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Abstract
The constant and massive influx of new data into analy-
sis systems needs to be addressed without assuming we
can pause the onslaught. Here we consider one aspect: non-
stop graph analysis of streaming data. We formalize a new
and practical algorithm model that includes both single-run
analysis as well as efficiently updating analysis results only
around changed data. In our model, a massive graph under-
goes changes from an input stream of edge insertions and
removals. These changes occur concurrently with analysis.
Algorithms do not pause or stop the input stream. Assum-
ing basic data access safety, we consider an algorithm valid
for our model if the output is correct for a graph consisting
of the initial graph and some implicit subset of concurrent
changes.
Our technical contributions include 1. the first formal

model for graph analysis with concurrent changes, 2. prop-
erties of the model including how our model is the strongest
possible without point-in-time graph views, 3. demonstra-
tions of our model on connected components and PageRank,
and 4. an extension to updating results incrementally.

CCS Concepts • Theory of computation → Dynamic
graph algorithms; • Information systems → Network
data models; Data streams;
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1 Introduction
Applications in fields like computer network security and
social media analyze an ever-changing environment. The
data is rich in relationships and lends itself to graph analysis.
Network security applications analyze nearly one million
events per second[21] to shut down threats immediately. So-
cial networks use the relationships in over 140 thousand
“tweets” per second[20] to over 510 thousand comments per
second[23] to find the best advertisements for one’s current
needs or desires.
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There aremany computational models and software frame-
works that address updating graph analysis results given a
starting result and point-in-time or snapshot views of the
changing graph, see Section 3 and our STINGER[8] frame-
work. To our knowledge none of these address computing
that initial, starting analysis result without stopping the
world to provide an initial snapshot view. On graphs with
billions of vertices and tens to hundreds of billions of edges,
providing a snapshot view for the initialization imposes a
large performance cost on the entire analysis system, affect-
ing not only the initializing query but also all concurrently
running analyses. For example, STINGER can ingest ten mil-
lion graph updates per second[8]. The updating kernels peak
at hundreds of thousands[7] to around a million[13] updates
per second. Initializing those kernels requires time propor-
tional to the graph size[14] and not the update size. These
limit the peak performance of the system as a whole.
We address the initialization problem by presenting the

first formal model for graph analysis on streaming data in
which algorithms run concurrently with graph updates (Sec-
tion 4). Our model also applies to updating analysis results
(Section 8). Analysis updates occur concurrentlywith changes,
permitting manymore simultaneous analysis clients on a sin-
gle massive graph. This is an extrememodel for extreme rates
that assumes only memory consistency. We are interested
in possibilities without fine-grained locking or versioning to
enable far more simultaneous applications referencing the
same massive graph store.

Not all algorithms are appropriate for our execution model
(Section 2), but some core algorithms like breadth-first search
work if we consider the algorithms as traversing a graph
that consists of the starting graph plus some implicit subset
of the concurrent graph changes. We consider this result
valid for our model (not incorrect!) as defined formally in
Section 4.

This paper’s contributions are as follows:
• We provide a formal algorithmic model for applying
graph analysis algorithms to graphs being updated
concurrently from a live stream (Section 4). Algorithms
considered valid may not require large-scale copying
of the graph nor pausing the data stream.
• We prove multiple properties of our model. Invalid
algorithms can be demonstrated with a single change
(Corollary 5.5), and algorithms that produce subgraphs
of their inputs (e.g. tree construction) cannot be proven

https://doi.org/10.nnnn/nnnnnnn.nnnnnnn
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Figure 1. Invalid instance for degree counting algorithm

to output a result corresponding to any snapshot view
and thus our model is the strongest possible without
snapshot views (Theorem 5.7).
• We demonstrate our model on connected components
(Section 6) and PageRank (Section 7).
• We then apply our model to updating results without
full recomputation (Section 8).

This paper elides proofs for space.
Note that any algorithm can be made valid by copying the

entire graph and running on the copy. That is not feasible
for massive graphs but could be an option for small graphs
or subgraphs. If the rate of change is sufficiently slow, then
various techniques could provide a snapshot view without
copying[2, 6, 16] while introducing overhead acceptable for
relatively slow rates of change. Our model is not bound to
any software framework and applies not only to STINGER
but also distributed systems like DegAwareRHH[11] and
Tegra[12].

