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ABSTRACT
Graphmodels are widely used to analyse diffusion processes embed-
ded in social contacts and to develop applications. A range of graph
models are available to replicate the underlying social structures
and dynamics realistically. However, most of the current graph
models can only consider concurrent interactions among individ-
uals in the co-located interaction networks. They do not account
for indirect interactions that can transmit spreading items to indi-
viduals who visit the same locations at different times but within
a certain time limit. The diffusion phenomena occurring through
direct and indirect interactions is called same place different time
(SPDT) diffusion. This paper introduces a model to synthesize co-
located interaction graphs capturing both direct interactions, where
individuals meet at a location, and indirect interactions, where in-
dividuals visit the same location at different times within a set
timeframe. We analyze 60 million location updates made by 2 mil-
lion users from a social networking application to characterize the
graph properties, including the space-time correlations and its time
evolving characteristics, such as bursty or ongoing behaviors. The
generated synthetic graph reproduces diffusion dynamics of a real-
istic contact graph, and reduces the prediction error by up to 82%
when compared to other contact graph models, thus demonstrating
its potential for forecasting epidemic spread.
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1 INTRODUCTION
Modelling diffusion processes driven by social contacts have re-
cently received significant research attention. These processes
range from viral marketing in on-line social networks to infec-
tious disease spreading in social contact within populations. Study-
ing these processes in large real scenarios is not possible without
detailed information about the contact patterns and their timing be-
haviors. However, gathering such large scale data is expensive and
complex due to collection methods and privacy concerns. The alter-
native method is to develop synthetic network structures capturing
the statistical properties of real contacts. This synthetic structure
is represented by graphs where individuals are presented as actors
(i.e., nodes) and relationships among them as edges (i.e., links). In
the traditional approach, the edges between nodes are static. How-
ever, there are several types of contacts that are not permanent
over time such as physical contacts between individuals.

To capture the temporal dynamics of interactions, various dy-
namic contact graphs have been introduced in the literature [1–4].
Dynamic contact graphs are frequently generated using statisti-
cal methods. These models provide realistic graphs for hypothesis
testing, "what-if" scenarios, and simulations, but are often math-
ematically untraceable. Dynamic models require to make graph
entities and edges evolve over time and simultaneously maintain
the underlying social structures [2]. The preferential attachment
is used to study dynamic graphs: new nodes join the graph with
non-uniform probability [3]. But, it cannot help maintain social
structures. This is addressed by the Nearest Neighbor Model which
connects two nodes if they have common neighbor nodes. Another
model called Homophily [5] connects two nodes having common
interests to form community structures. These models are con-
nectivity driven and face difficulties to capture features of real
graphs of large size. The authors of [4] proposed activity driven
dynamic network models to build interaction graphs where a node
activates at a given time, with its potentiality, and starts creating
links with other nodes. This basic activity driven network model
(BADN) has been upgraded to capture realistic graph properties
applying preferential attachments, reinforcement procedures and
attractiveness [6]. Current co-located interaction models, however,
assume that links between two individuals are created when they
are both present at the same location. Thus, the infectious items
are transmitted through a link when both infected and susceptible
individuals are present [1, 7]. We refer to diffusion due to these in-
dividual to individual level transmissions as same place same time
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transmission (SPST) based diffusion and created contact graphs
as SPST interactions graphs. This focus on concurrent presence,
is not sufficiently representative of a class of diffusion scenarios
where transmissions can occur with indirect interactions, i.e. when
there is a time gap between the departure of one individual and
the arrival of another. Airborne disease transmission is one such
example. An infected individual can release infectious particles
in the air through coughing or sneezing. These particles are then
suspended in the air and an individual arriving after the departure
of the infecter can still get infected [8, 9]. In this scenario, current
graph models that exclusively track concurrent interactions (SPST)
can miss significant spreading events during indirect interactions,
thus underestimating the diffusion dynamics. There is a need for a
novel dynamic contact graph model to study SPDT diffusions.

