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ABSTRACT
Network embedding aims to represent each node in a network
as a low-dimensional feature vector that summarizes the given
node’s (extended) network neighborhood. The nodes’ feature vec-
tors can then be used in various downstream machine learning
tasks. Recently, many embedding methods that automatically learn
the features of nodes have emerged, such as node2vec and struc2vec,
which have been used in tasks such as node classification, link pre-
diction, and node clustering, mainly in the social network domain.
There are also other embedding methods that explicitly look at
the connections between nodes, i.e., the nodes’ network neighbor-
hoods, such as graphlets. Graphlets have been used in many tasks
such as network comparison, link prediction, and network clus-
tering, mainly in the computational biology domain. Even though
the two types of embedding methods (node2vec/struct2vec ver-
sus graphlets) have a similar goal – to represent nodes as features
vectors, no comparisons have been made between them, possibly
because they have originated in the different domains. Therefore,
in this study, we compare graphlets to node2vec and struc2vec,
and we do so in the task of network alignment. In evaluations on
synthetic and real-world biological networks, we find that graphlets
are both more accurate and faster than node2vec and struc2vec.

This work falls under the following submission types: “Novel re-
search paper” and “Appraisal paper of existing methods and tools”.

1 INTRODUCTION
Many complex systems can be modeled as networks [2, 23]. For
example, social interactions between people can be modeled as
social networks, and biochemical interactions between proteins
inside the cell can be modeled as protein-protein interaction (PPI)
networks. Modeling a system as a network allows us to consider
the important interactions between entities (e.g., people, proteins,
etc.), which can lead to deeper insights compared to analyzing each
entity on its own.

An important and popular computational problem in the field of
network science is network embedding [5]. The goal of network em-
bedding is to represent each node in a network as a low-dimensional
feature vector such that the network structure is preserved. The
nodes’ feature vectors can then be used in various downstream
machine learning tasks. For example, in the task of node classifi-
cation, given a network where labels are known only for some of
the nodes, one can embed all nodes in a low-dimensional space and
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train a classifier to predict labels of the other nodes based on their
feature vector similarities, i.e., closeness in the space, to the labeled
nodes [6, 10, 26]. In the task of link prediction, after obtaining a
feature vector for each node, one can calculate similarities between
all node pairs, and then nodes with higher similarities will have
higher probabilities of being linked [16, 37]. In the task of network
clustering, the nodes’ (or edges’) feature vectors can be given as
input to a clustering algorithm to group similar nodes (or edges)
together [4, 13, 17, 20, 28].

Many network embedding methods automatically learn the fea-
tures of nodes. That is, these methods formulate the problem of
embedding as the optimization of some objective function. Two re-
cent state-of-the-art methods, node2vec [10] and struc2vec[26], fall
under this category. Intuitively, they use random walks to explore
the extended neighborhood of a node and summarize it into the
node’s feature vector. To date, these approaches have been used
in node classification, link prediction, and node clustering tasks,
mainly in the social network domain [6, 10, 13, 17, 26, 37].

Other embedding methods explicitly look at the connections be-
tween nodes, i.e., the nodes’ network neighborhoods, rather than
trying to infer some features automatically through optimization.
Graphlets fall under this category. Graphlets (Fig. 1) are Lego-like
building blocks of complex networks, i.e., small subgraphs of a
network (a path, triangle, square, etc.). Graphlets can be used to
summarize the extended neighborhood of a node into a feature
vector as follows. For each node, for each topological node sym-
metry group (formally, automorphism orbit), one can count how
many times the given node touches each graphlet at each of its
orbits. The resulting counts for all graphlets/orbits form the node’s
graphlet degree vector (GDV) [20]. Graphlets and nodes’ (as well
as edges’) GDVs have been used extensively in many tasks, such
as network comparison, network clustering, and link prediction,
mainly in the computational biology (i.e., biological network) do-
main [8, 16, 20, 27–29, 36, 38].