2 Illustrating Validity with Degrees
A simple example illustrates the model we formalize in Sec-
tion 4. Given an undirected graph G = (V ,E) without self-
loops, consider computing the degree deg(v) of every vertex
v ∈ V . Algorithm 1 shows a simple algorithm that iterates
over every vertex v in parallel and stores the number of
edges found to be incident to v . We intentionally gloss over
details of the data structure and algorithm. In STINGER,
which represents an undirected graph by two directed edges,
Algorithm 1 would loop over vertices, walk adjacent edges,
increment a local count, then store that count to deg(v).

Algorithm 1 Invalid degree counting algorithm
for all v ∈ V do in parallel

deg(v) ← number of edges incident to v ;
end parallel for

Algorithm 1 is correct applied to a static graph. If the
graph changes during Algorithm 1’s execution, however, the
computed degrees may not correspond to any undirected
graph. Figure 1 provides a simple example. GraphG contains
two vertices and one edge. The algorithm could process v1
and assign deg(v1) ← 1. A concurrent change could remove
the edge before processing v2, in which case deg(v2) ← 0.

There is no two-vertex undirected graph with those vertex
degrees. So this result cannot correspond to the initial graph
plus some implicit subset of concurrent changes, and we
consider this algorithm invalid for our model.

Algorithm 2 Valid degree counting algorithm
deg(v) ← 0 ∀v ∈ V ;
for all (u,v) ∈ E do in parallel

atomically: deg(u) ← deg(u) + 1;
atomically: deg(v) ← deg(v) + 1;

end parallel for

A different method that loops over edges, Algorithm 2, is
valid for our model. All initial edges are counted unless re-
moved before the algorithm traverses that edge. In that case,
the subset of concurrent changes includes such removals
and does not include any that remove previously counted
edges. Inserted edges are counted and in the subset unless
the insertion occurs after the loop would traverse it. So the
algorithm’s result includes a subset of concurrent changes
and is valid for our model. Systems that store an undirected
graph using pairs of edges apply a tie-breaking rule like
executing the loop’s body only when u < v for the same
result.

3 Related Work
There are many different models for dynamic graphs for
different applications. To our knowledge all rely on an initial
starting point that requires static computation over a poten-
tially massive graph. And only the evolving graph model
considers updates with concurrent changes. We compare
related existing models to our new model.

Dynamic graphmodel Classic dynamic graph algorithms[5]
efficienctly update analysis results rather than recomputing.
These algorithms copy the graph into data structures special-
ized and useful only for each query. In contrast, our model
assumes that maintaining specialized data structures is in-
feasible for massive graphs.

Data stream model Here algorithms compute results by
treating a graph as a stream of edges[9, 15]. These algo-
rithms make a constant or logarithmic number of passes
over the edge stream and are restricted to using limited
memory. Many streaming algorithms compute approximate
results. These algorithms apply in situations like streaming
a graph from external storage or sensors. In contrast, our
model assumes there is a massive, changing graph that can
be accessed arbitrarily.

Evolving graph model Algorithms in this model probe
a changing graph to update approximated metrics[1]. The
changes occur in discrete time steps but not during computa-
tion. Their probing method could permit concurrent changes,
but their analysis would need extended to execution span-
ning multiple time steps. Our model considers exact results
on a “nearby” graph in terms of incorporated concurrent
changes.
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Streamed graphs The algorithm in [3] maintains a sparsi-
fied graph from a stream of edge insertions and deletions to
provide an estimate of triangle counts. The algorithm con-
tains two phases, one that constructs the sampled, sparsified
graph and another separate phase that counts triangles. The
sparsified graph is not altered in the second phase. This algo-
rithm could be applied to our original problem by maintain-
ing snapshots of the sparsified graph, and that is a different
approach than our model’s.
Current software frameworks, including STINGER [8],

DegAwareRHH [11], Tegra [12], and Floe [22] provide point-
in-time snapshot views to implement algorithms in these
models. Their focus is on rapidly updating existing, initial re-
sults. Our new model adds computing those initial results at
the cost of a different mental model. Other frameworks like
PHISH[17] implement a version of the data streammodel but
permit repeatedly streaming edges through distributed com-
puting units for complex queries like subgraph isomorphism.
PHISH and similar frameworks do not focus on dynami-
cally changing graphs but rather on limiting computational
resources.