This paper proposes a temporal graph model that considers both
concurrent (direct) interactions and delayed (indirect) interactions
among individuals in forming the links. We termed this model as
same place different time interactions (SPDT) graph. In this graph,
possible disease transmission links are created if a host node visits
a location where at least one other node is present. The node’s stay
duration at a location with potential to spread is termed as an active
period. In order to represent both direct and indirect transmission
opportunities, we define the concept of an active copy of a node
which is created for each active period of a node. In the proposed
model, links are created between the active copies and neighbor
nodes. The active copy survives for the active period, when the
host is present, in addition to an indirect transmission period, when
the host leaves yet the spreading items persist at the location. Thus,
the SPDT graph evolves according to temporal changes of links
and node’s status. SPDT graph generation methods are developed
using statistical distributions which are fitted with real graphs of 2
millions users. The model is then validated through its ability to
reproduce diffusion dynamics of real contact graphs and studying
performances compared to SPST and BADN graph models

The SPDT graph model is introduced in Section 2 while the
graph generation is explained in Section 3. Model fitting techniques
are presented in Section 4. Section 5 describes the validation of
proposed model while Section 6 discusses the results and concludes
the paper.

2 SPDT GRAPH MODEL
In this section, we first analyse the modeling scenarios and then
describe the proposed graph model.

2.1 Modeling Scenarios
We first explain the link creation process in SPDT graphs through
airborne disease spreading where infected individuals deposit in-
fectious particles at locations they have visited. These particles
persist in the environment and can be transferred to susceptible
individuals who are currently present nearby (direct transmission)
as well as to individuals who visit the location later on (indirect
transmission) [8, 9]. Figure 1 illustrates a series of snapshots over
time when different individuals visit a location L (dashed circle) to
create these links. Here, an infected individual u (host individual)
arrives at L at time t1 followed by a susceptible individual v at time
t2. The appearance of v at L creates a directed link for transmitting

𝒕𝟏 𝒕𝟐 𝒕𝟑

𝒕𝟒 𝒕𝟓 𝒕𝟔

u active u virtually active
v exposed

direct indirect
w exposed

indirect

𝒕𝟐 𝒕𝟑 𝒕𝟒 𝒕𝟓 𝒕𝟔𝒕𝟏

Figure 1: Modeling scenery

disease from u to v and lasts until time t4 including direct contact
during [t2, t3] and indirect contact during [t3, t4]. The indirect con-
tact is created as the impact of u persists (as shown by the dashed
circle surrounding u), due to the survival of the airborne infected
particles in the air. Another susceptible userw arrives at L at time
t5 and a link is created from u tow through the indirect route due
to u’s infectious particles still being active at L. These links are
called SPDT links and created through space and time. SPDT links
may have components: direct and/or indirect transmission links.
However, visits of infected individuals to the locations with no
susceptible individuals do not lead to transmission of disease.

2.2 Model Definition
Individuals may move to various places during their infectious peri-
ods while traveling to public places such as office, school, shopping
malls and bus stations and visiting tourist places. However, only
visits or stays of infected individuals to locations where other sus-
ceptible individuals are present create disease transmission links.
Our goal is to develop a graph model that is capable of capturing
the indirect transmission links along with direct links for co-located
interactions among individuals. We focus our modeling of link cre-
ation on the time domain to ensure scalability, while abstracting
spatial aspects implicitly. Temporal modeling is sufficient to identify
the nodes participating in possible disease transmission links. Thus,
link creation events in the proposed scenario can be represented as
a process where an infected individual activates for a period of time
(staying at a location with susceptible individuals) and creates SPDT
links. Then, the infected individual becomes inactive for a period of
time during which he does not create SPDT links. Inactive periods
represent the waiting time between two active periods. Thus, the
co-located interaction status of an infected individual can be given
by a set {a1,w1,a2,w2, .} where a is active andw is inactive period.

We define SPDT graph asG = (V ,A,E,T ) to represent all possible
disease transmission links among nodes, where V is the set of
nodes. The number of nodes in the graph is constant; however,
nodes may have one or more active copies in the graph which
captures their ability to spread diseases both at locations they are
present and at locations from which they recently departed. The
set of active copies for all nodes is represented by A. E is the set of
links in the graph. The graph is represented over a discrete time
set T={t1, t2, . . . tz }. Each node in the graph creates a set of active
and inactive periods {a1,w1,a2,w2 . . .}. We define an active copy
vi = v(t is , t il ) for an active period ai of node v , where ai starts at
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Figure 2: Proposed model definition

time step t is and finishes at t il . Thus, each node will have several
such temporal copies for the observation period. For an active copy
vi+1 of a node v , t i+1s should be greater than t il of vi to capture
the requirement that a node should have left the first location
before arriving in another location. In this graph, a link evu ∈ E
is defined between an active copy vi of host node v and neighbor
node u (node u visits the current or recent location of node v) as
evu = (vi ,u, t ′s , t ′l ) where t

