (V, E) with a node
type mapping φ : V → T and an edge type mapping ψ : E →
R. When the number of node types |T | > 1 or the number of
edge types |R | > 1, the network is referred to as a heterogeneous
information network (HIN). Particularly, an HIN is a temporal
heterogeneous information network (temporal HIN) if it has
a node time mapping tV that maps a subset of nodesVT ⊆ V to
their timestamps and an edge time mapping tE that maps a subset
of edge ET ⊆ V to their timestamps.

Note that we refer toVT as the set of all temporal nodes and ET
at the set of all temporal edges, andVT and ET can be empty sets
for a speci�c temporal HIN.

De�nition 3.2 (Temporal Motifs in HINs). In an HIN G = (V, E),
an HIN motif m = ({φi }, {ψj }) is a graph on the type level, de-
scribed by a set of node types, {φi } ⊆ T , and a set of edge types,
{ψj } ⊆ R. An HINmotif instance under motifm is a subgraph of
the HIN G(m) = ({vi }, {ej }) ⊆ G such that φ(vi ) = φi for all i and
ψ (vj ) = ψj for all j . Moreover, an HIN motifm is a temporal HIN
motif if it has a further maximum temporal di�erence require-
ment, δ , such that each of its instances G(m) = ({vi }, {ej }) ⊆ G
satis�es max(tV ({vi } ∩ VT ) ∪ tE ({ei } ∩ ET )) < min(tV ({vi } ∩
VT ) ∪ tE ({ei } ∩ ET )) + δ .

We note that the motifs in HINs are sometime referred to as the
meta graphs or meta structures as discussed in Section 2.

4 TEMPORAL HIN MOTIFS
Temporal information is integral to many heterogeneous informa-
tion networks, and incorporating it into HIN motifs can largely
boost their representational power. For example, we compare the
e�ects of temporal motifs versus their non-temporal counterparts
in the task of �nding close authors in the DBLP dataset as shown in
Table 1. If we count the total number of motifs between two authors
without considering time information, we will �nd that Shuicheng
Yan, Ming Liu, and Mark Hasegawa-Johnson all have the same



Rank with Temporal Motif Rank with Non-temporal Motif
Illinois Illinois
Massachuse�s New York
New York Massachuse�s

Table 2: Comparison showing the e�ect of temporal information
on motifs: in which states is hockey the most popular sport?

number of co-authored papers with �omas S. Huang. However, in
terms of temporal motifs, Huang has nearly 50% more motifs with
Liu and Yan than with Hasegawa-Johnson. One explanation for
this observation arises when we examine the relationship between
these authors. Among the list, Shuicheng Yan and Ming Liu are
Huang’s students, whereas Hasegawa-Johnson is a colleague of
Huang within the same department.

Another example comes from the News dataset. We would like to
brie�y introduce the dataset �rst, with a more detailed description
in Section 6.1. �e dataset is a collection of news from 2013. Each
news document is labeled with a timestamp, a location, and a topic.
Moreover, the hierarchical information about locations and topics
is also included. For locations, the “is a part of” relation is included:
“Chicago” is part of “Illinois”, which is part of the “United States”.
Topic-wise, the “is a subtopic of” relation is there: “Internet” is a
sub-topic of “Technology”. To facilitate information extraction, we
construct an HIN based on this dataset. A�er that, we a�empt to
�nd the relationship between topics and locations, based on the
information from the documents.

For a given topic, we compare the results on �nding the most
relevant locations using temporal and non-temporal methods. An
example for the topic “hockey” is given in Table 2. For the ease of
comparison, we restrict the location to be the states in the USA.
�e table shows the top three states mined using the temporal and
the non-temporal methods. Clearly, the main di�erence lies in the
ranking of Massachuse�s and New York. According to an article
from the New York Times [10] , Massachuse�s has an estimated
average of 66.9 hockey players per 10,000 population, whereas for
New York the statistic is only 23.8. �is tells us that hockey plays
a more important role in Massachuse�s than in New York. A�er
a closer inspection, we �nd that compared with Massachuse�s,
New York receives more a�ention in the News dataset in general.
�erefore, its superior amount of appearances may confuse the
methods that do not consider temporal information. In contrast, by
adding temporal information into consideration, a method can do
be�er in �ltering out the super�uous relations, and thus make the
true information more visible.

