
Hierarchical Graph Clustering by Node Pair Sampling
Thomas Bonald

Telecom ParisTech

Paris, France

thomas.bonald@telecom-paristech.fr

Bertrand Charpentier

Telecom ParisTech

Paris, France

bertrand.charpentier@telecom-paristech.fr

Alexis Galland

Inria

Paris, France

alexis.galland@inria.fr

Alexandre Hollocou

Inria

Paris, France

alexandre.hollocou@inria.fr

ABSTRACT
We present a novel hierarchical graph clustering algorithm inspired

by modularity-based clustering techniques. The algorithm is ag-

glomerative and based on a simple distance between clusters in-

duced by the probability of sampling node pairs. We prove that this

distance is reducible, which enables the use of the nearest-neighbor

chain to speed up the agglomeration. The output of the algorithm

is a regular dendrogram, which reveals the multi-scale structure

of the graph. The results are illustrated on both synthetic and real

datasets.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis;

KEYWORDS
Hierarchical clustering, dendrogram, agglomerative algorithm

ACM Reference format:
Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre Hol-

locou. 2018. Hierarchical Graph Clustering by Node Pair Sampling. In Pro-
ceedings of MLG 18, ACM KDD Workshop, London, UK, August 2018 (MLG
18), 8 pages.
https://doi.org/

1 INTRODUCTION
Many datasets can be represented as graphs, being the graph ex-

plicitely embedded in data (e.g., the friendship relation of a social

network) or built through some suitable similarity measure be-

tween data items (e.g., the number of papers co-authored by two

researchers). Such graphs often exhibit a complex, multi-scale com-

munity structure where each node is invoved in many groups of

nodes, so-called communities, of different sizes.

One of the most popular graph clustering algorithm is known as

Louvain in name of the university of its inventors [2]. It is based

on the greedy maximization of the modularity, a classical objective

function introduced in [19]. The Louvain algorithm is fast, memory-

efficient, and provides meaningful clusters in practice. It does not

enable an analysis of the graph at different scales, however [8, 11].

While the current version of the algorithm
1
includes a resolution

1
See the python-louvain Python package.

MLG 18, August 2018, London, UK
2018. ACM ISBN . . . $15.00

https://doi.org/

parameter, this parameter is not directly related to the target cluster

size and thus hard to adjust in practice.

In this paper, we present a novel algorithm for hierarchical clus-

tering that captures the multi-scale nature of real graphs. The al-

gorithm is fast, memory-efficient and parameter-free. It relies on a

novel notion of distance between clusters induced by the probabil-

ity of sampling node pairs. We prove that this distance is reducible,

which guarantees that the resulting hierarchical clustering can be

represented by regular dendrograms and enables a fast implemen-

tation of our algorithm through the nearest-neighbor chain scheme,

a classical technique for agglomerative algorithms [16].

The rest of the paper is organized as follows. We present the

related work in Section 2. The notation used in the paper, the dis-

tance between clusters used to aggregate nodes and the clustering

algorithm are presented in Sections 3, 4 and 5. The link with modu-

larity and the Louvain algorithm is explained in Section 6. Section 7

shows the experimental results and Section 8 concludes the paper.

2 RELATEDWORK
Most graph clustering algorithms are not hierarchical and rely on

some resolution parameter that allows one to adapt the clustering to

the dataset and to the intended purpose [1, 10, 17, 21]. This param-

eter is hard to adjust in practice, which motivates the present work.

The classical hierarchical clustering techniques apply to vector data

[16, 25]. They do not directly apply to graphs, unless the graph is

embedded in some metric space, through spectral techniques for

instance [7, 14].

A number of hierarchical clustering algorithms have been de-

velopped specifically for graphs. The most popular algorithms are

agglomerative and characterized by some distance between clusters,

see [3, 9, 18, 20]. None of these distances has been proved to be re-

ducible, a key property of our algorithm. Among non-agglomerative

algorithms, the divisive approach of [19] is based on the notion

of edge betweenness while the iterative approach of [23] and [12]

look for local maxima of modularity or some fitness function; other

approaches rely on statistical interence [4], replica correlations [22]

and graph wavelets [24]. To our knowledge, non of these algorithms

has been proved to lead to regular dendrograms (that is, without

inversion).