′
s is the joining time and t ′l is departure

time of u from the interacted location. The value of t ′s should be
within t is and t il + δ where δ is the time period allowed to create
indirect transmission links. Thus, an active copy vi of a node v
expires after t il + δ , where δ captures the decaying probability of
infection after v departs. During the indirect transmission period
δ node v can start another active period at another location (see
Fig.2b). However, if the infected node v leaves and returns to the
location of u within a time period δ , then there will be two active
copies of v , each with a link to the susceptible node u. The first
copy is due to the persistent of particles from v’s last visit, while
the second copy is due to v’s current visit.

2.3 Graph Evolution
The evolution of the proposed graph is governed by two dynamic
processes: 1) switching of nodes between active and inactive states,
as in Figure 2a; and 2) link creation and deletion for active copies of
nodes. The total number of time steps a node remains in one state
determines the current active or inactive period, leading to a set
of alternating active and inactive periods {a1,w1,a2,w2 . . .} for an
observation period (see Fig.2a). As stay times at locations are not
fixed [10], we define a transition probability ρ to determine switch-
ing from active state to inactive state (modeling stay and departure
events of a node at a location). This induces variable lengths of
active periods. Similarly, the transition probability q determines
when a node switches from inactive to active state (modeling arrival
of a node at location). A similar approach is taken to define link
update dynamics in the graph. An active copy of a node creates a
link to a newly arriving neighbor node with probability pc at each
time step until it expires. We define an activation degree probability
characterized by P(d) to model the arrival of multiple new neigh-
bors for an active copy. The created links break (neighbor node
leaves interaction area) with probability pb at each time step.

3 GRAPH GENERATION
We turn our attention now to develop methods for generating
the proposed graph, which are designed to capture the statistical
properties of realistic scenarios, social contact dynamics as well as

temporal dynamics of SPDT interactions. The graph evolves with
generating active copies of each node and creating their links.

3.1 Node Activation
Active copies of nodes are created over time according to the active
periods which are the building blocks of the graph along with nodes.
Thus, we need to generate active periods and intervening inactive
periods. In our model, determining whether a node will stay in the
current state or transit into the other state at the next time step
resembles a Bernoulli process of two outcomes. Thus, the number of
time steps a node stays in a state can be obtained from a geometric
distribution. With the transitional probability ρ of switching from
active to inactive state, the active period durations ta can be drawn
from the following distribution as:

Pr (ta = t) = ρ(1 − ρ)t−1 (1)
where t = {1, 2, . . .} are the number of time steps. Similarly, the
inactive period durations, tw , with the transition probability q can
be drawn from the following distribution as:

Pr (tw = t) = q(1 − q)t−1 (2)
where t = {1, 2, . . .} are the number of time steps.

Now, we need to define the initial states of nodes to process active
copy generation. Our model follows a two state Markov-process
with transition matrix

P =

[
q 1 − q
ρ 1 − ρ

]
for which the equilibrium probabilities that the node is in inactive
state and active state are π0 and π1 respectively, where

π0 =
ρ

q + ρ
and π1 =

q

q + ρ
(3)

If the initial state of node v is active, the first active copy v1 is
created for the time interval (t1s = 0, t1l = ta ). Otherwise, v1 will
be created for the interval (t1s = tw , t

1
l = tw + ta ). Active copy cre-

ation continues over the observation period and the corresponding
interval (ts , tl ) is defined according to the drawn ta and tw . Active
copies are generated for each node independently. The values of ρ
and q are the same for all nodes which are fitted with real data.

3.2 Activation Degree
Now, we need to define interactions of neighbor nodes with an
active copy. Multiple neighbor nodes can contact with an active
copy. We note the number of neighbor nodes interacting with an
active copy as activation degree d . The value of d depends on
the spatio-temporal dynamics of the graph and are drawn from a
geometric distribution (Eq. 4) instead of finding the arrival times of
neighbor nodes.

Pr (d = k) = (1 − λ) λk−1 (4)
where k = {1, 2, . . .} and scaling parameter λ. However, individuals
in reality have heterogeneous accessibility to public places [11] and
hence activation degrees vary for individuals. Thus, heterogeneous
λ are selected for nodes and are drawn from a power law distribution
of Equation 5:

f (λi = x) = αx−(α+1)

ξ−α −ψ−α (5)
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where α is the scaling parameter, ξ is the lower limit of λ andψ is
the upper limit which is approximately 1. The value of λi defines the
range of variations of d for active copies of a node i and Equation 4
ensures wide ranges for large values of λ. Combining geometry
and power law distributions can generate more realistic degree
distribution [12] which are shown in the model fitting section.