In the context of heterogeneous information networks, researchers
have studied network motifs under the name HIN motifs, meta
graphs, or meta structures [5–7, 9, 15, 27–29]. By surveying these
prior arts, we identify that many HIN motifs that the researchers
use in practice can be generalized to a class, which we refer to
as the fusiform motifs. A fusiform motif has the topology where
two node types are connected by multiple intermediate node types
in the middle as shown in Figure 3. For example, we lay out the
HIN motifs used in the previous studies [5, 15, 28] in Figure 2a,
Figure 2b, Figure 2c, and Figure 2d. It can been seen that these HIN
motifs can all be characterized into fusiform motifs either directly
or a�er collapsing certain internal nodes and edges. Speci�cally,

(a) Examples of AC2B motifs [15].

(b) Examples of AC2B motifs in a larger network [15].

(c) Examples of AC2B motifs [5].

(d) Example of motifs that can be collapsed into AC2B motifs [28].

Figure 2: Examples of AC2B motifs in various contexts.

motifs M1, M4, and M5 from Figure 2a, the two motifs in circle in
Figure 2b, motifs M1, M2, and M4 from Figure 2c are of the type
of fusiform motifs, while the motif in Figure 2d would be of this
type by collapsing a few nodes into edges. Speci�cally, in Figure 2d,
node R1, as well as the three edges connected to it, is collapsed into
two edges, one connecting U1 with A1, and the other connecting
U1 with B1. Similarly, nodes R2 and U2, as well as the four edges
connected to them, are collapsed into two edges, one connecting
B2 with A1, and the other connecting B2 with B1.

Formally, the fusiform motif can be represented by S = (N ,M)
where N is a set of node types, and M is a set of edge types. Inspired
by the observation of real-world scenarios, we delve deep into sev-
eral subclasses of fusiform motifs with n = 4, as shown in Figure 4.
In the case of 2A2B motifs, where φ1 = φ2 = A and φ3 = φ4 = B,
N consists of four nodes {A1,A2,B1,B2}, φ(N ) contains two node
types {A,B}, M includes four edges {A1B1,A1B2,A2B1,A2B2}, and
ψ (M) consists of only one edge type with one of the endpoints
being type A, and the other endpoint being type B. On the other
hand, in the case of the AC2B motif, where φ1 = A, φ2 = C and
φ3 = φ4 = B, N consists of four nodes {A1,C1,B1,B2}, φ(N )
contains three node types {A,B,C}, and M includes four edges
{A1B1,C1B1,A1B2,C1B2}, and ψ (M) consists of two edge types:
A − B-edge and C − B-edge. In the example of Figure 2c, the
AC2B motif M1 can be represented by (N ,M) where N , the set
of vertex types, can be represented as {User , School ,Major } and
M , the set of edge types, can be represented as {User − School −
edдe,User−Major−edдe}. For M2, N = {User ,Employer ,Hobby}
and M = {User − Employer − edдe,User − Hobby − edдe}.
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Figure 3: Fusiform motifs

Figure 4: Temporal motifs of our interest. Here, φ(v3) = φ(v4), but
φ(v1) and φ(v2) can either be the same or be di�erent. If φ(v1) =
φ(v2), then we refer to it as “the 2A2B motif”. Otherwise, we refer
to it as “the AC2B motif”.