Finally, the Louvain algorithm also provides a hierarchy, induced

by the successive aggregation steps of the algorithm [2]. This is not

a full hierarchy, however, as there are typically a few aggregation

steps. Moreover, the same resolution is used in the optimization of

https://doi.org/
https://doi.org/

MLG 18, August 2018, London, UK Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre Hollocou

modularity across all levels of the hierarchy, while the numbers of

clusters decrease rapidly after a few aggregation steps. We shall see

that our algorithm may be seen as a modified version of Louvain us-

ing a sliding resolution, that is adapted to the current agglomeration

step of the algorithm.

3 NOTATION
Consider a weighted, undirected graphG = (V ,E) of n nodes, with

V = {1, . . . ,n}. Let A be the corresponding weighted adjacency

matrix. This is a symmetric, non-negative matrix such that for each

i, j ∈ V , Ai j > 0 if and only if there is an edge between i and j,
in which case Ai j is the weight of edge {i, j} ∈ E. We refer to the

weight of node i as the sum of the weights of its incident edges,

wi =
∑
j ∈V

Ai j .

Observe that for unit weights,wi is the degree of node i . The total
weight of the nodes is:

w =
∑
i ∈V

wi =
∑
i, j ∈V

Ai j .

We refer to a clustering C as any partition of V . In particular, each

element of C is a subset of V , we refer to as a cluster.

4 NODE PAIR SAMPLING
The edge weights induce a probability distribution on node pairs,

∀i, j ∈ V , p(i, j) =
Ai j

w
,

and a probability distribution on nodes,

∀i ∈ V , p(i) =
∑
j ∈V

p(i, j) =
wi
w
.

Observe that the joint distribution p(i, j) depends on the graph (in

particular, only neighbors i, j are sampled with positive probability),

while the marginal distribution p(i) depends on the graph through

the node weights only. Since the graph is undirected, we have

p(i, j) = p(j, i); the probability of sampling edge i, j (no matter the

order of the nodes) is p(i, j) + p(j, i) = 2p(i, j).
We now define the distance between two distinct nodes i, j as

the node pair sampling ratio
2
:

d(i, j) =
p(i)p(j)

p(i, j)
, (1)

with d(i, j) = +∞ if p(i, j) = 0 (i.e., i and j are not neighbors). Nodes
i, j are close for this distance if the pair i, j is sampled much more

frequently through the joint distribution p(i, j) than through the

product distribution p(i)p(j). For unit weights, the joint distribution
is uniform over the edges, so that the closest node pair is the pair

of neighbors having the lowest degree product.

Another interpretation of the node distance d follows from the

conditional probability,

∀i, j ∈ V , p(i |j) =
p(i, j)

p(j)
=

Ai j

w j
.

2
The distance d is not a metric in general. We only require symmetry and non-

negativity.

This is the conditional probability of sampling i given that j is
sampled (from the joint distribution). The distance between i and j
can then be written

d(i, j) =
p(i)

p(i |j)
=

p(j)

p(j |i)
.

The closer the nodes i, j for this distance, themore likely i is sampled

given that j is sampled (equivalently, for sampling j given i).
Similarly, consider some clustering C of the graph (that is, a

partition of V). The probability distribution on node pairs defined

above induce a probability distribution on cluster pairs,

∀a,b ∈ C, p(a,b) =
∑

i ∈a, j ∈b

p(i, j),

and a probability distribution on clusters,

∀a ∈ C, p(a) =
∑
i ∈a

p(i) =
∑
b ∈C

p(a,b).

Note thatp(a,b) is the probability of sampling a node ina and a node
in b (in this order), while p(a) is the probability of sampling a node

in cluster a. By symmetry, we have p(a,b) = p(b,a) and 2p(a,b)
is the probability of sampling distinct clusters a,b (no matter the

order).

We define the distance between two distinct clusters a,b as the

cluster pair sampling ratio:

d(a,b) =
p(a)p(b)

p(a,b)
, (2)

with d(a,b) = +∞ if p(a,b) = 0 (i.e., there is no edge between

clusters a and b). Defining the conditional probability

∀a,b ∈ C, p(a |b) =
p(a,b)

p(b)
,

which is the conditional probability of sampling a given that b is

sampled, we get

d(a,b) =
p(a)

p(a |b)
=

p(b)

p(b |a)
.

Again, the closer the clusters a,b for this distance, the more likely

a is sampled given that b is sampled (and the same for b given a).
This distance will be used in the agglomerative algorithm to

merge the closest clusters. We have the following key results.