Even though the methods that automatically learn node em-
beddings have a similar goal as graphlets – to obtain a feature
vector of a node – to our knowledge no comparisons have been
made between them, possibly because the two approach types have
originated and have been used in the different domains (social ver-
sus biological networks). Even though recent studies on automatic
learning-based embedding have recognized that graphlets can be
seen as an alternative method for embedding, they have not com-
pared against graphlets in their evaluations [6, 40]. To close this gap
and merge the knowledge from the different domains, in this study
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Figure 1: Illustration of all nine 2-4-node graphlets and their
15 node symmetry groups (i.e., automorphism orbits). In a
given graphlet, nodes belonging to the same orbit are col-
ored the same.

we compare the two types of embedding methods to each other.
Specifically, we compare graphlets to node2vec and struc2vec, and
we do so in the task of network alignment (NA).

Intuitively, NA aims to find a node mapping between the com-
pared networks that uncovers network regions of high similarity
(Fig. 2) [7, 12, 19]. This allows for the transfer of functional knowl-
edge between the similar (i.e., aligned) network regions. NA is also
referred to as alignment-based network comparison, graph match-
ing, graph deanonymization, and identity matching. This is because
NA has been applied to many domains. For example, if we align the
PPI network of baker’s yeast, a well-studied species, to the PPI net-
work of human, a poorly-studied species, we can infer the function
of human proteins based on the function of their aligned partners
in the yeast network. This was done in order to study human aging
[9], which is otherwise difficult to do because of long life span and
ethical constraints involving the human species. NA can also be
used to deanonymize online social networks. For example, many
Internet users are on multiple social media platforms, and thus,
NA can be used to match identities (i.e., user accounts) across the
different platforms [39]. On the other hand, NA can be used to
study how to prevent such deanonymization attacks on potentially
sensitive data, thus having privacy implications [22].

NA is computationally intractable, i.e., NP-hard, due to the NP-
completeness of the underlying subgraph isomorphism problem [3].
So, heuristic algorithms need to be sought. These algorithms typi-
cally consist of two parts. First, they measure pairwise similarities
between nodes from the networks being aligned. Then, they use an
alignment strategy to quickly identify alignments that maximize
some objective function, which often takes into account the total
similarity over all aligned nodes (i.e., the goal is to align similar
nodes to each other), plus potentially the amount of edges that are
conserved under the given node mapping.

So, in our evaluation, we use each of graphlets (i.e., GDVs),
node2vec, and struc2vec to quantify node similarities, plug those
similarities into two established alignment strategies – WAVE [30]
and SANA [18], and compare the results of the different node sim-
ilarity measures under the same alignment strategy. We choose
these two alignment strategies because they are recent and state-of-
the-art methods, and also they are complementary to each other in
the sense that they use different algorithmic paradigms (WAVE uses
a seed-and-extend approach while SANA uses a search algorithm)
[11]. We analyze synthetic networks originating from different
random graph models as well as real-world biological networks.
We align each of the networks to its randomly rewired (i.e., noisy)
versions and test the robustness of each NA approach to noise in

Figure 2: Illustration of network alignment (NA). NA aims
to find a one-to-one (injective) mapping between nodes of
the compared networks. Dotted lines represent nodes that
are aligned to each other in this illustration. Note that NA
as we define it in this study is called global NA, as it aims
to map all nodes from the smaller of the two networks to
nodes from the larger network. Another type of NA exists
called local NA, which typically results in only small (local)
network regions being mapped to each other [12, 19], but
this is out of the scope of our study. Also, note that NA as we
define in this study is called pairwise NA, as it aims to align
two networks. Another type of NA exists calledmultiple NA,
which can align more than two networks [32, 34], but this is
out of the scope of our study.

the data. Since the aligned networks have only a percentage of
their edges different but they have the same nodes, we know which
nodes should be mapped to which. So, we quantify NA quality by
measuring node correctness – the percentage of nodes in the given
alignment that are correctly mapped. Note that while aligning a
network to its noisy counterpart is related to the graph, rather than
subgraph, isomorphism problem, because both networks are of the
same size, NA methods are designed to deal with the more general
subgraph isomorphism problem, i.e., aligning networks that are of
different sizes.

Because node2vec and struc2vec are based on randomwalks, and
because random walks can be thought of as “sampled graphlets”,
we expect that node2vec and struc2vec will be faster than graphlets.
However, we find that this is not the case – graphlets are an order
of magnitude faster than both node2vec and struc2vec, even though
the implementations of the latter two are parallelized, unlike the im-
plementation of graphlets that we use. At the same time, graphlets
overall yield more accurate alignments of the analyzed networks
compared to both node2vec and struc2vec. Hence, our results imply
that graphlets should be adopted from the computational biology
domain to the social network domain.