4 Validity Model
In this model, we consider a weighted and directed graph
G = (V ,E) on vertex set V and edge set E. We convert an
undirected graph to a directed one by replacing each edge
with two directed edges in opposite directions. In the follow-
ing discussion we denote by n = |V |, the number of vertices
and m = |E |, the number of edges. Let C = {c1, c2, . . . }
be the (finitely many) kinds of changes to graph G defined
on the system, such as edge insertion, edge deletion, edge
weight changes. We will mainly focus on edge insertions
and deletions in the following discussion. We consider new
vertices only once a connecting edge is inserted.

Definition 4.1. An input stream S is a sequence of tuples
Ci = (ci , ei , ti ), where ci ∈ C is type of the change, ei is the
edge to be modified, and ti is the arrival time of the change.
Note that ti ≤ ti+1 for all i .

Definition 4.2. A sub-stream of an input stream S is a sub-
sequence of it, S ′ = ((c∗1, e

∗
1 , t
∗
1 ), (c

∗
2, e
∗
2 , t
∗
2 ), ...)where (c

∗
i , e
∗
i , t
∗
i ) ∈

S and t∗i ≤ t∗i+1.

In our validity model, the input stream keeps making
changes to the graph while the algorithm runs. However,
the algorithm is not notified of a change and it has no access
to the current input stream. A change that happens at time
t will instantly modify the corresponding edge (or vertex)
and thus if the algorithm traverses this edge (or vertex) at
time t , only the modified status will be seen. In the following
discussion, “input stream” refers to the part of stream that
arrives during the algorithm’s execution.

We are interested in extreme cases where the graph is too
large for the platform to maintain snapshots and the rate of

Figure 2. Breadth first search illustration

change is too high to accept the overhead of localized revi-
sion control[2, 6, 16]. This could apply to a Raspberry Pi used
as inexpensive network instrumentation during peak times
as well as a large-scale system maintaining a massive data
set. Because we are not providing point-in-time snapshot
views, the output of the algorithm may not match either the
initial state or the final state of the graph. We show later that
the result need not match any intermediate time point either
(Theorem 5.7).

Throughout the remainder of the paper, let G be a graph
and S = (C1,C2, . . . ,Ck ) be a finite input stream. We use
G ∪ S to denote the graph obtained by making all changes
defined in S to G in the order of C1,C2, . . . ,Ck . We regard
the output obtained from running the algorithm on G with
input stream S asOUT (G, S). Moreover, we denote the output
produced by running the same algorithm on static graphG∪S
as OUT (G ∪ S). We use G(t) to denote the graph at time t
(abstractly, not necessarily as traversed by the algorithm).

We provide a simple illustration using degree counting
in Section 2. Here we consider a breadth first search (BFS)
in more detail. The algorithm begins with vertex v as its
frontier and repeatedly constructs new frontiers of neigh-
boring and unexplored vertices. Additionally, the algorithm
saves a discovered parent to produce a breadth first search
tree. The algorithm proceeds unaware that the graph may
change underneath. Low-level data access correctness must
be provided by the underlying framework.
In Figure 2 the algorithm begins at time t0 on G(t0) with

the left most vertex v . Let the gray area represent the set of
vertices that are discovered at time ti > t0. Suppose all three
insertions arrive at time t1. The back-edge from the next
frontier leads to an already visited vertex and will be ignored.
Similarly the edge entirely within the explored region will be
ignored. Both of these changes would alter the BFS tree, but
our model permits not including some concurrent changes.
The inserted edge leading from the frontier to unexplored
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vertices will be included, and that edge is one element in the
implicit set of concurrent changes.

We can see the output of this algorithm is not a BFS tree for
the graphG(t0) nor forG(t ′) at any single time point t ′ ≥ t1.
But the result does include one of the concurrent changes.
In our model, the basic BFS algorithm is valid because it
produces a result corresponding to the input graph and a
subset of concurrent changes. In Section 8 valid algorithms
are extended to catch up to the last change during execution,
producing updating algorithms that maintain valid results
after every set of changes.
Now we formalize our new model of validity on concur-

rently changing data.