Furthermore, temporal information naturally exists in the HIN
motifs found in the previously mentioned cases. For example, in Fig-
ure 2a, note that the AC2B motif M1 can be converted to a temporal
motif by adding timestamps on the nodes P1 and P2, representing
the time that the two papers are published. By enforcing a time con-
straint on the temporal motif, stronger relations between the nodes
A and V3 can be mined. Speci�cally, if we require that the times-
tamps on P1 and P2 be less than δ years away, then each instance of
the motif represents that the author A published twice on venueV3
within δ years (here δ = 3 is a nice valuation that �ts well into the
context). �is would establish a strong indication that the author’s
research interest aligns with the topic of the venue. In contrast,
without the time information, such a motif would contain signif-
icantly less semantics. For example, even if an author published
twice on a venue, if the the second paper was decades a�er the �rst
one, then this pair of publications does not imply such a strong tie
between the author and the venue as the case in which δ = 3. With
additional time constraint incorporated, we use popular temporal
HIN motifs to refer to the above-mentioned 2A2B and AC2B motifs
with time information on nodes. In both cases, the time stamps are
on the two type-B nodes. Figure 4 illustrates these two types of mo-
tifs. Formally, in the spirit of De�nition 3.2, a temporal 2A2B motif
S is a graph (N ,M) with parameter δ , where N = {A1,A2,B1,B2},
and M = {A1B1,A1B2,A2B1,A2B2}. Let NT = {B1,B2} and and
MT = ∅ be the sets of temporal nodes and temporal edges in S , re-
spectively. According to the time constraints,max(T ) −min(T ) < δ
where T = {φ(v)|v ∈ NT } ∪ {ψ (e)|e ∈ MT } = {φ(B1),φ(B2)}. In a
similar way, theAC2B motif can be de�ned, withN = {A,C,B1,B2},
M = {AB1,AB2,CB1,CB2}, NT = {B1,B2}, and MT = ∅.

In the next section, we show that e�cient counting algorithms
can be developed for fusiform temporal HIN motifs.

Algorithm 1: 2A2B Temporal Motif Counting
Input :as and bs are arrays of nodes of type-A and type-B

respectively, sorted by time. Adjacency relations in
HIN are also included.

Output :Count of temporal motifs between type A nodes
begin

initialize count total and count window

start ← 1
for end← 1..m do

while tstar t + δ 6 tend do
decrement count window(bs[start])
start+ = 1

increment count window and count total(bs[end])

Function decrement count window(b):
// Na (b) is the neighbor of node b in the array of nodes as
for a1,a2 ∈ Na (b),a1 , a2 do

count window[a1,a2]− = 1

Function increment count window and count total(b):
for a1,a2 ∈ Na (b),a1 , a2 do

count total[a1,a2]+ = count window[a1,a2]
count window[a1,a2]+ = 1

5 COUNTING ALGORITHM
To begin with, we try to count the number of 2A2B motif instances
as we have discussed above and in Figure 4.

Without loss of generality, we only care about the relationship
between two type-A entities. So we aggregate the count for each
pair of type-A nodes. We utilize the schemes of sliding window
and dynamic programming. First, we order the type-B nodes by
their time stamps. �en, we loop through all type-B nodes based on
the order. For each node, we �rst update the current window. �is
involves removing all nodes that fall out of the current window
and then adding the node we are concerning about into the current
window. Along the way, we use an array count window to count
the meta-path A− B −A instances that exist in the current window.
We also keep an array count total for each pair of type-A entities.
When we add a new node into the time window, we can form a
motif as desired by combining the current type-B node with the
previous nodes that count window keeps track o�. In this way, we
can e�ciently count the number of motifs. �e pseudocode for this
algorithm is shown in Algorithm 1.

We realize that correlating two entities of a single type might be
too restrictive; it would be much more bene�cial if we can come
up with a measure of relationship between two nodes of di�erent
types. �erefore, instead of using two type-A nodes, we correlate
one type-A entity with one type-C entity using two type-B entities,
i.e. AC2B motifs, as discussed above and in Figure 4. �e modi�ed
algorithm for this motif is shown in Algorithm 2.

6 EXPERIMENTS
In this section, we present the empirical observations made in
real world HINs by leveraging temporal motifs, and evaluate the
performance boosted by the proposed e�cient counting algorithm.



Algorithm 2: AC2B Temporal Motif Counting
Input :Nodes of types A, B, orC , and edges between them in

HIN
Output :Count of temporal motifs between one type A node

and one type C node
Function decrement count window(b):

for a ∈ Na (b), c ∈ Nc (b) do
count window[a, c]− = 1

Function increment count window and count total(b):
for a ∈ Na (b), c ∈ Nc (b) do

count total[a, c]+ = count window[a, c]

count window[a, c]+ = 1

Figure 5: DBLP schema.

Node Type Count
Paper 1595783

Author 1003836
Term 402687

Venue 7528
Year 62

Total 3009896

Edge Type Count
Paper-Author 4650898

Paper-Paper 6510282
Paper-Term 12773973

Paper-Venue 1595783
Paper-Year 1595783

Total 27126719
Table 3: DBLP statistics.