Proposition 1 (Update formula). For any distinct clustersa,b, c ∈
C ,

d(a ∪ b, c) =

(
p(a)

p(a ∪ b)

1

d(a, c)
+

p(b)

p(a ∪ b)

1

d(b, c)

)−1
.

Proof.We have:

p(a ∪ b)p(c)d(a ∪ b, c)−1 = p(a ∪ b, c),

= p(a, c) + p(b, c),

= p(a)p(c)d(a, c)−1 + p(b)p(c)d(b, c)−1,

from which the formula follows. □

Proposition 2 (Reducibility). For any distinct clusters a,b, c ∈
C ,

d(a ∪ b, c) ≥ min(d(a, c),d(b, c)).

Hierarchical Graph Clustering MLG 18, August 2018, London, UK

Proof. By Proposition 1, d(a ∪ b, c) is a weighted harmonic mean of

d(a, c) and d(b, c), from which the inequality follows. □

In view of the reducibility property, merging clusters a and b
cannot decrease their minimum distance to any other cluster c .
This guarantees that the sequence of successive distances between

merged clusters generated by the agglomerative algorithm is non-

decreasing, as described below.

5 CLUSTERING ALGORITHM
The agglomerative approach consists in starting from individual

clusters (i.e., each node is in its own cluster) and merging clusters

recursively. At each step of the algorithm, the two closest clusters
are merged. We obtain the following algorithm:

(1) Initialization
C ← {{1}, . . . , {n}}
L← ∅

(2) Agglomeration
For t = 1, . . . ,n − 1,
• a,b ← argmina′,b′∈C,a′,b′ d(a

′,b ′)
• C ← C \ {a,b}; C ← C ∪ {a ∪ b}
• L← L ∪ {{a,b}}

(3) Return L

The successive clusterings C0,C1, . . . ,Cn−1 produced by the al-

gorithm, with C0 = {{1}, . . . , {n}}, can be recovered from the list

L of successive merges. Observe that clustering Ct consists of n − t
clusters, for t = 0, 1, . . . ,n − 1. By the reducibility property, the cor-
responding sequence of distances d0,d1, . . . ,dn−1 between merged

clusters, with d0 = 0, is non-decreasing, resulting in a regular

dendrogram (that is, without inversions) [16].

It is worth noting that the graphG does not need to be connected.

If the graph consists of k connected components, then the cluster-

ing Cn−k gives these k connected components, whose respective

distances are infinite; the k − 1 last merges can then be done in

an arbitrary order. Moreover, the hierarchies associated with these

connected components are independent of one another (i.e., the

algorithm successively applied to the corresponding subgraphs

would produce exactly the same clustering). Similarly, we expect

the clustering of weakly connected subgraphs to be approximately

independent of one another. This is not the case of the Louvain

algorithm, whose clustering depends on the whole graph through

the total weightw , a shortcoming related to the resolution limit of

modularity (see Section 6).

Implementation using the aggregate graph. In view of (2), for

any clustering C of V , the distance d(a,b) between two clusters

a,b ∈ C is the distance between two nodes a,b of the following ag-

gregate graph: nodes are the elements ofC and the weight between

a,b ∈ C (including the case a = b, corresponding to a self-loop)

is

∑
i ∈a, j ∈b Ai j . Thus the agglomerative algorithm can be imple-

mented by merging nodes and updating the weights (and thus the

distances between nodes) at each step of the algorithm. Since the

initial nodes of the graph are indexed from 0 to n − 1, we index

the cluster created at step t of the algorithm by n + t . We obtain

the following equivalent version of the above algorithm, where

the clusters are coded by their respective indices in the aggregate

graph:

(1) Initialization
V ← {1, . . . ,n}
L← ∅

(2) Agglomeration
For t = 1, . . . ,n − 1,
• i, j ← argmini′, j′∈V ,i′,j′ d(i

′, j ′)
• L← L ∪ {{i, j}}
• V ← V \ {i, j}; V ← V ∪ {n + t}
• p(n + t) ← p(i) + p(j)
• p(n + t ,u) ← p(i,u) + p(j,u) for u ∈ V \ {n ∪ t}

(3) Return L

Observe that the aggregate graph has n − t nodes after step t .
The associate sampling distribution p is updated, which in turn

modifies the distance d between nodes in the aggregate graph,

through the formula (1). In practice, a copy of the graph is done at

the beginning of the algorithm to avoid the destruction of the data

structure containing the initial graph G.