Definition 4.3. Let A be an algorithm running on a graph
with input stream S . Suppose that the execution timewindow
is [t , t ′] with outputOUT (G0, S), whereG0 is the initial state
of the graph at time t . We say A is valid for stream S
if there exists a sub-stream of S , say S ′ = ((c∗1, e

∗
1 , t
∗
1 ), ...,

(c∗k , e
∗
k , t
∗
k )), where t ≤ t∗1 ≤ t∗k ≤ t ′, that makes OUT (G0, S)

a solution for A on graph G0 ∪ S
′.

Although we define S ′ to be an arbitrary sub-stream, in
Section 5 we will show that S ′ is indeed a subset of the
changes that are seen by the algorithm. To make the defini-
tions rigorous, we keep S ′ to be an arbitrary subset of S in
this section.

Definition 4.4. An algorithm is valid if for any input stream
S , the algorithm is valid for S .

Note that the sub-stream S ′ can be empty. To facilitate our
analysis, we introduce the following definitions.

Definition 4.5. A change (c, e, t) is visible if the algorithm
traverses e at time t∗ ≥ t and there are no other changes to
e between time (t , t∗]. In this case, we say that the algorithm
traverses the changeC at time t∗. We use Sv to denote the
sub-stream containing all visible changes in S .

The algorithm must traverse an edge in order to check its
status, such as existence and weight. In order to describe the
algorithms behavior when it encounters deleted edges, we
assume that an edge deletion does not erase the data but only
marks the edge as deleted. This is a convenience for analysis
but not necessary for implementation. Moreover, if the input
stream modifies an edge multiple times, the algorithm only
notices the last change before the traversal according to
Definition 4.5.

5 Validity Model Properties
We first show that we can reorder the input stream while
keeping the streaming output invariant. We then prove that
validity defined in the previous section is the strongest form
of correctness under the assumption that the algorithm is
not provided with the equivalent of a snapshot view.

Lemma 5.1. Given graph G and input stream S , suppose
change C = (c, e, t) is visible and that C is traversed for the
first time at t∗ ≥ t . Let C ′ = (c, e, t ′) for any t ≤ t ′ ≤ t∗. If
we replace C with C ′ in S , then (i) the sub-stream of visible
changes Sv does not change except for this substitution, and
(ii) the streaming output OUT (G, S) remains the same.

Corollary 5.2. Let G be a graph, and Sv = (C1,C2, . . . ,Ck )

be the sub-stream of all visible changes in S , where Ci =

(ci , ei , ti ) for all 1 ≤ i ≤ k . Suppose the algorithm traverses
each Ci for the first time at t∗i . We define another stream
S∗ = S except for replacing each Ci ∈ Sv with C∗i = (ci , ei , t

∗
i ).

Then {C∗i } is the visible sub-stream of S∗ and OUT (G, S) =
OUT (G, S∗).

Note that in S∗ and S∗v , all the visible changes are ordered
by non-decreasing t∗i .

Corollary 5.3. Let S∗v be defined as in Corollary 5.2.We define
a new input stream to be S ′ = (C∗1 ,C

∗
2 , . . . ,C

∗
i ), which contains

the first i changes in S∗v . Then every change in S
′ will be visible

for any 1 ≤ i ≤ |S∗v |.

Theorem 5.4. Let Sv be the sub-stream of all visible changes
in an input stream S , then an algorithm is valid if and only if
for any input stream S , the algorithm is valid for Sv .

Corollary 5.5. If an algorithm is invalid, then there exists a
single change input stream S that makes the algorithm invalid
for S .

Corollary 5.6. Let S and S ′ be two different input streams. For
a deterministic valid algorithmA, if Sv = S ′v , thenOUT (G, S) =
OUT (G, S ′).