2 METHODS
2.1 Measuring node similarities
Graphlets. Here, we provide more intuition behind graphlet au-
tomorphism orbits. Given a graphlet, nodes that are topologically
symmetric to each other are a part of the same orbit. Consider a
three node path (G1 in Fig. 1). The two nodes on the end of the path
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are symmetric to each other, so they are in the same orbit (colored
black and labeled with a 1 in G1). On the other hand, the node in
the middle is only symmetric to itself, and thus in its own distinct
orbit (colored white and labeled with a 2 in G1). So, if node u in a
network is on the end of a three node path, it “participates" in the
first orbit. If it is in the middle of a three node path, it “participates"
in the second orbit. These orbits are precomputed for all graphlets
of up to five nodes. So, to form a node’s GDV, for each orbit, one
counts how many times that node participates in the orbit. Each
position in the GDV corresponds to an orbit, so if we consider up
to 4-node graphlets (which we do in this study), we have a feature
vector of length 15, because 2-4-node graphlets have 15 orbits (Fig.
1). To compute the GDVs, we use the Orca tool [14].
Node2vec. Node2vec uses biased random walks (intuitively, these
random walks follow the breadth-first search and depth-first search
strategies) to learn the features of a node. In a random walk with
some starting node u, in the first step there is an equal chance
of visiting every neighbor of u. In the second step, starting from
this neighbor of u, there is again an equal chance of visiting every
neighbor. This continues until a specified number of steps is made.
In a biased random walk, in each step some neighbors have a higher
or lower chance of being visited.

In node2vec, given a node u, the algorithm performs a number
of biased random walks of a certain length starting at u. Then, for
every other node in the network, these walks are used to obtain the
probability of the node u being close in distance to the other node.
For example, if many random walks starting at u encounter some
other node v within a few steps, then there is a high probability u
is close to v . This also means the feature vector for u will be similar
to that of v . For the formal approach of node2vec, see [10].

We use the default parameter values of the C++ implementation
of node2vec provided in the SNAP GitHub; these values were em-
pirically chosen in the node2vec study. While node2vec is sensitive
to changes in some of these parameter values [10], it is not in the
scope of this study to find the best performing parameter values for
every network pair and alignment method. Actually, for this par-
ticular reason—the need to always determine the best-performing
parameter values—the parameter sensitivity of node2vec can be
seen as one of its drawbacks.
Struc2vec. Ribeiro el al. introduce struc2vec as another biased
randomwalk-basedmethod. Themain difference between node2vec
and struc2vec is that while in node2vec random walks occur on the
original network, in struc2vec they occur on a modified version of
the network where nodes that are close in distance in this network
are structurally similar in the original network. Using the node2vec
example above, if node u encounters some other node v within a
few steps in many random walks, there is a high probability u is
close, and therefore structurally similar, to v . Again, the feature
vector of u will be similar to that of v . For the formal approach of
struc2vec, see [26].

Ribeiro el al. argue that while methods like node2vec work well
for node classification tasks, they tend to fail for structural equiv-
alence tasks. In particular, given a node with a certain feature,
neighbors of the node are likely to have the same feature. As such,
nodes that are close in distance will more likely have similar feature

vectors compared to nodes that are far in distance. So, structural
equivalence will not necessarily be captured very well.

We use the default parameters provided in the struc2vec GitHub;
these values were empirically chosen in the struc2vec study. Again,
while struc2vec is sensitive to changes in some of these parameter
values [26], it is not in the scope of this study to find the best
performing parameter values for every network pair and alignment
method.
Quantifying node similarity between networks. Given two
nodes and their respective feature vectors, we calculate the cosine
similarity between them, which we then normalize between 0 and
1 by adding the maximum possible value (1) and dividing by the
range (2). While the inverse of Euclidean distance is also an option
for a similarity measure, empirically we have found that cosine sim-
ilarity typically gives better results. Note that for graphlets, we first
perform principal component analysis (PCA), a standard dimension
reduction technique, on the GDVs of all nodes from the networks
being aligned, and then we compute cosine similarity between the
PCA-reduced GDVs. We use PCA because we have found empir-
ically that doing so almost always gives better alignment quality
than not using PCA; of course, there could exist another dimension-
ality reduction technique that might yield even better alignment
quality. We choose the first r principal components, where r is at
least two and as small as possible such that the r components ac-
count for at least 90% of the variation in the data. For the node2vec
and struc2vec methods, we do not employ any dimensionality re-
duction technique, as the dimension of the embedding is a method
parameter.