Implementation using the nearest-neighbor chain. By the reducibil-
ity property of the distance, the algorithm can be implemented

through the nearest-neighbor chain scheme [16]. Starting from an

arbitrary node of the aggregate graph, a chain a nearest neighbors

is formed. Whenever two nodes of the chain are mutual nearest

neighbors, these two nodes are merged and the chain is updated

recursively, until the initial node is eventually merged. This scheme

reduces the search of a global minimum (the pair of nodes i, j that
minimizes d(i, j)) to that of a local minimum (any pair of nodes i, j
such that d(i, j) = minj′ d(i, j

′) = mini′ d(i
′, j)), which speeds up

the algorithm while returning exactly the same hierarchy. It only
requires a consistent tie-breaking rule for equal distances (e.g., any

node at equal distance of i and j is considered as closer to i if and
only if i < j). Observe that the space complexity of the algorithm is

in O(m), wherem is the number of edges of G (i.e., the graph size).

6 LINKWITH MODULARITY
The modularity is a standard metric to assess the quality of a clus-

tering C (any partition of V). Let δC (i, j) = 1 if i, j are in the same

cluster under clustering C , and δC (i, j) = 0 otherwise. The modu-

larity of clustering C is defined by [19]:

Q(C) =
1

w

∑
i, j ∈V

(Ai j −
wiw j

w
)δC (i, j), (3)

which can be written in terms of probability distributions,

Q(C) =
∑
i, j ∈V

(p(i, j) − p(i)p(j))δC (i, j).

Thus the modularity is the difference between the probabilities of

sampling two nodes of the same cluster under the joint distribution

p(i, j) and under the product distribution p(i)p(j). It can also be

expressed from the probability distributions at the cluster level,

Q(C) =
∑
a∈C
(p(a,a) − p(a)2).

It is clear from (3) that any clustering C maximizing modularity

has some resolution limit, as pointed out in [8], because the sec-

ond term is normalized by the total weight w and thus becomes

negligible for too small clusters. To go beyond this resolution limit,

MLG 18, August 2018, London, UK Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre Hollocou

it is necessary to introduce a multiplicative factor γ , called the

resolution. The modularity becomes:

Qγ (C) =
∑
i, j ∈V

(p(i, j) − γp(i)p(j))δC (i, j), (4)

or equivalently,

Qγ (C) =
∑
a∈C
(p(a,a) − γp(a)2).

This resolution parameter can be interpreted through the Potts

model of statistical physics [21], random walks [10], or statistical

inference of a stochastic block model [17]. For γ = 0, the resolution

is minimum and there is a single cluster, that is C = {{1, . . . ,n}};
for γ → +∞, the resolution is maximum and each node has its own

cluster, that is C = {{1}, . . . , {n}}.
The Louvain algorithm consists, for any fixed resolution param-

eter γ , of the following steps:

(1) Initialization
C ← {{1}, . . . , {n}}

(2) Iteration
While modularity Qγ (C) increases, update C by moving one

node from one cluster to another.

(3) Aggregation
Merge all nodes belonging to the same cluster, update the

weights and apply step 2 to the resulting aggregate graph

while modularity is increased.

(4) Return C

The result of step 2 depends on the order in which nodes and

clusters are considered; typically, nodes are considered in a cyclic

way and the target cluster of each node is that maximizing the

modularity increase.

Our algorithm can be viewed as amodularity-maximizing scheme

with a sliding resolution. Starting from the maximum resolution

where each node has its own cluster, we look for the first value

of the resolution parameter γ , say γ1, that triggers a single merge

between two nodes, resulting in clustering C1. In view of (4), we

have:

γ1 = max

i, j ∈V

p(i, j)

p(i)p(j)
.

These two nodes are merged (corresponding to the aggregation

phase of the Louvain algorithm) and we look for the next value

of the resolution parameter, say γ2, that triggers a single merge

between two nodes, resulting in clustering C2, and so on. By con-

struction, the resolution at time t (that triggers the t-th merge)

is γt = 1/dt and the corresponding clustering Ct is that of our

algorithm. In particular, the sequence of resolutions γ1, . . . ,γn−1 is
non-increasing.