We notice that in most cases, the information of G required
for verifying an algorithm’s validity for an input stream usu-
ally is as much as that for recomputing an output statically
on G. By Theorem 5.4, to verify if an algorithm is valid for
S , we only need to check if OUT (G, S) equals OUT (G ∪ Sv ).
Since we have no assumptions about the graph G, in most
cases, it is impossible to determine the correctness of the
output by checking a partial graph described by the input
stream. Moreover, if Sv = ∅, it requires to verify if the output
is correct for G without a snapshot of G.
Next we show that validity is the strongest form of cor-

rectness in this model if the algorithm satisfies the following
properties:

1. Given a graph G and an input stream S , OUT (G, S) is
a subgraph of G ∪ {inserted edges}. Moreover, there
should exist an output that contains at least two edges

2. The algorithm is not able to traverse all edges or ver-
tices belonging to OUT (G, S) at the same moment.

Theorem 5.7. For any valid algorithm satisfying the two
conditions mentioned above, there exist a graph G and a finite
input stream S such that OUT (G, S) , OUT (Gi ) for any 0 ≤
i ≤ k , where G0 = G and Gi = Gi−1 ∪Ci .
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Making a copy of the graph G satisfies the assumed prop-
erties for graphs with more than two edges. A copy with con-
current changes cannot be proven identical to any snapshot
view, so no algorithm can create a snapshot view without
being provided such a view as input. This is why we claim
our model is the strongest possible without snapshot views.

6 Case Study: Connected Components
Given an undirected graph G = (V ,E), a connected compo-
nent is a maximal subgraph of G such that there is a path
between any two vertices in that subgraph. In this section, we
adapt the parallel Parent-Neighbor subgraph algorithm [13]
to our model and show the result is valid.
A parent neighbor subgraph PN is a subgraph of G sam-

pled during breadth first search (BFS) such that each vertex
tracks a constant number of its parents and neighbors. The
parents of v are adjacencies of v in the previous frontier; the
neighbors of v are adjacencies of v in the same frontier. To
distinguish parents from neighbors, all parents are presented
as a positive label while neighbors are stored in the form of
−v .

We define the parameters used in the algorithm as follows:
• C(v): component label of vertex v
• Level(v): distance from v to the component root
• threshPN : maximum number of allowed parents and
neighbors for each vertex
• PN (v): parents and neighbors of each vertex
• Label(v): Label(v) ≥ 0 represents v has a path to the
root through its parent; otherwise Label(v) < 0, allv’s
paths to root rely on v’s neighbors

Algorithm 3 Extract a parent-neighbor subgraph
1: for v ∈ V do Level(v) ← ∞

2: for v ∈ V do
3: if Level(v) = ∞ then
4: add v to Frontier
5: Level(v) ← 0, C(v) ← v
6: while Frontier , ∅ do
7: for all u ∈ Frontier do
8: remove u from Frontier
9: for all d ∈ N (u) do
10: if Level(d) = ∞ then
11: add d to Frontier
12: Level(d) = Level(u) + 1
13: C(d) = C(u)

14: if |PN (d)| < threshPN then
15: if Level(u) = Level(d) − 1 then
16: Add u to PN (d)
17: else if Level(u) = Level(d) then
18: Add −u to PN (d)

We claim that Level(v) is a valid labeling of the graph,
which implies that ∪v ∈V PN (v) is a valid parent-neighbor

subgraph. To show its correctness, we will prove a stronger
statement, that the edges (u,d) used in line 9-11 form a valid
BFS tree T .

Theorem 6.1. Let T be the BFS tree defined by Algorithm 3
with input stream S , then there exists a sub-stream of S that
makes the output BFS tree T valid.

Corollary 6.2. Let T be the BFS tree defined by Algorithm 3
with input stream S , a sub-stream that make T valid is {C =
(ci , ei , ti ) ∈ S |ci = insert & ei ∈ T or ci = delete & ei < T }

7 Case Study: PageRank
A directed graph with vertex set V can be represented by a
sparse, unsymmetric matrix A with ai j = 1 where there is
an edge i → j . An undirected graph can be represented by a
symmetric matrix similarly. Here we ignore self edges and
let the diagonal of A be zero. Define D to be the diagonal
matrix of out-degrees, or diagD = A1 where 1 is a |V |-long
vector with unit entries. If a vertex i is the source of no edges,
let dii = 1 so that 1/dii = 1. The definitions generalize to
graphs with arbitrary non-negative weights.

While the original PageRank defines an eigenvector prob-
lem, a little algebraic manipulation as in [4, 10] finds an
equivalent linear system

(I − αATD−1)x = (1 − α)v, (1)

where α is the “teleportation” constant in (0, 1), v is a per-
sonalization vector, and x is the PageRank vector. For this
discussion, v is a vector with entries 1/|V | denoting a uni-
formly random start, and ∥v ∥1 = 1, although personalized
PageRank applications use non-uniform vectors v . Solving
this system with inexact arithmetic produces an approxi-
mate solution x . The backward error, or the distance to the
nearest system solved exactly, is measured by the residual
r = (1 − α)v − (I − αATD−1)x up to a normwise scaling
factor. Because PageRank defines a probability distribution,
the normwise relative backward error is scaled by a constant
independent of the graph structure.

