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ABSTRACT
This paper proposes a novel scalable node sampling algorithm

for large graphs that can achieve better spread or diversity across

communities intrinsic to the graphwithout requiring any costly pre-

processing steps. The proposed method leverages a simple iterative

sampling technique controlled by two parameters: infection rate,
that controls the dynamics of the procedure and removal threshold
that affects the end-of-procedure sampling size. We present the-

oretical analyses of the sampling probability for this method on

the celebrated Erdős–Rényi graph model, and of the community

diversity on the Stochastic Block Model. Efficiently finding small

samples with high diversity from large graphs has a number of

practical applications such as online survey and community detec-

tion. Our method achieves very high community diversity with

extremely low sampling budget on both synthetic and real-world

graphs, with either balanced or imbalanced communities. We lever-

age the proposed sampling technique on community detection and

show it outperforms the baselines of the same type.

CCS CONCEPTS
• Mathematics of computing → Graph theory; Graph algo-
rithms; • Theory of computation→ Sketching and sampling;
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1 INTRODUCTION
Networks are an expressive tool to represent relational data in

various domains: from sociology to biology, from political science

to online marketing. Given the ubiquitousness of the Internet, we

are able to collect relational data at an extremely large scale. A huge

amount of data restrains us from conducting complicated analysis

and sampling is often touted as a means to combat the inherent

complexity of analyzing large networks [16].

Network sampling is broadly classified into node and edge sam-

pling strategies. In this paper, we study node sampling, which

seeks to sample nodes from a network to perform inference. The
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idea of sampling subjects from different groups is called strati-
fied sampling [18]. Suppose we want to take a survey covering as

many professions as possible on an online social network. A typical

stratification-driven design is to first divide the user population into

different strata (groups) using occupational information and then

sample individuals from each group. However, due to individual

privacy preferences, some users might choose not to share their

professional details, whereby direct stratification approach based

on occupation data is infeasible.

In a network context, people with the same profession interact

more frequently, leading to assortative communities [5]. To solve

this profession sampling problem, one could first detect communi-

ties using network topology, and then sample from each community.

However, community detection is a very time-consuming proce-

dure even with state-of-the-art implementation [2, 21]. Chain-based

sampling [7] methods sample connected subgraphs and hence are

more likely to be stuck in one community, resulting in less commu-

nity diversity in the sample. Uniform node selection sampling [16]

has better community coverage than chain-based sampling, but it

tends to under-sample small communities when community sizes

are imbalanced. Also from an end-to-end application’s performance

perspective, to continue benefiting from sampling approaches, the

sampling budget (i.e, number of nodes to be sampled) has to be

kept low, which reduces the chance of high community coverage

under practical settings on large graphs.

We propose a new graph sampling method that can achieve bet-

ter community diversity than existing algorithms for low sampling

budget even in graphs with imbalanced communities, resulting in

a more representative node set in the sample in terms of commu-

nity diversity than other methods. Under appropriate user-chosen

parameter configuration, the proposed method penalizes sampling

neighboring nodes, cliques or near-clique structures, and hence

allows for better overall community diversity of the network with-

out any costly pre-processing step required for a typical stratified

sampling approach. We provide a theoretical analysis of the sam-

pling probability of this method, compare the community diversity

of this method against baselines, and show its efficacy in practi-

cal applications like community detection seeding and maximum

independent set discovery.

2 RELATEDWORK
The work by [11] systematically studies node sampling on social

networks. It proposes the concept of model-based sampling and

design-based sampling. Our proposed method is a variant of design-

based sampling technique. Node selection sampling (a kind of uni-

form node sampling) is studied by [16]. This method assumes we

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
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know the IDs of all the nodes in the network. This is straightfor-

ward for small networks; for large real-world social networks, like

Facebook and LinkedIn, one could get such knowledge under the

following circumstances: 1) to obtain the administrator privilege of

the network [8]; 2) to crawl a network in advance and then analyze

the crawled network as done by [17].

Traditional chain-based sampling methods are biased towards

high degree hub nodes. Hence in-sample correction [7] and post-

sample correction [10] are proposed to achieve a near-uniform

sampling from chain-based methods. A crawling-based approach

by [19] samples a connected subgraph with good community struc-

ture. It performs pretty well, in terms of community diversity, on

graphs with size-balanced communities. However, its performance

deteriorates on graphs with imbalanced communities. And its run-

ning time is too long on large networks. Our proposed sampling

strategy performs well on both types of the graphs, and runs in

linear time.