3.3 Link Creation
With the activation neighbor set, we need to define the arrival and
departure dynamics of neighbor nodes for each link created with
an active copy. We adopt a similar approach to the definition of
active and inactive periods created with transition probabilities. We
assume that each link is created with probability pc at each time
step during the life period (ts , tl +δ ) of an active copy and is broken
with probability pb after creation. For the link creation delay tc ,
time gap between arrivals of host node and neighbor node (ts − t ′s ),
we use the truncated geometric distribution:

P (tc = t) = pc (1 − pc )t

1 − (1 − pc )ta+δ
(6)

where t = {0, 1, 2, . . . , ta +δ } are the number of time steps and ta is
the active period duration of corresponding active copy. Truncation
ensures that links are created within tl +δ , i.e. before the active copy
expires. In contrast, the link duration td , the stay time of neighbor
at the interacted location, does not have a specific upper bound
and is generated for each link upon creation through a geometric
distribution:

P (td = t) = pb (1 − pb )t−1 (7)

where t = {1, 2, . . .} are the number of time steps. For simplicity,
we set pb = ρ as both probabilities relate to how long nodes stay at
a location. For each link with an active copy, thus, we can find t ′s =
ts +tc and t ′l = t ′s +td . A link with t ′s ≥ tl is an indirect transmission
only component. Link can also have indirect component if t ′s <
tl > t ′l . The above graph generation steps capture the temporal
behavior of SPDT links. The social mixing patterns are integrated
by selecting the neighboring node, as we describe below.

3.4 Social Structure
Social network analysis has shown that the neighbor selection for
creating a link follows a memory-based process. Thus, we apply
the reinforcement process [6] to realistically capture the repeated
interactions between individuals. In this process, a neighbor node
from the set of already contacted nodes is selected with probability
P(nt + 1) = nt /(nt + η) where nt is the number of nodes the host
node already contacted up to this time t and η is the tendency to
broaden the contact set size. On the other hand, a new neighbor
node is selected with the probability 1 − P(nt + 1). Besides, when
a node j is chosen as a new neighbor by node i , it is selected with
the probability proportional to its λj as nodes with higher λ will be
neighbors to the more nodes [11]. This ensures nodes with higher
potential to create links also have higher potential to receive links.

4 MODEL FITTING
We now focus on tuning the model parameters to make them rep-
resentative of real contact dynamics. While high quality empirical

movement and contact data are difficult to obtain, recent location-
based applications create opportunities to gather individual-level
geo-tagged updates to serve as a proxy for individual movements.
Here, we use the location updates from a social networking appli-
cation called Momo to estimate model parameters and validate.

4.1 Data Set
We analyze 60 million location updates collected over 32 days from
2 million Momo users of two cities (Beijing and Shanghai). The
collection system retrieved location updates from the server every
15 minutes. Each update includes spatial coordinates and update
times [13]. We build SPDT graphs using these updates where SPDT
links are formed assuming airborne disease transmission mecha-
nisms for co-located interactions among users.

Consecutive updates, {(x1, t1), (x2, t2), . . .} where xi are the co-
ordinate values and ti are the update times, from a user v within a
radius of 20m (travel distance of airborne infection particles [8, 9])
of the initial update’s location x1 are indicative of the user staying
within the same proximity of x1. We set the threshold for time
difference of any two updates to 30 minutes to remain within the
same proximity, as longer gaps may indicate a data gap in the user
pattern. For user u, its visit to the proximity of x1 will represent
an active period that creates an active copy of v if a susceptible
user u has location updates starting at t ′1 while v is present, or
within δ seconds after v leaves the area. The user u should have
at least two updates within 20m of x1 to be valid to ensure that
it is in fact staying at the same proximity, and therefore can be
exposed to the infectious particles, rather than simply passing by.
An active period is made with duration ta = tk − t1 which creates
an active copy v(t1, tk ) of user v , where t1 is the starting of active
period and tk is the end time. If u’s last update within 20m around
x1 is (x

′
j , t

′
j ), an SPDT link evu =

(
v(t1, tk ),u, t ′1, t

′
j

)
is created with

a link creation delay tc = t
′
1 − t1 and link duration td = t

′
j −

t
′
1 for v(t1, tk ). Setting indirect transmission period δ to 3 hours
(maximum time infectious particles can persist at a location after an
infected individual leaves [8]) and processing 60M location updates,
we can extract about 3.4M SPDT links that are used for parameter
estimation and model validation in the remainder of this section.