Solving Equation (1) by Jacobi iteration, a simple splitting
method, iterates the following computation:

x (k+1) = αATD−1x (k) + (1 − α)v .

The graph operation, applying ATD−1, is valid in our non-
stop model for implementations that examine each edge at
most once and track the number of outward edges traversed
per vertex. Such implementations will gather the row of A
before computing its contribution to the output. The software
frameworks referenced treat the graph as a sparse matrix
and can satisfy the additional restriction easily. Insertions
and removals during any single iteration may be missed,
but the algorithm always applies the graph plus all changes
before the iteration and some subset of changes concurrent
during each iteration. Typical convergence criteria compare



MLG’18, 20 August, 2018, London, United Kingdom Chunxing Yin, Jason Riedy, and David A. Bader

the iterates x (k+1) and x (k ). Conveniently, this translates to
backward error via the residual,

r (k ) = (1 − α)v − (I − αATD−1)x (k ) = x (k+1) − x (k ).

So a single pass over the graph produces both the current
residual and next iterate. If the residual r (k ) is smaller than
some tolerance, then the iterate x (k ) solves a system accept-
ably close to the graph plus the subset of changes encoun-
tered during the iteration that produced x (k+1). Hence the
method is valid in our model for the solution x (k ), although
common practice delivers x (k+1). The backward error is small
no matter the path taken to x (k ). Only the last iteration mat-
ters.
As an example of an invalid approach, consider using a

stored out-degree or one computed separately from the edge
walk. The resulting operator will no longer preserve the
one-norm and will lead to a solution that is not a probability
distribution. That cannot be a PageRank vector of any graph.

Being a valid implementation does not ensure that solving
the system by Jacobi iteration or other iterative method ac-
tually converges. In the extreme, the graph could be entirely
rewritten during each iteration, and the iteration never con-
verges to a solution with small residual. Future work will
characterize what rates of change lead to convergence.

8 Updating Algorithms
On a quiescent graph with no concurrent changes, an ini-
tial valid result could be updated to match the “true” re-
sult given the changes that had occured during execution.
If the updating algorithm is valid even when the graph is
changing concurrently, then the result will be valid. Record-
ing changes during each execution and repeatedly catch-
ing up provides a valid result tracking the “true” result by
fixing previously missed changes. Ideally such updating al-
gorithms compute incrementally to avoid full recomputa-
tion and should be much faster than the initial computa-
tion. Such algorithms exist and are available in frameworks
like STINGER[7, 13, 18, 19]. Here we formalize the updating
method and present valid algorithms for updating PageRank
and connected components (in Section 9).

An algorithmA runs consecutively at times 0 < t1 < t2 <
t3 < · · · on the graph. During the ith execution, A is given
with Outi−1, the output (or configuration) from the previous
execution, and the set of changes ∆i−1, the set of all changes
that happen during the time [ti−1, ti ] spent computingOuti−1.
The initial configuration is computed by a valid algorithm
(assume starting at time 0), and ∆0 is the set of changes
happening from time 0 to t1.

Definition 8.1. An algorithmA is a valid updating algo-
rithm if for all i = 1, 2, 3, . . . , Outi is a correct output for
graph G(ti ) ∪ δi for some δi ⊆ ∆i .

If there is no concurrent change (∆i = ∅), a valid updating
algorithm will produce a snapshot result OUT (G(ti )), which
is also a snapshot result for all ti ≤ t ≤ ti+1.

The theoretical results in Section 5 also hold for updating
algorithms. We note that all valid algorithms are valid updat-
ing algorithm by doing recomputations every time. However
we will focus on algorithms that only perform local updates
or converge faster than the initial computation. We apply
the most important results in Section 5 here. All the proofs
are similar to the original ones.

Corollary 8.2. Let Si be the sub-stream of all visible changes
in∆i for i−1, 2, · · · . An algorithm is a valid updating algorithm
if and only if for all possible ∆i ’s, the algorithm is valid for Si .