We choose community detection to test the efficacy and effi-

ciency of our proposed sampling method. Modularity maximiza-

tion [2, 6] and n-cut maximization [14] based approaches were

surveyed by Fortunato [5]. The personalized PageRank based ap-

proach [1] is a variant of the n-cut maximization method. The work

by [15] compared several seed expansion based community detec-

tion methods and concluded Personalized PageRank [1] works best.

They find that seeding by uniform sampling results in a better recall

than high-degree sampling in community detection. We show that

seeding by our proposed spread sampling achieves an even better

result than uniform sampling.

3 METHOLOGY
3.1 Designing Spread Sampling
We wish to obtain a sample that spreads out, in terms of commu-

nity diversity, over the graph with a limited budget. Intuitively, a

good spread-out sample set contains nodes that belong to differ-

ent communities and hence are less likely to be neighbors of each

other in the original graph. With this insight, we design an iterative

sampling approach alternating between two steps: 1) uniformly

sample from candidate nodes; 2) remove neighbors of already sam-

pled nodes. The first step leads to a near-uniform sample while the

second step spreads out the sampled nodes. During the sampling

process in Algorithm 1, three sets are maintained: the sample set

(S) contains all the sampled nodes; the removal set (R) contains
nodes that have certain sampled neighbors; the candidate set (C)
contains the remaining nodes which are not in S and R. The car-
dinality of both S and R monotonically increases as the iteration

proceeds, while it decreases for C. To obtain a better “spread out”

(to be quantified in Sect. 3.4) sample with a limited budget, the

removal set R keeps track of the set of nodes for which enough

neighbors (typically a user-controlled parameter) are already in

the sample to ensure that such nodes are not included in the final

sample.

The sampling algorithm has two parameters viz: single step
infection rate (q) and removal threshold (k), which effectively

controls between the two steps to generate sample sets with desired

spread property based on the desired application. A (near) uniform

sample is generated by either setting a very high removal threshold

Algorithm 1 Spread Sampling (SS method)

Input: infection rate p, removal threshold k , a connected undi-

rected graph G, target sample size;

Output: A set S of sampled nodes.

1: Initialize candidate set C = G;
2: while C is not empty and |S | smaller than target size do
3: for each node u in C , sample it with probability p, and add

the sampled nodes into S ;
4: C = C − S ; { remove sampled nodes from candidate set}

{Below: if a candidate node has at least k neighbors sampled,

remove it from candidate set}

5: Bk = {v ∈ C | |N (v ) ∩ S | ≥ k };
6: R = R ∪ Bk ; { R is the removal set}

7: C = C − R;
8: end while
9: return

or a high single-step infection rate. On the contrary, a better spread-

out sample with less adjacent nodes (hence reduced local cliques) is

generated by setting a small removal threshold and a small single-

step infection rate.

3.2 Degree-Inverse Sampling Probability
3.2.1 Theoretical Analysis. We are interested in the following

question: for a node with degree d , what is the probability that this
node is sampled? Our strategy is to define a recursion for the sam-

pling probability at each step, the solution of which leads to the

overall sampling probability of each node. Erdős-Rényi graph is

a well-studied random graph model. It is simple for theoretical

analysis, and well-known community models like SBM [13] and

BTER [23] are both its variants. For a sparse ER graph ER (n,p), to
make analysis tractable we assume the following: a) exactly one
node is sampled at each step/iteration, b) a node is removed if at least
one of its neighbors are sampled, c) there is no sample budget con-
strain. Since there is no sample budget constraint, the while-loop

in Algorithm 1 exits only when there is no more candidate node.

We introduce the notations in Table 1 and proceed to present

the sampling probability analysis framework in Algorithm 2. To

compute the sampling probability of a particular node i with de-

gree d , we only need to focus on two mutually exclusive events

(Figure 1): a) the node is sampled; b) one of the node’s neighbors is

sampled causing the node to be removed. Iterations after these two

events have no impact on the sampling probability, and therefore

can be ignored (if-condition in line 3 of Algorithm 2). We calculate

the marginal probability of the node being sampled at each step,
and sum them up to get the (overall) probability of the node being

sampled by the algorithm. The rationale of line 6 is: in t-th iteration,
node i hasmt−1 active neighbors and for a fixed node ξt (ξt , i ), it
has probability p to connect each of i’s neighbors on an ER graph.