To summarize, our algorithm consists of a simple but deep mod-

ification of the Louvain algorithm, where the iterative step (step 2)

is replaced by a single merge, at the best current resolution (that

resulting in a single merge). In particular, unlike the Louvain al-

gorithm, our algorithm provides a full hierarchy. Moreover, the

sequence of resolutions γ1, . . . ,γn−1 can be used as an input to the

Louvain algorithm. Specifically, the resolution γt provides exactly
n − t clusters in our case, and the Louvain algorithm is expected to

provide approximately the same number of clusters at this resolu-

tion.

7 EXPERIMENTS
We have coded our hierarchical clustering algorithm, we refer to as

Paris
3
, in Python. All material necessary to reproduce the experi-

ments presented below is available online
4
.

Qualitative results. We start with a simple hierarchical stochastic

block model, as described in [15]. There are n = 160 nodes struc-

tured in 2 levels, with 4 blocks of 40 nodes at level 1, each block

of 40 nodes being divided into 4 blocks of 10 nodes at level 2 (see

Figure 1).

(a) Level 1 (b) Level 2

Figure 1: A hierachical stochastic block model with 2 levels
of hierarchy.

The output of Paris is shown in Figure 2 as a dendrogram where

the distances (on the y-axis) are in log-scale. The two levels of

hierarchy clearly appear.

Figure 2: Dendrogram associatedwith the clustering of Paris
on a hierachical stochastic block model of 16 blocks.

We also show in Figure 3 the number of clusters with respect to

the resolution parameterγ for Paris (top) and Louvain (bottom). The

results are very close, and clearly show the hierarchical structure

of the model (vertical lines correspond to changes in the number of

clusters). The key difference between both algorithms is that, while

Louvain needs to be run for each resolution parameter γ (here 100

values ranging from 0.01 to 20), Paris is run only once, the relevant

resolutions being direct outputs of the algorithm, embedded in the

dendrogram (see Section 6).

3
Paris = Pairwise AgglomeRation Induced by Sampling.

4
See https://github.com/tbonald/paris

https://github.com/tbonald/paris

Hierarchical Graph Clustering MLG 18, August 2018, London, UK

10 1 100 101

Resolution

0

10

20

30

40

50

60

Nu
m

be
r o

f c
lu

st
er

s

10 1 100 101

Resolution

0

10

20

30

40

50

60

Nu
m

be
r o

f c
lu

st
er

s

Figure 3: Number of clusters with respect to the resolution
parameter γ for Paris (top) and Louvain (bottom) on the hi-
erachical stochastic block model of Figure 1.

We now consider four real datasets, whose characteristics are

summarized in Table 1.

Graph # nodes # edges Avg. degree

OpenStreet 5,993 6,957 2.3

OpenFlights 3,097 18,193 12

Wikipedia Schools 4,589 106,644 46

Wikipedia Humans 702,782 3,247,884 9.2

Table 1: Summary of the datasets.

The first dataset, extracted from OpenStreetMap
5
, is the graph

formed by the streets of the center of Paris. To illustrate the quality

of the hierarchical clustering returned by our algorithm, we have

extracted the two “best" clusterings, in terms of ratio between

successive distance merges in the corresponding dendrogram; the

results are shown in Figure 4. The best clustering gives two clusters,

Rive Droite (with Ile de la Cité) and Rive Gauche, the two banks

separated by the river Seine; the second best clustering divides

these two clusters into sub-clusters.

The second dataset, extracted from OpenFlights
6
, is the graph of

airports with the weight between two airports equal to the number

of daily flights between these airports. We run Paris and extract

the best clusterings from the largest component of the graph, as

for the OpenStreet graph. The first two best clusterings isolate the

Island/Groenland area and the Alaska from the rest of the world, the

corresponding airports forming dense clusters, lightly connected

with the other airports. The following two best clusterings are

shown in Figure 5, with respectively 5 and 10 clusters corresponding

to meaningful continental regions of the world.

5
https://openstreetmap.org

6
https://openflights.org

Figure 4: Two clusterings of the OpenStreet graph extracted
from the hierarchical clustering returned by Paris.

Figure 5: Two clusterings of theOpenFlights graph extracted
from the hierarchical clustering returned by Paris.