4.2 Parameter Estimation
In the previous sections, we have defined five co-located interaction
parameters (CIP) namely active period (ta ), waiting period (tw ),
activation degree (d), link creation delay (tc ) and link duration (td )
that construct the SPDT graph G = (V ,A,E,T ). For fitting model
parameters with real SPDT graph, we extract CIP using updates
collected over 07 days form Momo users of Shanghai city. These lo-
cation updates made by 126K users form 518K active periods which
create a SPDT graph of 1.69M SPDT links. We first use Maximum
Likelihood Estimation (MLE) techniques and the sample CIP data
for finding model parameters. Then, we generate a synthetic SPDT
graph (SG-1) of 126K nodes for 7 days using the estimated model
parameters and compare the CIP of synthetic graph with the CIP of
real graph (RG) made by 7 days updates of 120K users from Beijing
city. To understand the model’s response across large graph sizes,
we also generate another graph (SG-2) of 0.5M nodes for 7 days.
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Figure 3: Comparisons of CIP parameters of real graph (RG)
and two generated synthetic SPDT graphs: SG-1 and SG-2

The discrete time step of 5 minutes and δ = 3 hours are used to
generate synthetic graphs. Figure 3 shows results of 500 runs for
each graph where periods are in time step of 5 minutes.

We find the root squared error (RSE) between the generated and
real data distributions of CIP parameters as:

RSE =

√√ m∑
i=1

(xi − yi )2 (8)

where observed values are grouped in them bins as they are dis-
crete, xi is the proportion of observations for the ith bin, yi is the
proportion of empirical dataset values in the ith bin. As RSE are
computed from the proportion values, bins are naturally weighted
so that bins representing larger proportions of events have higher
contributions in error. We plot the distributions of mean values of
CIP with deviations of mean in Fig 3.

4.2.1 Node Activation Parameters. In our model, active pe-
riod durations ta are drawn from a geometric distribution with the
scaling parameter ρ. The value of ρ can be obtained with sample
data using the following MLE condition of geometric distribution:

ρ̂ =
n∑n

k=0 t
k
a

where n is the size of sample set ta = {t1a , . . . , tna }. We apply n =
518K real active period durations and estimate ρ̂ = 2.83 × 10−4 s−1.
The distributions of generated ta for both graphs SG-1 and SG-2
are shown in Fig 3a. The RSE errors for both SG-1 and SG-2 is 0.065.
The model with fitted parameters consistently generates the active
period durations ta for both graph sizes.

The active period durations ta have similar patterns for all in-
dividuals. However, the inactive period duration of an individual
depends on how frequently the individual visits public places. Thus,
the distribution of tw is determined with the distribution of activa-
tion frequencies h of individuals. To find q, we fit h with the real

activation frequencies of momo users. According to Equation 3, the
probability of transition event 0 → 1 at a time step is:

p01 =
ρq

q + ρ

Thus, the number of transition events 0 → 1 during z time steps
represents the number of activation events h. The probability of h
activations by the nodes is given by the Binomial distribution as:

Pr (h | q) =
(
z
h

) (
ρq

q + ρ

)h (
1 − ρq

q + ρ

)z−h
The term ρq

q+ρ becomes small as ρ = 0.085, z is usually large and
q < 1. Thus, the above equation can be approximated to a Poisson
distribution as:

Pr (h | q) =

(
zρq
q+ρ

)h
e
− zρq
q+ρ

h!
The MLE condition for the Poisson distribution is given as

zqρ

q + ρ
=

1
m

m∑
i=1

hi

Using the activation frequencies sample set h = {h1,h2, . . .hm } of
size m=126K to MLE equation provides q̂ = 2.23 × 10−5 s−1. The
activation frequencies represent the number of active periods a user
does in a day. The sample data set is collected over 7 days to find
the average values. The generated activation frequencies for SG-1
and SG-2 are presented in Figure 3c, with RSE of 0.077 for both SG-1
and SG-2 compared to real one. We also plot the corresponding
waiting periods durations distribution in Figure 3b which follows
the distribution of real tw with RSE around 0.031 in both networks.
The tw is characterized by the irregularity of using Momo Apps.