Similar argument holds for line 7. Assuming the sampling probabil-

ity of node i at t-th iteration is pt , the desired (overall) sampling

probability of node i is Pi ≡P(node i is sampled) =
∑∞
t=1

pt .
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Table 1: Notation Table for Algorithm 2

Notation Explanation

t iteration counter

n network size

p connection rate of an Erdos-Renyi ER(n, p ) graph
i ID of the node of interest

di degree of node i
Mt active neighbors of node i at the end of iteration t ,

and the beginning of iteration t + 1

mt |Mt |

Ut candidate nodes at the end of iteration t
ut |Ut |
ξt node sampled at iteration t
nm number of common neighbors of ξt and i
nn number of neighbors of ξt disconnected from i
∼ distributed as

Bino Binomial distribution

d d-bar (d with an overline), mean degree of the graph

nd number of degree d nodes

Pd sampling probability of degree d nodes

S the set of sampled nodes

Algorithm 2 Reduced version of Algorithm 1 for analysis

Input: the same as Algorithm 1

Output: the same as Algorithm 1

1: while node i is not sampled and not removed do
2: pick up ξt u.a.r. from Ut−1;

3: if ξt ∈ i ∪Mt−1 then
4: stop;

5: end if
6: nm ∼ Bino(mt−1, p ); // number of common neighbors of ξt and i.

7: nn ∼ Bino(ut−1 −mt−1 − node i − ξt , p ); // number of neighbors

of ξt disconnected from i due to ξt ’s being sampled.

8: Ut = Ut−1 − nm − nn ; // update candidate nodes.
9: Mt = Mt−1 − nm ; // update active neighbors.

10: end while
11: return

i

(a) Node i being
sampled, and the
procedure termi-
nates.padding

i

(b) One of node
i ’s neighbors be-
ing sampled, and
node i is removed.

i

(c) Other nodes be-
ing sampled. a geg-
padtext abc abge
alignment

Figure 1: Possible outcomes in line 2 per iteration in Algorithm 2,
can be classified into three events. At each iteration t , the probability
of events {(a) or (b)} is π ′t =

mt−1+1

ut−1

. Hence the probability that the
procedure stops at iteration t is πt = π ′t P (The procedure does not
stop before iteration t ). See Proposition 3.1 for details.

Proposition 3.1. We show that for a node i with degree d in a
sparse and large ER graph, its sampling probability Pd by Algorithm 2
is proportional to 1/(d + 1).

Pd ∝
1

d + 1

Notations are explained in Table 1, and di = d .

Proof sketch. πt ≡P(procedure stops at iteration t )
pt ≡P(node i is sampled at iteration t ) = πt

mt−1+1
(by definition,

Figure 1)

πt =
mt−1+1

ut−1

[1 −
∑t−1

j=1
πj ] ≈

mt−1

ut−1

[1 −
∑t−1

j=1
πj ] ≈

d
n (1 −

d
n )

t−1

(using Edgeworth Expansion [9] to approximate a ratio distribution

by its expectation)∑∞
t=1

πt = 1 (the sampling procedure cannot run forever)

pt =
πt

mt−1+1
≈

πt
d+1

(large sparse ER graph
1
)

Pd ≡ P (node i of degree d is sampled)=
∑∞
t=1

P(node i is sampled

at iteration t )≡
∑∞
t=1

pt =
1

d+1

∑∞
t=1

πt =
1

d+1
· 1

Hence, Pd ∝
1

d+1
□

The degree-inverse sampling probability agrees with our intu-

ition: after each uniform sampling step of the procedure, a high

degree node has more chance to be a neighbor of a sampled node

and hence has more chance to be removed. In long run, high degree

nodes are all removed and the candidate set has only low degree

nodes, resulting in the degree-inverse sampling rate.