MLG 18, August 2018, London, UK Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre Hollocou

The third dataset is the graph formed by links between pages

of Wikipedia for Schools
7
, see [26]. The graph is considered as

undirected. Table 2 (top table) shows the 10 largest clusters of

Cn−100, the 100 last clusters found by Paris. Only pages of highest

degrees are shown for each cluster. Observe that the ability of

selecting the clustering associated with some target number of

clusters is one of the key advantage of Paris over Louvain. Moreover,

Paris gives a full hiearchy of the pages, meaning that each of these

clusters is divided into sub-clusters in the output of the algorithm.

Table 2 (bottom table) gives for instance, among the 500 clusters

found by Paris (that is, in Cn−500), the 10 largest clusters that are
subclusters of cluster #1, related to taxinomy and animals. The

subclusters tend to give meaningful groups of animals, revealing

the multi-scale structure of the dataset.

Top-10 clusters (among 100 clusters)

Size Top articles

1 288 Scientific classification, Animal, Chordate

2 231 Iron, Oxygen, Electron, Hydrogen, Phase

3 196 England, Wales, Elizabeth II of the United Kingdom

4 164 Physics, Mathematics, Science, Albert Einstein

5 148 Portugal, Ethiopia, Mozambique, Madagascar

6 139 Washington, D.C., President of the United States

7 129 Earth, Sun, Astronomy, Star, Gravitation

8 127 Plant, Fruit, Sugar, Tea, Flower

9 104 Internet, Computer, Mass media, Latin alphabet

10 99 Jamaica, The Beatles, Hip hop music, Jazz, Piano

Top-10 subclusters of cluster #1

Size Top pages

1 71 Dinosaur, Fossil, Reptile, Cretaceous, Jurassic

2 51 Binomial nomenclature, Bird, Carolus Linnaeus

3 24 Mammal, Lion, Cheetah, Giraffe

4 22 Animal, Ant, Arthropod, Spider, Bee

5 18 Dog, Bat, Vampire, George Byron

6 16 Eagle, Glacier National Park, Golden Eagle

7 16 Chordate, Parrot, Gull, Surtsey, Herring Gull

8 15 Feather, Extinct birds, Mount Rushmore

9 13 Miocene, Eocene, Bryce Canyon National Park

10 12 Crow, Dove, Pigeon, Rock Pigeon

Table 2: Clusters of the Wikipedia Schools graph extracted
from the hierarchical clustering returned by Paris.

The fourth dataset is the subgraph of Wikipedia restricted to

pages related to humans. We have done the same experiment as for

the Wikipedia Schools graph, and the results are shown in Table

3. Again, we observe that clusters form relevant groups of people,

with cluster #1 corresponding to political figures for instance, this

cluster consisting of meaningful subgroups as shown in the bottom

of Table 3. All this information is embedded in the dendrogram

returned by Paris.

7
https://schools-wikipedia.org

Top-10 clusters (among 100 clusters)

Size Main pages

1 41363 George W. Bush, Barack Obama, Bill Clinton

2 34291 Alex Ferguson, David Beckham, Pelé

3 25225 Abraham Lincoln, George Washington

4 23488 Madonna, Woody Allen, Martin Scorsese

5 23044 Wolfgang Amadeus Mozart, J. Sebastian Bach

6 22236 Elvis Presley, Bob Dylan, Elton John, David Bowie

7 20429 Queen Victoria, George III of the UK, Edward VII

8 19105 Sting, Jawaharlal Nehru, Rabindranath Tagore

9 18348 Edward I of England, Edward III of England

10 14668 Jack Kemp, Brett Favre, Peyton Manning

Top-10 subclusters of cluster #1

Size Top pages

1 2722 Barack Obama, John McCain, Dick Cheney

2 2443 Arnold Schwarzenegger, Jerry Brown, Ralph Nader

3 2058 Osama bin Laden, Hamid Karzai, Alberto Gonzales

4 1917 Dwight D. Eisenhower, Harry S. Truman

5 1742 George W. Bush, Condoleezza Rice, Colin Powell

6 1700 Bill Clinton, Thurgood Marshall, Mike Huckabee

7 1559 Ed Rendell, Arlen Specter, Rick Santorum

8 1545 Theodore Roosevelt, Herbert Hoover

9 1523 Ronald Reagan, Richard Nixon, Jimmy Carter

10 1508 Rudy Giuliani, Michael Bloomberg

Table 3: Clusters of the Wikipedia Humans graph extracted
from the hierarchical clustering returned by Paris.