4.2.2 Activation Degree Parameters. For each active copy,
an activation degree d is assigned following Equation 4. The value
of d depends on the node’s public accessibility λ drawn from the
Power law distribution in Equation 5. Therefore, the distribution of
d in the network will be given for any λ as:

Pr (d) = β

ξ β − 1

∫ 1

ξ
(λd−β−2 − λd−β−1)dλ

=
β

ξ−β − 1

(
1 − ξd−β−1
d − β − 1 − 1 − ξd−β

d − β

)
For estimating the parameters β̂ and ξ̂ , we derive theMLE equations
and apply the activation degree sample set d = {d1, . . . ,dn } of size
n=518K. We estimate β̂ = 2.98, ξ̂ = 0.25. We set ψ̂ = 0.999 as λ
should be below 1. The generated activation degree distributions
for SG-1 and SG-2 with real data presented in Figure 3d. The RSE
error is 0.055. The fluctuating error at the tail is due to data sparsity.

4.2.3 Link Creation Parameters. Recall that the maximum
link creation delay for a link has the upper bound of the period
ta + δ . We apply real active period durations and link creation
delays of Momo users to estimate the link creation probability p̂c
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Figure 4: Static properties of graphs: a) degree centralities
and b) clustering co-efficients

using the MLE condition:

0 = m

pc
−

l∑
k=1

∑n
j=1

(tkc −1)(1−(1−pc )t
j
a+δ )+(t ja+δ )(1−pc )t

j
a+δ

(1−pc )(1−(1−pc )t
j
a+δ )2∑n

j=1((1 − (1 − pc )t
j
a+δ )−1

where t1c , t
2
c , . . . , t

l
c are sample set of size l = 1.2M and ta =

{t1a , . . . , tna } with n = 518K. The estimated value of p̂c is 9.33×10−5
s−1. The generated link creation delays are presented in the Fig-
ure 3e, where the generated tc have RSE of 0.035 in comparison
with the real distribution. The errors were consistent in both SG-1
and SG-2. Then, we set pb = ρ for link duration distribution. Fig-
ure 3f presents the comparison of generated link durations with real
durations which has RSE error of 0.075. The CIP parameters of the
generated network are fitted well with the real network parameters
made by Momo users. The variations for generated graphs are very
low and consistent in both SG-1 and SG-2 networks.

4.3 Network Properties
The previous section has addressed the temporal aspects of interac-
tions under SPDT graph fitting CIP parameters to empirical data.
This section explores the fitted model’s ability to reproduce im-
portant static graph properties of empirical networks. The model’s
parameters have been tuned using the updates from Shanghai. We
now utilize the location updates from Beijing to compare the net-
work properties. We generate a synthetic SPDT graph of two weeks
with 147K nodes for comparison against an empirical dataset from
Momo with the same number of users and duration. We summa-
rize the generated graph by a static graph where a directed edge
between two nodes is created if they have at least one SPDT link
from host node to neighbor node at any time. We first analyze the
degree centrality that quantifies the extent of a node’s connected-
ness to other nodes [14]. In a disease spread context, nodes with
higher degree centrality get infected quickly as well as infect a
higher number of other nodes [15]. In our model, the growth of the
contact set of node i is determined by λi and the neighbor selection
process defined by p(nt + 1) = nt /(nt + η). The value of η controls
the degree to which nodes expand their contact set size. We select
η = 1 to provide reasonable growth in contact set sizes through
the influence of λ which varies across nodes, while the selection
of an optimal value of η is beyond the scope of this paper. Another
desirable feature is that nodes which have more directed links to
other nodes also receive more links. We explore this effect in Fig-
ure 4a, which plots the distribution of in-degree and out-degree
of nodes for both real (RN) and synthetic graphs(SN). The degree
distributions are similar in both networks. The correlation between
the in-degree and out-degree are about 0.895 for both graphs.
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Figure 5: Diffusion dynamics on the sparse graph: (a) disease
prevalences Ip for real graph, SPDTmodel, BADN graph and
SPST graph, (b) final epidemic size, (c) prediction error for
Ip : * lines for cumulative and other for daily (d) number of
Momo users (K) and link densities per user, (e) Ip for various
r in RG and SG, and (f) new infections for various r