Thus, for a sparse ER graph, we have Pi ∝
1

di+1
. Given Pi =

c
di+1

where c is an unknown graph-dependent parameter, the end-

of-procedure sampling size |S | could be obtained by summation:

|S | =
∑
d ndPd . We can show that the end-of-procedure sample

size for a large and sparse ER graph is limn→∞ |S | =
c
p [1 − e−

¯d
]

i.e, inversely proportional to the mean degree (see Corollary 3.2).

It can be shown that when k = 1 and q is exactly one node as

in Algorithm 2, the obtained sample nodes make up a maximal in-

dependent set, and hence the sample size is upper-bounded by the

size of the maximum independent set [4]. Moreover, we empirically

find that the sampling probability by spread sampling follows a

(truncated) power law on dense ER graphs and graphs with com-

munity structure like SBM, and BTER, which will be elaborated in

Section 3.2.2.

Corollary 3.2. For a large, sparse Erdos-Renyi graph ER(n,p),

E[|S |] =
n−1∑
d=0

E[nd ]Pd =
c

p
[1 − (1 − p)n],

where Pd =
c

d+1
is the sampling probability of a degree-d node,

and c is a graph-dependent parameter.
Moreover, limn→∞ E[|S |] = c

p [1 − e−
¯d
].

Proof. Pd ∝
1

d+1
by Proposition 3.1. For a particular graph,

we can represent it as Pd =
c

d+1
, where c is a graph-dependent

parameter.

Hence, among all nd degree d nodes, ndPd nodes are included

in the sample. And therefore, the total expected sample size is

E[|S |] =
∑n−1

d=0
E[ndPd ] =

∑n−1

d=0
E[nd ]Pd (0 ≤ d < n).

For ER(n,p), E[nd ] = n ·
(n−1

d

)
pd (1 − p)n−1−d

E[|S |] =
∑n−1

d=0
E[nd ]Pd =

∑n−1

d=0

c
d+1
· n ·
(n−1

d

)
pd (1 − p)n−1−d

k≡d+1

======== c
p
∑n
k=1
· n!

k !(n−k )!p
k (1 − p)n−k = c

p [1 − (1 − p)n]

1
For a large sparse ER graph, the probability that node i ’s 2-hop neighbors are sampled

is low, and hencemt decays slowly. Our experiments suggest the average decay rate

mt /mt−1 of a sparse ER graph with 1k nodes is above 0.99 for the first 100 iterations,

and the larger the graph is, the higher this number is.
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Hence E[|S |] = c
p [1 − (1 − p)n]

limn→∞ E[|S |]
sparse ER, p= ¯d/n
================= limn→∞

c
p [1 − (1 −

¯d
n )

n
] =

c
p [1 − e−

¯d
] □

3.2.2 Empirical Sampling Probability. The sampling procedure

Algorithm 1 stops under two conditions: 1) target sample size is

reached; 2) no more nodes can be sampled. Hence there are two

corresponding sampling probabilities: truncated sampling proba-

bility and end-of-procedure sampling probability. We report both

the probabilities in Figures 2 and 3. Recall that we are interested

in the sampling probability - for a node with degree d , what is the
probability that it is sampled, which can be estimated by:

ˆ
P(a degree d node sampled) =

number of degree d nodes in the sample

number of degree d nodes in the graph

We list the size, the number of communities (when applicable) and

the clustering coefficient of the graphs we tested in Table 2.

Table 2: Graphs Used in Experiments

Graph |V | |E | |C | CC

ER(1k, 0.4) 1k 100k N/A 0.3992

ER(10k, 0.001) 10k 50k N/A 0.0011

PL(1k, 4, 0.01) 1k 4k N/A 0.0343

PL(1k, 4, 0.8) 1k 4k N/A 0.3720

SBM10k balanced 10k 594k 100 0.0165

SBM10k imbalanced 10k 103k 500 0.1265

BTER syn (fit power-law) 1k 33k 10 0.2696

BTER fb (fit FB below) 4k 86k 250 0.5964

Email [17] 1k 25k 42 0.3994

FB [17] 4k 88k N/A 0.6055

DBLP [17] 317k 1M 13k 0.6324

Figure 2: Empirical sampling probability with varying budgets
on ER(10k,0.001). Removal threshold equals one, and exactly one
node is sampled per step. At small budgets (< 5%), the nodes are
nearly uniformly sampled; as the sample budget increases, low de-
gree nodes gain much more chance than others to be sampled.