Quantitative results. To assess the quality of the hierarchical

clustering, we use the cost function proposed in [6] and given by:∑
a,b

p(a,b)(|a | + |b |), (5)

where the sum is over all left and right clusters a,b attached to any

internal node of the tree representing the hierarchy. This is the

expected size of the smallest subtree containing two random nodes

i, j , sampled from the joint distribution p(i, j) introduced in Section

4. If the tree indeed reflects the underlying hierarchical structure

of the graph, we expect most edges to link nodes that are close in

the tree, i.e., whose common ancestor is relatively far from the root.

The size of the corresponding subtree (whose root is this common

ancestor) is expected to be small, meaning that (5) is a relevant

cost function. Moreover, it was proved in [5] that if the graph is

perfectly hierarchical, the underlying tree is optimal with respect

to this cost function.

The results are presented in Table 5 for the graphs considered

so far and the graphs of Table 4, selected from the SNAP datasets

[13]. The cost function is normalized by the number of nodes n so

as to get a value between 0 and 1. We compare the performance of

Paris to that of a spectral algorithm where the nodes are embedded

in a space of dimension 20 by using the 20 leading eigenvectors of

the Laplacian matrix L = D −A (D is the diagonal matrix of node

weights) and applying the Ward method in the embedding space.

The spectral decomposition of the Laplacian is based on standard

functions on sparse matrices available in the Python package scipy.

Hierarchical Graph Clustering MLG 18, August 2018, London, UK

Observe that we do not include Louvain in these experiments

as this algorithm does not provide a full hierarchy of the graph, so

that the cost function (5) is not applicable.

Graph # nodes # edges Avg. degree

Facebook 4,039 88,234 44

Amazon 334,863 925,872 5.5

DBLP 317,080 1,049,866 6.6

Twitter 81,306 1,342,310 33

Youtube 1,134,890 2,987,624 5.2

Google 855,802 4,291,352 10

Table 4: Summary of the considered graphs from SNAP.

The results are shown when the algorithm runs within some

time limit (less than 1 hour on a computer equipped with a 2.8GHz

Intel Core i7 CPU with 16GB of RAM). The best performance is

displayed in bold characters. Observe that both algorithms have

similar performance on those graphs where the results are available.

However, Paris is much faster than the spectral algorithm, as shown

by Table 6 (for each algorithm, the initial load or copy of the graph

is not included in the running time; running times exceeding 1 hour

are not shown). Paris is even faster than Louvain in most cases,

while providing a much richer information on the graph.

Graph Spectral Paris

OpenStreet 0.0103 0.0102
OpenFlights 0.125 0.130

Facebook 0.0479 0.0469
Wikipedia Schools 0.452 0.402
Amazon − 0.0297
DBLP − 0.110
Twitter − 0.0908
Youtube − 0.185
Wikipedia Humans − 131
Google − 0.0121

Table 5: Performance comparison of a spectral algorithm
and Paris in terms of normalized Dasgupta’s cost.

Graph Spectral Louvain Paris

OpenStreet 0.86s 0.19s 0.17s
OpenFlight 0.51s 0.31s 0.33s

Facebook 5.9s 1s 0.71s
Wikipedia Schools 16s 2.2s 1.5s
Amazon − 45s 43s
DBLP − 52s 31s
Twitter − 35s 21s
Youtube − 8 min 16 min 30s

Wikipedia Humans − 2 min 30s 2 min 10s
Google − 3 min 50s 1 min 50s

Table 6: Comparison of running times.

8 CONCLUSION
We have proposed a hierarchical graph clustering algorithm based

on a reducible distance between clusters. The algorithm is parameter-

free, fast and memory-efficient. Future work will be dedicated to

the automatic extraction of clusterings from the dendrogram, at

the most relevant resolutions.

ACKNOWLEDGEMENT
Part of this work has been done while Bertrand Charpentier was a

Master student at KTH, Sweden.

REFERENCES
[1] Alex Arenas, Alberto Fernandez, and Sergio Gomez. 2008. Analysis of the struc-

ture of complex networks at different resolution levels. New journal of physics
10, 5 (2008).

[2] Vincent Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.

2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 10 (2008).