While degree centrality highlights the node connectivity, we use
the local clustering coefficient to study the social structure of the
network to understand the community structure in the generated
graphs [16]. A node selects a new neighbor from its second degree
neighbor set, i.e. it’s current neighbor’s neighbors. For analysis, we
convert the directed SPDT links into undirected links and compute
the clustering coefficients for each node. We present the results in
Figure 4b. The average clustering coefficient in the real graph is
0.11 while the synthetic graph has 0.08. The RSE error between
the distributions of clustering co-efficient is 0.0623. We attribute
the difference between the two graphs to the distinctions between
the randomized links in the synthetic graph and the well-known
non-random network structure of empirical social networks, which
we leave for future work. Still, our results reflect that the proposed
graph model can approach the empirical social structure even with
simple methods of neighbor selection.

5 MODEL VALIDATION
In this section, we validate the proposed model simulating SPDT
process on the generated synthetic graph and real contact graph. Ac-
cordingly, airborne disease spreading is simulated on the synthetic
and real traces. The simulations are also conducted on another
synthetic graph constructed according to the basic activity driven
networks (BADN) model [4] to understand how well the proposed
model capture diffusion dynamics comparing to the current graph
models. In our simulations, the infection probability PI for inhaling
ET dose of infectious particles by a node is

PI = 1 − e−σET (9)
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Figure 6: Diffusion dynamics on the dense graphs: (a) disease prevalences Ip for real graph, SPDT model, BADN graph and
SPST graph, (b) final epidemic sizes (c) prediction errors, (d) Ip for various r in RG and SG, and (e) new infections for various r

Table 1: Summary of simulation results
Graphs rh−1 Peak Ip Peak Day Total I Total Er(%) Mean Er(%) STD Er(%)

Sparse graphs
BADN 1.0 631 3 1069 67 78 33
SPST 1.0 568 2 1030 68 78 27

0.5 909 7 3462 3 14 15
SPDT 1.0 748 6 2486 5 17 15

1.5 637 4 1818 16 31 26
0.5 909 7 3355

Real 1.0 717 6 2621
1.5 637 4 2171

Dense graphs
BADN 1.0 1057 6 4225 42 43 17
SPST 1.0 543 2 2310 68 62 22

0.5 3034 13 9143 4 34 27
SPDT 1.0 1951 14 6956 4 18 19

1.5 1269 15 5427 7 12 12
0.5 2472 13 9544

Real 1.0 1852 13 7313
1.5 1429 13 5862

where σ is the infectiousness of particles [9]. The value of E for a
SPDT link evu =

(
v(ts , tl ),u, t ′s , t ′l

)
can be calculated as:

E =
дp

Vr2

[
r
(
ti − t ′s

)
+ er tl

(
e−r ti − e−r t

′
l

)
+ er ts

(
e−r t

′
l − e−r t

′
s
)]

g is the particle generation rate of an infected individual, p is the
pulmonary rate of a susceptible individual, V is the volume of the
interaction proximity, r is the particle removal rate from the prox-
imity and ti is the time depends on the link components: ti = t ′l
if link has only direct component, ti = t ′s if link has only indirect
component and ti = tl for both components. In simulations, disease
propagates according to the Susceptible-Infected-Recovered (SIR)
epidemic model. A susceptible node’s daily exposure for all links
from infected nodes is calculated and its infection probability PI is
determined. Based on this probability, the node’s status is updated at
one day intervals. Once infected, a node continues infecting others
for a number of days selected uniformly from range of 3 to 5 days,
after the node recovers [17]. For simulation, r is taken randomly
in the range [0.25, 8]h−1 around a median, д = 0.304PFU /s , pul-
monary rate q = 7.5L/min and V = 2512M3 assuming 20m radius
and 2m height of interaction area [9, 18]. The required exposure to
induce disease for 50% susceptible individual is found in the range
0.69 to 3.5 PFU. If we take the mid range value of PFU for causing
50% infection, the value of σ will be 0.33 [19]. All simulations start
by randomly selecting 500 seed nodes and continues for 32 days.