We report results on graphs without community structure: Erdős-

Rényi graphs (dense and sparse) and Power Law graphs (dense and

sparse); graphs with community structure: SBM graphs (balanced

and imbalanced communities) and BTER graphs (fit a power-law

(a) Sampling probability by SS on sparse/dense ER graph and
sparse/dense power-law graph follows power-law. Plus sign rep-
resents empirical probability on ER graphs, while circle repre-
sents empirical probability on power-law graphs. The dashed
straight lines are least-square fitted reference power-law distribu-
tion. (straight line on log-log plot is power-law.)

(b) Sampling probability by SS on SBM with (im)balanced commu-
nities and BTER fitted from synthetic/real-world graphs follows
power-law.

Figure 3: Sampling probability by SS on various graphs follows
power-law.

sequence, and FB graph). For small budget (< 5% in Figure 2),

the sampling probability for different degrees do not differ too

much and hence achieves near-uniform sampling. As the sample

budget increases, low degree nodes get much more chance than

hub nodes to be sampled. This agrees with our intuition: spread

sampling alternates between uniform sampling and node removal.

Small sampling budget results in early termination and hence fewer

nodes being removed. Therefore, nodes with different degrees have

the similar probability of being sampled. As the budget increases,

more (high-degree) nodes are removed, as explained after the proof

of Proposition 3.1. This phenomenon exists on all types of graphs,

and we only report a sparse ER graph.

If we have no sampling budget (or the budget is very high and

the procedure cannot reach), the sampling procedure stops only

when there is no more nodes to be sampled, and we call it the

end-of-procedure status. The sampling probability follows a power
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law on all the aforementioned graphs (Figure 3). Knowing the sam-

pling probability helps the design of the Horvitz-Thompson esti-

mator [12].

3.3 High Community Diversity
3.3.1 Theoretical Analysis. We use community coverage ratio to

quantify how well spread-out the sampled nodes are. We define

community coverage ratio
2
for each sample set S as the fraction

of communities represented by the sampled nodes in S . It can be

formulated as:

CoveraдeRatio(S ) =
|
⋃
i ∈S ci |

|C |
,

where S is the sample, ci is the community of node i andC is the

set of all the communities. We use its expectation over all possible

sample sets to evaluate a sampling method on a graph
3
:

ES [CoveraдeRatio] = ES [

|
⋃
i ∈S ci |

|C |
] =

∑
t ∈[0,1]

P(CoveraдeRatio = t )·t ,

A special case in the last formula is when t equals to 1, which

means all the communities are represented by the sample. We call

this probability the Full Coverage Probability. We first show theoret-

ically that SS on SBM graphs has higher full coverage probability

than uniform sampling, then empirically compare SS against sev-

eral baselines in terms of both expected coverage ratio and full

coverage probability.

Consider an SBM graph with C equal-sized communities, and

each community has nC nodes. Hence the graph size is C · nC . The
within community connection rate is larger than across community

connection rate: pin > pout. For a fixed sampling budget C , the
number of communities, we are interested in the probability that all

sampled nodes are from distinct communities by sampling method

M, which is the “full (community) coverage probability”, denoted

PFCP. We prove that SS has larger PFCP than uniform sampling.

For uniform sampling, the community distribution of the sam-

pled nodes follows a C-variate multi-nomial distribution, hence

P
FCP,uniform

=
( C
1, · · · ,1

)
(1/C )C = C !

CC .

For SS, we name the communities asC1,C2, · · · ,CC . For simplic-

ity, we again assume the infection rate is exactly one node and the

removal threshold is one node as in Algorithm 2. We consider such

an event: the first sampled node comes fromC1, the second sampled

node comes from C2, ..., and the last sampled node comes from CC .
And the probability of this event is Patom. Then PFCP,SS = C!Patom.

Now we show Patom > 1/CC , and hence PFCP,SS > P
FCP,uniform

.

The intuition is that for each to-be-covered community, which

means we haven’t sampled any node from that community, its size

is larger than the global average, and hence got a higher chance to

be sampled in the uniform sampling stage of SS.

Proposition 3.3. Patom > 1/CC , and hence PFCP,SS > PFCP,uniform.