6.1 Data Description

Datasets. We use three publicly available real-world temporal HIN
datasets: DBLP, MemeTracker and News.

• DBLP is a bibliographical network in the computer science
domain [21]. �ere are four types of nodes in the network:
author, paper, key term, and venue. �e key terms are ex-
tracted and released by Chen et al. [4]. �e edge types include
authorship (aut.), term usage (term) and publishing venue
(ven.) of a paper, and the reference relationship from a pa-
per to another (ref.). It has a nonempty temporal node set,
VT = {u ∈ V | φ(u) = paper}, where a paper is timestamped
by its publishing time. �e corresponding network schema is
depicted in Figure 5, with statistics shown in Table 3.

• MemeTracker aims at �nding frequent quotes and phrases
from a large collection of online texts including news and blogs.
A temporal HIN can be constructed from this dataset. �ere
are three types of nodes in this HIN: uniform resource locator
(URL), phrase, and cluster. Speci�cally, each URL represents
a document online. Phrases are extracted from these docu-
ments. Moreover, similar phrases are grouped into clusters.
�e edge types include the mentioning relationship between

(a) Original MemeTracker schema.

(b) Collapsed MemeTracker schema.

Figure 6: Nodes of type “Phrase” are removed in the collapsing of
schema. As a result, the relation between a “URL” node and a “Clus-
ter” node is a composition of “contain” and “belong-to”.

Node Type Count
URL 4455215

Phrase 310457
Cluster 71568

Total 4837240

Edge Type Count
Phrase-Cluster 310457

Phrase-URL 210999824
URL-URL 418237269

Total 629547550
Table 4: MemeTracker statistics.

documents and phrases, and the belong-to relationship be-
tween phrases and clusters. Naturally, the time information
is on each URL-typed node, representing the time stamp of
the document. Formally the temporal node set of this dataset
is VT = {u ∈ V | φ(u) = URL}. �e corresponding network
schema is depicted in Figure 6a, with statistics shown in Ta-
ble 4. In this project, we are interested in a collapsed version
of this HIN. Speci�cally, the nodes for “phrases” are collapsed,
allowing clusters to connect with documents directly. �e net-
work schema for the collapsed HIN is depicted in Figure 6b.
• News is a collection of news articles from year 2013. Each

piece of news comes with a date, a location label, and a topic
label. Moreover, the hierarchies of locations and topics are
provided. For example, the dataset contains the information
that Illinois is part of the USA, and “Internet” belongs to the
topic of “Technology”. A temporal HIN can be constructed
from this dataset. �ere are three types of nodes in this HIN:
document, location, and topic. Speci�cally, each document
represents a news article, and its location and topic labels are
provided. �e edge types include the “talks about” relationship
between documents and locations, and between documents
and topics. Moreover, directed edges exist between location
nodes, representing the hierarchy of locations. Likewise, the
edges representing the hierarchy of topics are also included.
Naturally, the time information is on the document-typed
nodes, representing the time stamp of the document. Formally
the temporal node set of this dataset isVT = {u ∈ V | φ(u) =
document}. �e corresponding network schema is depicted
in Figure 7, with statistics shown in Table 5.

6.2 Empirical Observations
By applying our algorithm on the data we have described in 6.1,
we found several di�erent observations based on the particular
scenario that each dataset describes.



Figure 7: News schema. Note the hierarchical relations between dif-
ferent nodes of locations and between di�erent nodes of topics.

Node Type Count
Document 41959

Location 354
Topic 60
Total 42738

Edge Type Count
Document-Location 41959

Document-Topic 41959
Location-Location 644

Topic-Topic 69
Total 84631

Table 5: News statistics. �e data range over 365 days.

Co-Author TCount TRank Count Rank Percentage

Mladen Kolar 11 8 28 5 0.393
Fei-Fei Li 22 4 28 5 0.786

Noah A. Smith 15 6 21 7 0.714
Jacob Eisenstein 19 5 21 7 0.905

Gunhee Kim 11 8 21 7 0.524

Table 6: Co-authors with Eric P. Xing based on temporal motif
counts and non-temporal motif counts.