Corollary 8.3. If an updating algorithm is invalid, there ex-
ists a single change input stream ∆i for some i that makes the
algorithm invalid for ∆i .

Corollary 8.4. For any algorithm satisfying the condition
1. Given a graph G and an input stream ∆, OUT (G,∆) is

a subgraph of G ∪ {inserted edges}.
2. The algorithm is not able to traverse all edges or vertices

belonging to OUT (G,∆) at the same moment.
there exist a graphG and a finite input stream ∆i for all i such
that OUT (Gi ,∆i ) , OUT (G(t)) for any ti < t < ti+1.

In Theorem 5.7, we showed the algorithm is not able to
produce any snapshot result for any ti ≤ t < ti+1. In the
updating model, the changes up to time ti is known, and
therefore the algorithm might be able to update the result
only for ∆i−1 and obtain a snapshot for graph G(ti ).
For a simple example updating algorithm, consider the

PageRank algorithm using Jacobi iteration in Section 7. If the
change ∆i−1 is relatively small in matrix norm, restarting the
iteration from the previously computed solution xi−1 should
converge quickly. As in Section 7, the iteration is a valid
algorithm in our model, hence restarting is a valid updating
algorithm. Algorithms that do not traverse the entire graph
exist[19], but computing the convergence criteria in a valid
manner is challenging and will be addressed in future work.

9 Updating Connected Components
In this section we will discuss the algorithms to maintain
a valid parent-neighbor subgraph of an undirected graph
G. The parent-neighbor subgraph serves as a sparse sample
of the graph that maintains the connected components and
contains a valid breadth-first search forest.
We simply summarize the algorithm in this section. Our

algorithm is a variation of the initial algorithm from [13]
as presented in Section 6. In the worst case, the algorithm
may essentially recompute a parent-neighbor subgraph, but
that should be rare[13]. The algorithm process insertions
and deletions contained in ∆i separately.

Case 1. e = (s,d) is an insertion. There are two types of
insertions:
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1. If s and d are in a same component, without loss of
generality, assume Level(s) ≤ Level(d). If d has less
than threshPN parents and neighbors, add s to PN (d)
and if Label(d) < 0, Label(d) ← −Label(d).

2. If s and d are in different components, a parallel BFS
on the stored parent-neighbor subgraph starts at the
vertex for the smaller of two components. The BFS
relabels the smaller component.

Note that the algorithm process all type 1 insertions first,
and then type 2. Neither case accesses the graph G. Indeed,
updating connected components considering only insertions
need never access the graph. All complications come from
deletions that may split components.

Case 2. e = (s,d) is a deletion, assumeLevel(s) ≤ Level(d).
The following process will be repeated from s’s perspective
as well.

1. Remove s from PN (d) if s is in the list. If d has parents
in PN , there is nothing else to do.

2. If d does not have any other parents, let Level(d) ←
−Level(d) to indicate that d is dependent on its neigh-
bors to other vertices. If d has neighbors with positive
levels, then d still have a path to the root through its
neighbors. Hence this deletion is safe.

3. Ifd no longer has a path to its root in PN , start a BFS on
induced subgraph G[{v : v,d in a same component}]
to search for a path to the root (in fact any positive
level vertex in the component). If such path is not
found, take d as the new root and relabel the vertices
reached during the BFS.

The second kind of deletion is the only time the updating
algorithm accesses G.
We notice that the levels of some vertices becomes out-

dated after updates, however we claim that the levels do not
impact the correctness of the algorithm.
For all insertions inside a component, adding s to PN (d)

or adding d to PN (s) does not modify the component. For
deletions, the algorithm must maintain a path from affected
vertices to the parent-neighbor root. This will not be true
if some vertex v is dependent on a positive labeled ver-
tex u where u actually has no path to the root. Assume
u,v are the closest pair to the root. We first observe that
|Level(u)| , |Level(v)|, which means u and v are not neigh-
bors. To see this, Level(u) > 0 implies thatu has a path to the
root through some parent p. In this case v should also have
a path to root through u and v . Therefore v must rely on u
as a parent. Since all vertices p with Level(p) > Level(u) are
correct by assumption, that implies u is dependent on some
“parent” p ′ that Level(p ′) < Level(u). Since we fix the levels
of all vertices, such insertions can never happen.