Proof. Let n
(j )
Ci

be the size of community Ci after j nodes sam-

pled, in particular n
(0)
Ci
= nC ,∀i ∈ {1, 2, · · · ,C}. Hence Patom =

2
By design, our method achieves 100% expansion quality, ratio of the neighborhood

size of the sample to the number of unsampled nodes, as defined in [19] when the

infection rate is exactly one node and removal threshold is one.

3
We use summation instead of integral on the fraction t because t is a ratio computed

from a discrete event.

n (0)
C

1∑C
i=1

n (0)
Ci

×
n (1)
C

2∑C
i=1

n (1)
Ci

× · · · ×
n (C−1)
CC∑C

i=1
n (C−1)
Ci

=
∏C−1

j=0

n (j )
Cj+1∑C
i=1

n (j )
Ci

.

n
(j )
Ci
=



nC (1 − pout)
j , j < i

[nC (1 − pout)
i−1 − 1](1 − pin) (1 − pout)

j−i , j ≥ i

=



nC (1 − pout)
j , j < i

nC (1 − pout)
j (

1−pin
1−pout ) − (1 − pin) (1 − pout)

j−i , j ≥ i

Hence for j ≥ i , n
(j )
Ci
≤ nC (1 − pout)

j (
1−pin
1−pout ).

Patom =
C−1∏
j=0

n
(j )
Cj+1∑j

i=1
n
(j )
Ci
+
∑C
i=j+1

n
(j )
Ci

=

C−1∏
j=0

nC (1 − pout)
j∑

i>j nC (1 − pout) j +
∑
i≤j n

(j )
Ci

≥

C−1∏
j=0

nC (1 − pout)
j∑

i>j nC (1 − pout) j +
∑
i≤j nC (1 − pout) j (

1−pin
1−pout )

=

C−1∏
j=0

1

C − j + j · (
1−pin
1−pout )

>

C−1∏
j=0

1

C
= 1/CC

Therefore, PFCP,SS = C!Patom > C!/CC = P
FCP,uniform

. □

3.3.2 Empirical Results. We compare 5 baseline sampling meth-

ods: uniform sampling, expanding snow-ball (XSN [19]), degree-

inverse sampling, Louvain[2]+ stratification sampling, andMETIS[14]+

stratification sampling. XSN is a greedy sampling method to sample

a community-diversified connected component, and performs very

well on graphs with balanced communities. We compare against

degree-inverse because our method has degree-inverse property

for small removal threshold. We show that simply sampling nodes

with degree-inverse probability cannot achieve as high community

coverage as our method. For the stratification sampling, we first

run state-of-the-art community detection methods, then sample the

nodes with probability proportional to the sizes of the detected com-

munities.
4
Random-walk-based sampling [16] methods, including

multi-walkers [20], have inferior community coverage, and hence

we do not include those results.

We report results on graphs with balanced and imbalanced

(ground-truth) communities. Algorithms differ with each other on

small budgets, and all algorithms achieve high community coverage

as the sampling budget increases. SS achieves a comparable result

to XSN, and is much better than other baselines on graphs with

balanced communities (Figure 4a). SS achieves significantly bet-

ter results than baselines on imbalanced communities (Figures 4b

to 4c). Any sampling method will eventually achieve 100% coverage

as the sampling budget increases (100% sampling budget will, of

course, cover all the communities). For a fixed sampling method,

the saturation point (100% coverage) is earlier (smaller sampling

budget required) for graphs with balanced and few communities

than graphs with imbalanced and many communities, which im-

plies that it is more difficult to achieve high diversity on graphs

with imbalanced communities than on graphs with balanced com-

munities. Figure 4 shows that the SS method indeed achieves better

community coverage than the baselines.

4
Evaluation is always performed on the ground truth communities.
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(a) Sample diversity comparison on SBM10k Balanced. (100 commu-
nities of size 100) At very small sample budget (1%, 2%), SS is compa-
rable toXSN, and both havemuchhigher probability to cover all the
communities than the baselines. As the sample budget increases, all
methods catch up with the front runners. Full coverage probability
is more discriminative than coverage ratio.

(b) Community Coverage Ratio on SBM10k Imbalanced. At very
small sample budget (1%, 2%), SS covers significantly more commu-
nities than the baselines.