2.2 Alignment strategies
WAVE.WAVE takes as input two networks and similarities between
all pairs of nodes from the two networks. Then, it uses a “seed-and-
extend" algorithm to align the networks. First two highly similar
nodes are aligned, i.e., seeded. Then, the seed’s neighboring nodes
that are similar are aligned, the seed’s neighbor’s neighbors that
are similar are aligned, and so on. The extension step continues
until all nodes in the smaller of the two compared networks are
aligned (formally, until a one-to-one node mapping between the
two networks is produced).
SANA. SANA also takes as input two networks and similarities
between all pairs of nodes from the two networks, like WAVE.
However, SANA uses a search algorithm, specifically simulated an-
nealing, to find an alignment. That is, instead of aligning networks
node by node as WAVE does, SANA explores the space of possible
alignments and find the highest scoring one with respect to the
objective function. We set the following parameters for SANA: s3
to 1, esim to 1, simFile to the name of the node similarity file, and
simFormat to 1 (this tells SANA to read the similarity file such that
each line has 3 columns: node1, node2, and the similarity between
them). SANA also has a running time parameter; for the smaller
synthetic networks (discussed below), we set t to 5 minutes. For
the larger biological networks (discussed below) we increase t to 60
minutes since SANA requires more time to find a good alignment
(which we have verified empirically in our evaluation).
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3 RESULTS AND DISCUSSION
3.1 Evaluation
We study the three embedding (i.e., node similarity) methods –
graphlets, node2vec, and struc2vec (Section 2.1). We run each em-
beddingmethod under each of the two alignment strategies –WAVE
and SANA (Section 2.2). We evaluate the three embedding meth-
ods under the same alignment strategy by aligning two types of
networks – synthetic and real-world biological (PPI) networks, to
their noisy counterparts, as follows.
Synthetic networks. We form synthetic networks using two ran-
dom graph generators, namely: 1) geometric random graphs (GEO)
and 2) scale-free networks (SF). The two models have distinct net-
work topologies [21], which enables us to test the robustness of our
results to the choice of random graph model. We set both networks
to the same size of 1,000 nodes and 6,000 edges.
PPI networks.We consider two different types of PPIs (i.e., edges):
only affinity capture coupled to mass spectrometry (APMS), and
only two-hybrid (Y2H). Sizes of the two PPI networks are shown
in Table 1. The two edge types reflect biological experiments used
to detect the PPIs. Intuitively, APMS experiments will result in
networks that will have more clique-like structures, and Y2H ex-
periments will result in networks that will have more star-like
structures. That is, the two PPI networks have different topologies,
which allows us to test the robustness of our results to the choice
of PPI type.

Network # of nodes # of edges
APMS 11,450 92,257
Y2H 10,317 41,925

Table 1: Sizes of the two considered PPI networks.

Creating noisy counterparts of a synthetic or PPI network.
A noisy counterpart is the original network with x% of its edges
rewired, where we vary x to be 0, 10, 25, 50, 75, and 100. Since
only edges are changed between the original and noisy network,
we know which nodes should be mapped to which. We can use
this true node mapping to accurately evaluate our methods; a good
method should have high node correctness, which is the percentage
of node pairs from the given alignment that are present in the true
node mapping. Other evaluation schemes, such as the fraction of
correctly mapped nodes out of nodes that have no rewired edges,
could be interesting to explore, but this is out of the scope of this
study. We form five rewired network instances at each noise level
to account for the randomness of the edge rewiring process, though
more instances can be used to increase the confidence in the results.
Then, we average the alignment quality over the multiple runs
corresponding to the multiple instances.

3.2 Method comparison in terms of accuracy
We expect that a good method (i.e., a combination of an embedding
method and an alignment strategy) should have high alignment
quality at low noise levels, and low alignment quality at high noise
levels, with a general decreasing trend as noise increases. This is
because at low noise levels, we are aligning two networks with

similar topologies compared to each other, while at high noise
levels, we are aligning two networks with almost random topologies
compared to each other. We also expect that a good method should
be robust to noise. That is, we should see a slower decrease in
alignment quality as noise increases compared to other methods.
We find that graphlets fit all of these criteria (Figs. 3 and 4), unlike
node2vec or struc2vec.