DBLP. In this dataset, we investigate the relationship between
authors based on the temporal motifs of their co-authored papers.
�e time stamp in this data is given only as the year when the paper
is published, and we set the time window δ = 3. A list of selected
co-authors with Eric P. Xing is shown in Table 6, ranked by their
non-temporal motif counts.

MemeTracker. In this dataset, we try to �nd clusters of phrases
that o�en appear together in a short period of time based on the
common URLs that they appear in. �e experimental result is shown
in Table 7 and Table 8. In fact, it can be seen that pairs found by both
methods are meaningful. �ose picked by the temporal approach
have a clearer clue: they are all from Obama’s inaugural address.
In contrast, those picked up by the non-temporal approach include
the pairs formed by an entity without strong evidence of time, and
a related remark about that entity. �erefore, compared with the
non-temporal motifs, the temporal ones are be�er at capturing the
strong ties in time, not just semantically relatedness.

News. In this dataset, we are trying to correlate information of two
di�erent types: topic and location. We �nd the following interesting
cases, as shown in Table 9 and Table 10. We notice from the result
that not all locations are actually located within the Asia Paci�c
region; rather, these locations correlate strongly with Asia Paci�c
in the news. Beijing and Hong Kong rank high in the list because
of their important roles in the politics and economics of the Asia
Paci�c region. However, New York and San Francisco Peninsula are
also in the list, probably owing to their strong economic ties with
the Asia Paci�c region. Similarly, motif counts correctly identify the
critical locations in the business sector, from Boston, New York, and

hope over fear unity of purpose
over con�ict and discord

to the muslim world we seek a new
way forward based on mutual in-
terest and mutual respect

hope over fear unity of purpose
over con�ict and discord

starting today we must pick our-
selves up dust ourselves o� and
begin again the work of remaking
america

hope over fear unity of purpose
over con�ict and discord

what is required of us now is a new
era of responsibility a recognition
on the part of every american that
we have duties to ourselves our
nation and the world duties that
we do not grudgingly accept but
rather seize gladly

Table 7: Pairs of phrases that have high temporal motif counts.

joe the plumber i think when you spread the wealth
around it’s good for everybody

hope over fear unity of purpose
over con�ict and discord

what is required of us now is a new
era of responsibility a recognition
on the part of every american that
we have duties to ourselves our
nation and the world duties that
we do not grudgingly accept but
rather seize gladly

the daily show with jon stewart’s everybody did saturday night live
the colbert report they did the
jon stewart show by showing they
want to be closer to people politi-
cians are showing they want to be
more like us

Table 8: Pairs of phrases that have high non-temporal motif counts.

Location Temporal Motif Count
Beijing 2380

Hong Kong 790
New York 153

San Francisco Peninsula 102
Shandong 90

Table 9: Temporal motif count with “Asia Paci�c” as the topic.

Location Temporal Motif Count
New York 1496

Massachuse�s 69
California 56

Northeast megalopolis 33
Michigan 20

Table 10: Temporal motif count with “business sectors” as the topic.

the Northeast corridor, to Michigan in the Midwest, and California
on the west coast.



Figure 8: Comparison of the running time of our algorithm versus
that of baseline method. Our algorithm runs in time linear to the
size of the data.

6.3 E�ciency Study
Compared to the baseline method, which generates all pairs of
possible motifs and �lters them by their time stamp di�erences, our
algorithm runs in linear to the input size as illustrated in Figure 8.
Utilizing our algorithm, we e�ciently aggregate the count of edges
at the �rst place, instead of enumerating all the possible combina-
tions. Whereas the running time of the baseline is superlinear to
the data size, our method runs in linear time.

7 CONCLUSION AND FUTUREWORKS
In response to the growing demand of �nding time-sensitive fre-
quent pa�erns in heterogeneous information networks, we pro-
posed a series of algorithms that address this problem in linear time.
�roughout the paper, we have encountered several case studies
on how these newly proposed algorithms can help understand the
temporal information on graphs in a way that is not e�ciently
achieved before. �is paper in no way sets a de�nitive tone in dis-
covering interesting temporal motifs in heterogeneous networks;
rather, it is a proposal to bring a richer mix of information into
the analysis. Speci�cally, one can extend our algorithms and the
way counts are interpreted to apply these algorithms in a wider
range of applications. We believe that the incorporation of temporal
information in network analysis can bring a new set of discoveries
in the near future.
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