(c) DBLP (13.7k real-world communities) graphhasmany communi-
ties of which the sizes are highly imbalanced. No sampling method
can cover all the communities even at 30% sampling budget. SS con-
sistently outperforms all the baselines on all budgets.

Figure 4: Community diversity comparisons. SS has good perfor-
mance on both balanced communities, on which XSN performs
well, and imbalanced communities, on which METIS+uniform is
the second best.

Our SS method not only achieves better community coverage

than baselines, but also runs faster than both XSN and community-

detection-based methods. We compare the time efficiency of SS

against XSN and Louvain/METIS + stratification
5
. SS has time com-

plexity O ( |V |) (Section 3.4) and hence is much faster than Louvain

(O ( |V | log|V |) and METIS (O ( |V | log|C |)). We report the running

time of sample budget being 30% for all the algorithms (since this is

the slowest scenario of SS among our experiments, k = 1,q = 0.005

in Algorithm 1). We run all the algorithms 100 times on various

graphs and report the corresponding total running time. Exper-

iments in Table 3 show that SS is indeed much faster than the

baselines.

Table 3: Running Time Comparison

Python C/C++

Graph Louvain

(ratio to SS)

SS METIS (ratio to

SS)

XSN (ratio

to SS)

SS

SBM-b 3.2 h (96X) 2 min 17s (10X) 51s (32X) 1.6s
SBM-i 1.5 h (60X) 1.5 min 11s (2X) 34s (5X) 6.2s
amazon 35 h (52X) 40min 1.3 min (0.3X) 10h (162X) 3.7 min

dblp 60 h (7X) 8.3 h 11 min (3.3X) 9h (164X) 3.3 min

lj N/A N/A 3.1h (2X) DNF 1.7h

3.4 Complexity Analysis
According to Algorithm 1, there are |Ct | candidate nodes in the

while-loop at the t−th iteration, |Ct+1 | = (1 − q) |Ct | for infection
rateq. The bottleneck is line 4, candidate nodes update: for each can-
didate node, we need to scan all its neighbors to determine the va-

lidity of its candidacy. This procedure incurs |Ct | ¯d queries per itera-

tion, where
¯d = 2|E |/|V | is the mean degree. Hence, the overall time

complexity is O (
∑Ct=n
Ct=0

|Ct | ¯d )
geometric sum w/ ratio 1−q
=========================O ( |C0 | ¯d ) =

O (n ¯d ) = O ( |E |)
sparse [3], |E |=O ( |V |)
===================== O ( |V |). Therefore, SS has lin-

ear time complexity. In particular, for infection rate being exactly

one node as in Algorithm 2, O (
∑
|Ct | ¯d ) = O ( ¯dn2)

sparse

======= O ( |V |2),
as shown in Figure 5. We do not store edge information. All the

edge information is retrieved from the graph. Hence the space

complexity is O ( |V |).

3.5 Impact of Sampling Parameters
The spread sampling method has two parameters: single-step in-

fection rate q, and removal threshold k. Our theoretical analyses

of sampling probability and community coverage study the special

case of k = 1 and q being exactly one node for tractability. Sec-

tion 3.4 shows that infection rate being exactly one node leads to

quadratic time complexity while fractional infection rate has only

linear time complexity. In practice, we choose q and k according to

our purpose/application. We empirically (Figure 6) find the infec-

tion rate has little impact on community diversity. Hence we can

get high community diversity sampling with linear time complexity

in practice.

4 APPLICATION
4.1 Overlapping Community Detection Seeding
Personalized PageRank (PPR) [1] is a well-established method for

local graph partitioning: to identify a community from a small

5
We implement SS in both Python and C++ (2 implementations). Louvain method

(python-louvain v0.9) is in Python while METIS (networkx-metis v1.0) is in C with a

Python wrapper.
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Figure 5: Scalability of spread sampling method (C++). The run-
ning time is obtained from ER graphs with mean degree 10 of
varying sizes. Diamondmarkers correspond to infection rate being
0.005 and hence linear; circles correspond to infection rate being ex-
actly one node as in Algorithm 2 (vertically shifted for separation).
The green dotted lines are for reference.

seed set. An extensive comparison by [15] shows that PPR has the

best performance among all local partitioning methods. They focus

on the comparison of different methods, and claim that uniform

sampling is better than high-degree node sampling. Our spread

sampling, with different parameter settings, can be specialized as

uniform sampling (k > dmax) or low-degree nodes sampling (small

k). We run PPR community detection following the same procedure

and on the same datasets (with one more, LiveJournal) as in Sect.