When joining two components or splitting a component,
the algorithm recomputes the levels of vertices and the par-
tial PN graph. During the joining process, the levels of the
smaller component become consistent with the levels of the

larger one. For splitting, the two components become inde-
pendent and so in both situations vertices that have their
decedents as parents cannot appear.
To show the correctness of the algorithm, we generalize

PN graph to any subgraph H ⊆ G that contains a span-
ning forest of G. The following lemmas will show that after
updates, there will always be a spanning forest inside the
subgraph H , and so the connected components in H and G
are identical. In the following discussion, the Level of each
vertex can be different from those in Algorithm 3, which ap-
proximates the BFS level. However, the Label of each vertex
is defined in the same way as in Algorithm 3 according to H
and Level , that
• If Label(v) ≥ 0, then v has a path to the root through
its parent p (Level(p) = Level(v) − 1)
• If Label(v) < 0, all v’s paths to root rely on v’s neigh-
bors u (Level(u) = Level(v))

Lemma 9.1. At the ith execution, let F be a spanning forest
of graphGδ = G(ti−1)∪δ for some subset of changes δ ⊆ ∆i−1,
and let H be a subgraph of G(ti−1) ∪ δ containing F . We use
∆I to denote the set of insertions specified in ∆i−1. Assume HI
is the graph obtained by updating ∆I to H by the algorithm
above, then HI contains a spanning forest of graph Gδ ∪ ∆I .

Corollary 9.2. The connectivity of HI is the same as the con-
nectivity of Gδ ∪ ∆I .

Lemma 9.3. At the ith execution, let F be a spanning forest
of graphGδ = G(ti−1)∪δ for some subset of changes δ ⊆ ∆i−1,
and letH be a subgraph ofG(ti−1)∪δ containing F . We use ∆D
to denote the set of deletions specified in ∆i−1. AssumeHD is the
graph obtained by updating ∆D to H by the algorithm above,
then HD contains a spanning forest of graphGδ ∪ ∆D ∪ δi for
some δi ⊆ ∆i .

Corollary 9.4. LetHI and other notations be from Lemma 9.1,
and letGI = Gδ ∪ ∆I . We use ∆D to denote the set of deletions
specified in∆i−1. AssumeHD is the graph obtained by updating
∆D toHI by the algorithm above, thenHD contains a spanning
forest of graphGI ∪∆D ∪δi = G(ti ) ∪δi for some δi ⊆ ∆i .The
connectivity of HD is the same as the connectivity ofG(ti ) ∪δi
for some δi ⊆ ∆i .

Theorem 9.5. LetH be the subgraph traversed by BFS during
updating deletions. Let δi ⊆ ∆i be the set of changes that
have both endpoints in H . The algorithm above outputs the
connected components for graph Gi ∪ δi .

10 Conclusion
Our new validity model addresses analysis of graphs under-
going non-stop change. Graphs that stretch the capability of
an analysis platform cannot provide point-in-time snapshot
views of the entire graph. Analysis results may not include
all concurrent changes, but we consider an algorithm valid
if it always corresponds to the initial graph and some im-
plicit subset of concurrent changes. Updating algorithms
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that could “catch up” to time T without concurrent changes
are considered valid if their results correspond to their in-
put graph at time T and some subset of concurrent changes.
These updating algorithms continue producing valid results,
enhancing scalability both in size of the graph and number
of concurrent analyses.
Additional valid algorithms include direction-optimized

breadth-first search (BFS), single-source shortest paths (SSSP),
label propagation algorithms, careful triangle counting, and
extracting subgraphs.

There are many directions for continuing this work. One
immediate concern is quantifying any potential benefits.
Meaningful performance comparisons between snapshot
views and concurrent analysis require careful construction.
Comparisons between the analysis results at any given point
in time also are difficult to construct for discrete labelings
like connected components. Algorithms like triangle count-
ing appear to require copying just enough of the graph for
validity. Others like computing betweenness centrality re-
quire multiple simultaneous views of the same graph and
may require copying all of the graph to be valid. The required
space trade-offs could provide insights into concurrent data
analysis in general. Initial work towards problems with ma-
troid structure suggests these problems may be amenable
to concurrent analysis, and this would generalize the model
beyond graph analysis.
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