Specifically, we first perform a summary analysis that aims to
rank the three embedding approaches against each other. Consider-
ing up to 50% noise (which results in 4 networks × 4 noise levels ×
2 alignment strategies = 32 evaluation tests), we count how many
times out of the total of 32 evaluation tests a given embedding
method is the best (rank 1), second best (rank 2), or the third best,
i.e., worst (rank 3) in terms of alignment quality. Note that in this
ranking analysis we omit the largest noise levels of 75% and 100%
because for most of the methods and networks, alignment quality is
tied at near 0 values, as expected for such random-like noise levels.

In the ranking analysis, we find that graphlets are the best ap-
proach (have rank 1) most of the time – in 90.63% of all evaluation
tests (Fig. 3). We do observe some ties between the methods. In
particular, all three methods are tied with each other in 21.88% of all
cases, and graphlets are tied with node2vec (but not with struc2vec)
in 6.25% of additional cases. This means that graphlets are superior
(without ties) to both node2vec and struc2vec in 62.5% of all cases,
and are tied to at least one of node2vec or struc2vec in additional
21.88% + 6.25% = 28.13% of all cases. Node2vec is superior to the
other two methods in only 6.25% of all cases. Struc2vec is superior
to the other two methods in only 3.125% of all cases. This anal-
ysis questions the usefulness of node2vec and struc2vec, as they
improve upon graphlets in only two and one out of the 32 cases,
respectively.

Figure 3: Summarized results regarding the effect of the em-
beddingmethod (x-axis) on alignment quality over 32 evalu-
ation tests (4 networks × 4 noise levels × 2 alignment strate-
gies). For each test, we compare the different methods and
rank them from the best (rank 1) to the worst (rank 3). The
figure shows the percentage (frequency) of all evaluation
tests in which the given method has the given rank. Note
that in the figure, some rank ties exist (see the text for de-
tails).
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Second, we consider the detailed alignment quality versus noise
results for each embedding method, network, and alignment strat-
egy. This detailed analysis again confirms the superiority of graphlets
(Fig. 4). Specifically, at low noise levels, graphlets have high align-
ment quality, and at high noise levels, graphlets have low alignment
quality, with a decreasing trend, as expected. Contrast this with
node2vec’s results, where at some higher noise levels the align-
ment quality is actually better than at lower noise levels, which
is a trend that should not happen, as the networks being aligned
are more similar and should thus yield higher alignment quality at
lower than at higher noise levels. Regarding struc2vec, while this
method overall shows the expected trends, just as graphlets, it is
less accurate than graphlets. Also, of all approaches, we find that
graphlets are the most robust to noise, showing a slower decrease
in alignment quality as noise increases compared to the other two
methods.

3.3 Method comparison in terms of running
time

We also analyze running times of the different embedding methods.
All methods are run on a 64-core AMD Opteron 6376 machine with
500 GB of RAM. We record both real times (the actual clock time
elapsed) and CPU times (the total amount of time the core(s) spend
executing) for all methods. The more cores are used, the lower
the real time is expected to be. Hence, it is more fair to compare
the different methods’ CPU times, which essentially reflect how
long the given method would take if a single core was used. This
is especially true because node2vec uses 10 cores, struc2vec uses
four cores, and the implementation of graphlets that we consider
uses only one core. Again, if one wishes to ignore implementation-
specific (dis)advantages of the given method, including (lack of)
parallelization, it is more fair to compare the different methods’
CPU running times. On the other hand, if one wishes to give each
method/implementation the best-case advantage, then the methods’
real times should be compared.

It is important to note that the running time of counting graphlets
depends on the largest considered graphlet size (in this case, we
use up to 4-node graphlets), and the running times of computing
node2vec and struc2vec depend on parameters such as the length
of the random walks and the number of random walks per node (in
this case, we use the default parameters of each method). Since the
different methods depend on different parameters whose considered
values are not necessarily fairly comparable, the different methods’
running times might not be fairly comparable either. Nonetheless,
since graphlets are superior to the other two methods in terms of
accuracy under the considered parameter values, we are interested
in how the different methods’ running times compare under the
same parameter values.