2 of [15] and compare various seeding methods: SS with small

k (low-degree heuristic), SS with large k , uniform sampling and

high-degree heuristic.
6
For each ground truth community, we try

the sampling budget to be 5% and 10%, and they return consistent

results in terms of seeding methods ranking. PPR assigns each node

a conductance score in [0, 1]. For each to-be-detected community,

we sort all the nodes in descending order of the score and determine

the top-C nodes as the community members, where C is the size

of the ground truth community. For SS, we fix q to be exact one

node per step, and vary removal threshold k from 1 to 50. Note

that large k degenerate to uniform sampling. Our key finding is

that low-degree heuristic works the best in overlapping community

detection, and the recall of each seeding methods is reported in

Table 4.
7

Experiments show that low-degree heuristic works best on graphs

with overlapping communities: high-degree nodes belong to sev-

eral communities while low-degree nodes are “core members” of

a community [22, 28]. Expansion from a high degree node results

in sample from different communities and hence the recall is low;

expansion from “core members” is more likely to return nodes

within the same community and hence a better recall. The recall

on youtube graph is very low, which is probably due to its low

clustering coefficient.

6
The neighborhood inflation method [27] is also a highly cited work. We did not

compare against it since according to [15], PPR performs better than the neighborhood

inflation method.

7
Precision≡ True Positive

|C
detect

|

exp. setup

========== TP

|C
ground truth

|
≡recall

(a) SBM10k with balanced communities. Full coverage probability
(up) is a more discriminative metric than the coverage ratio (bot-
tom). Infection rates are separated by different colors while re-
moval thresholds by different shapes. All parameter combinations
outperform uniform sampling. Note that sampling configurations
with the same k , removal threshold (in the same shape), tends to
cluster together, validating the claim that k controls the end-of-
procedure status.

(b) SBM10k with imbalanced communities. SS outperforms uni-
form sampling in all parameter settings, and parameter settings
with the same k tends to cluster together. Uniform sampling can-
not achieve non-zero full coverage probability (FCP) even with 50%
sampling budeget while SS can achieve above 60% FCP even at 10%
budget, so we omit the FCP plot.

(c) BTER fitted with a Facebook graph with imbalanced communi-
ties. SS significantly outperforms the baseline in all parameter set-
tings, and parameter settings with the same k cluster together. SS
achieves near 100% FCP at budget below 15% while uniform sam-
pling cannot achieves non-zero FCP at budget 30%.

Figure 6: Impact of sampling parameters in terms of community
coverage. Parameter settings with the same k cluster together, val-
idating the intuition that k controls the end-of-procedure status.
The high community coverage of SS is more significant on graphs
with imbalanced communities (b), (c).
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Table 4: Community Detection Recall with Varying Seed
Strategies

Data k=1 k=10 Uniform Max Deg.

amazon .5768±.038 .5808±.040 .5617±.042 .5612±.043

dblp .2512±.004 .2396±.003 .2383±.004 .1479±.001

lj .1328±.002 .1313±.003 .1311±.002 .1123±.001

youtube .0227±.004 .0200±.003 .0138±.002 .0108±.001

5 CONCLUSIONS
We propose a simple yet elegant procedure - spread sampling (SS)-

for sampling nodes within a graph. We show that spread sampling

tries to sample nodes from all regions of the graph thereby improv-

ing community diversity than existing baselines, especially on the

networks with imbalanced communities. We show that SS samples

nodes with sampling probability following a power law distribu-

tion on both community-structured graphs and community-free

graphs. We show that SS achieves high community diversity on

various graphs with only linear time complexity. We apply SS on

seeding-based community detection, and show it outperforms the-

state-of-the-art. In the future, we will find an analytical sampling

probability on SBM graphs, and apply SS to network A/B testing,

community-based change point detection [25, 26] and community-

based question-answer matching problem [24].
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