[3] Cheng-Shang Chang, Chin-Yi Hsu, Jay Cheng, and Duan-Shin Lee. 2011. A

general probabilistic framework for detecting community structure in networks.

In Proceedings IEEE INFOCOM.

[4] Aaron Clauset, Cristopher Moore, and Mark EJ Newman. 2008. Hierarchical

structure and the prediction of missing links in networks. Nature (2008).
[5] Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire

Mathieu. 2018. Hierarchical clustering: Objective functions and algorithms. In

Proceedings of ACM-SIAM Symposium on Discrete Algorithms.
[6] Sanjoy Dasgupta. 2016. A cost function for similarity-based hierarchical cluster-

ing. In Proceedings of ACM symposium on Theory of Computing.
[7] Luca Donetti and Miguel A Munoz. 2004. Detecting network communities: a

new systematic and efficient algorithm. Journal of Statistical Mechanics: Theory
and Experiment 2004, 10 (2004).

[8] Santo Fortunato and Marc Barthelemy. 2007. Resolution limit in community

detection. Proceedings of the National Academy of Sciences 104, 1 (2007).
[9] Jianbin Huang, Heli Sun, Jiawei Han, Hongbo Deng, Yizhou Sun, and Yaguang

Liu. 2010. SHRINK: A Structural Clustering Algorithm for Detecting Hierarchical

Communities in Networks. In Proceedings of ACM International Conference on
Information and Knowledge Management.

[10] Renaud Lambiotte, Jean-Charles Delvenne, andMauricio Barahona. 2014. Random

walks, Markov processes and the multiscale modular organization of complex

networks. IEEE Transactions on Network Science and Engineering (2014).

[11] Andrea Lancichinetti and Santo Fortunato. 2011. Limits of modularity maximiza-

tion in community detection. Physical review E 84, 6 (2011).

[12] Andrea Lancichinetti, Santo Fortunato, and János Kertész. 2009. Detecting the

overlapping and hierarchical community structure in complex networks. New
Journal of Physics 11, 3 (2009).

[13] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data. (June 2014).

[14] Ulrike Luxburg. 2007. A Tutorial on Spectral Clustering. Statistics and Computing
(2007).

[15] Vince Lyzinski, Minh Tang, Avanti Athreya, Youngser Park, and Carey E Priebe.

2017. Community detection and classification in hierarchical stochastic block-

models. IEEE Transactions on Network Science and Engineering 4, 1 (2017).

[16] Fionn Murtagh and Pedro Contreras. 2012. Algorithms for hierarchical cluster-

ing: an overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery (2012).

[17] MEJ Newman. 2016. Community detection in networks: Modularity optimization

and maximum likelihood are equivalent. arXiv preprint (2016).
[18] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in

networks. Physical review E 69, 6 (2004), 066133.

[19] Mark EJ Newman and Michelle Girvan. 2004. Finding and evaluating community

structure in networks. Physical review E (2004).

[20] Pascal Pons and Matthieu Latapy. 2005. Computing communities in large net-

works using random walks. In International symposium on computer and infor-
mation sciences. Springer.

[21] Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community

detection. Physical Review E 74, 1 (2006).

[22] Peter Ronhovde and Zohar Nussinov. 2009. Multiresolution community detection

for megascale networks by information-based replica correlations. Physical
Review E 80, 1 (2009).

[23] Marta Sales-Pardo, Roger Guimera, André A Moreira, and Luís A Nunes Amaral.

2007. Extracting the hierarchical organization of complex systems. Proceedings
of the National Academy of Sciences 104, 39 (2007).

http://snap.stanford.edu/data

MLG 18, August 2018, London, UK Thomas Bonald, Bertrand Charpentier, Alexis Galland, and Alexandre Hollocou

[24] Nicolas Tremblay and Pierre Borgnat. 2014. Graph wavelets for multiscale

community mining. IEEE Transactions on Signal Processing 62, 20 (2014).

[25] Joe H Ward. 1963. Hierarchical grouping to optimize an objective function.

Journal of the American statistical association (1963).

[26] Robert West, Joelle Pineau, and Doina Precup. 2009. Wikispeedia: An Online

Game for Inferring Semantic Distances between Concepts.. In IJCAI.

	Abstract
	1 Introduction
	2 Related work
	3 Notation
	4 Node pair sampling
	5 Clustering algorithm
	6 Link with modularity
	7 Experiments
	8 Conclusion
	References