We expect computing node2vec and struc2vec to be faster than
counting graphlets, because the former two are based on random
walks, which can be thought of as “sampled graphlets”. However,
we find that counting graphlets, i.e., obtaining nodes’ GDVs, is
faster than computing the nodes’ node2vec or struc2vec feature
vectors. This holds for all four analyzed networks, and indepen-
dent on whether we consider real or CPU running times (Table 2).
Also, we note that struc2vec is slower than node2vec. One possible

explanation for this is that struc2vec has an extra step compared
to node2vec – that of creating a modified version of the original
network when performing random walks.

The superiority of graphlets in terms of running time is most
likely due to the graphlet implementation that we use called Orca,
which leverages combinatorial relationships between the different
graphlet orbits. That is, by knowing the counts of some graphlets
(i.e., orbits), Orca can infer the counts of the other graphlets through
mathematical equations, rather than having to actually count these
graphlet occurrences by traversing the network structure. Con-
sequently, Orca significantly speeds up computation of graphlet
counts compared to the naive implementation of graphlet count-
ing that would explicitly search the network structure for the
occurrence of every graphlet, such as that implemented in the
GraphCrunch tool [21].

Table 2: Running times of the embedding methods on each
network, in seconds. In the table, real running time refers
to the actual clock time elapsed, while CPU running time
refers to the amount of time the core(s) spend executing.

GEO SF APMS Y2H
graphlets-real 0.03 0.03 1.08 0.26
graphlets-CPU 0.02 0.02 1.02 0.22
node2vec-real 9.75 13.38 105.56 122.91
node2vec-CPU 563.40 777.73 6426.68 7504.04
struc2vec-real 75.37 77.09 2874.24 1942.90
struc2vec-CPU 268.03 282.43 10998.21 7333.74

4 CONCLUSION
In summary, we compare the three network embedding methods –
graphlets, node2vec, and struc2vec, in the task of network align-
ment. Specifically, for a given embedding method, we use the fea-
tures generated by it to calculate node similarities. Then, we use
the node similarity information in two existing network alignment
strategies, WAVE and SANA. We fairly evaluate the different em-
bedding methods under the same alignment strategy, and we do
so by aligning synthetic and PPI networks to their noisy coun-
terparts. We find that graphlets generally outperform the other
embedding methods in terms of alignment quality. Importantly,
node2vec and struc2vec improve upon graphlets in under 6.25% of
all evaluation tests, which questions their usefuleness compared
to graphlets, at least in the considered task of network alignment.
Furthermore, not only do we find graphlet-based alignments to
be the most accurate, but we also find that counting graphlets is
faster than computing node2vec and struc2vec. We use the Orca
implementation for graphlet counting. There also exist more recent
implementations than Orca that aim to speed up graphlet counting,
e.g., by parallelizing the counting or estimating counts through
sampling, which consequently makes graphlet counting possible in
very large networks with millions of nodes/edges [1, 24, 35]. These
implementations could further speed up graphlet counting.

Evaluating how graphlets perform against node2vec and struc2vec
in tasks other than that of network alignment, such as node clas-
sification, network clustering, or link prediction, is the subject of
future work.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Detailed alignment quality results regarding the effect of the embedding method on alignment quality as a function
of noise for (a,b) geometric synthetic networks, (c,d) scale-free synthetic networks, (e,f) the APMS PPI real-world network,
and (g,h) the Y2H PPI real-world network, under (a,c,e,g) WAVE alignment strategy and (b,d,f,h) SANA alignment strategy.
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Importantly, while graphlets were originally introduced in the
context of static and homogeneous networks [20, 25], given re-
cent availability of dynamic (temporal, evolving) or heterogeneous
(multi-node or multi-edge type) networks, graphlets have been ex-
tended into their dynamic [15] or heterogeneous [11] counterparts.
Then, dynamic or heterogenous graphlets have been used in newly
defined network science tasks of aligning dynamic (rather than tra-
ditionally static) networks [31, 33], clustering a dynamic network
based on topological similarity rather than the traditionally consid-
ered notion of network denseness [4], and aligning heterogeneous
(rather than traditionally homogeneous) networks [11].

Therefore, we believe that graphlets will continue to make their
mark in the field of network science, hopefully across its many in-
terdisciplinary domains, including biological, social, technological,
information, transportation, infrastructure, ecological, climate, and
other networks.
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