As SPDT diffusion changes with r , we verify how well the model
captures the changes in diffusion dynamics due to changes in r . We
run simulations on various graphs for values of 0.5,1, and 1.5 h−1.
The summary of the results is presented in the Table 1. First, we
chose the real SPDT graphs made by Momo users of Beijing. This
graph has total 297K users that create 6.9 million links through
2.2M active periods. We generate a similar SPDT graph with the

fitted model parameters. We run 500 simulations for both graphs
choosing the median 1.0h−1 of r and disease prevalences Ip over
simulation days are presented in Fig 5a. The prevalence Ip shows
closely matching trends between the real and synthetic graphs with
a concurrent peak at day 7. However, the intensities of Ip vary for
some days after day 15. The variations of Ip for the real graph arise
from fluctuations in the number of users and link densities (see
Fig 5d), whereas the SPDT model assumes a constant number of
users in the network. Having increased daily prediction error, our
model still maintains a cumulative prediction error around 5% as
the new infection rates are relatively small after day 10.

We also compare the model performance simulating diffusion
on a BADN graph where nodes activate at each time step with
a probability b and generatem links to others nodes. Analysis of
Momo users reveal that their average stay periods ∆t = 1/ρ are 50
minutes and on average createm = 2 links during an activation.
Thus, we define the activation potential for a node as p = f ∆t/T ,
where f is the activation frequency=3 per day, and generate a
BADN graph for 297K nodes. We run simulations for 500 times and
results are presented in Fig 5a. It has infected 1069 nodes in total
which is one third of the real graph. Then, the simulation is run on
the SPST graph which is obtained by removing indirect paths from
SPDT model. This provides similar output of BADN. We calculate
the absolute percentage error (APE) for infection events as:

APE = 100 × Ir − Io
Ir

where Ir is the number of infection events in the real network and
Io is the infection event in the corresponding observed graph. We
calculate the mean APE (MAPE) for the disease prevalence and APE
for cumulative disease cases for all graphs. The daily prediction
errors in APE of disease prevalence for different models are shown
in Fig 5(c). BADN and SPST have high MAPE error 78% with stan-
dard deviation 33% while SPDT graph shows 17% with standard
deviation of 15% at particle removal rate r = 1h−1, which reduces
the daily prediction error by nearly 82%. The prevalence trends for
BADN and SPST do not capture the real dynamics, confirming the
superiority of the proposed SPDT graph model.

We next evaluate the model’s sensitivity to diffusion parame-
ters. We simulate disease diffusion for three different values of
r = {0.5, 1.0, 1.5}h−1 on the real graphs (RG) and SPDT graph (SG)
while other parameters are kept the same. Results for 500 simula-
tions are presented in Fig 5e for disease prevalence and Fig 5f is
for new daily infections. Similar to Fig 5a, link density variations
impact the intensities of Ip in the real graph. However, at higher
values of r the difference shrinks. This is because both graphs ap-
proach SPST as r increases, which reduces the indirect transmission
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period. The results for r = 1.5h−1 is more representative for such
situations. The prevalence Ip increases during the later days in the
real network as many neighbors are infected early in the SPDT
graph, reducing new infection rates at the tail. The similar situation
is found in Fig 5(d). The new infection rate in Fig 5f is more random
for the real network and strongly follows the link densities.

To understand the response of the graph model for larger scale
simulation with higherlink densities, we reconstruct a large and
dense graph from the real graph dynamics. In the reconstructed
graph, we populate any days during which a user has no Momo up-
dates with contacts selected from other days during which the user
does have updates. We randomly copy a day from the users’ avail-
able days to an absence day without changing link properties [20].
We consider a corresponding synthetic SPDT graph of 297K nodes
and a BADN graph fitting with the reconstructed graph. The sim-
ulation results presented in Figure 6 show that the SPDT graph
reduces the daily prediction error by 58% and 71% compared to
BADN and SPST respectively, and it reduces the cumulative predic-
tion error by 90% and 95% to BADN and SPST graphs respectively.
The daily prediction error of SPDT graph grows sharply after day 20
compared to the real graph, with SPDT graph underestimating the
number of cases. This deviation can be explained as follows. When
the real SPDT graph is reconstructed copying available day links to
missing, same links of the nodes who have links for only one day
is copied to other 31 days. If one of these nodes is infected, they
transmit disease to the same neighbor nodes for whole infectious
period. In the proposed model, however, nodes always have some
probability to connect to a new neighbor and hence the the contact
set size grows, which is a higher chance to cause more infections.
Thus, new infection rate in the SPDT graph model before touching
peak is higher than the infection rate in real graph. As susceptible
reduces quickly in SPDT model at early days of simulation, new
infection rate falls faster in the later days. The MAPE error reduces
from 34% to 12% as r increases. This is because the indirect paths
dominate more at lower r causing more new infections. Still, our
model maintains a cumulative prediction error of 4-7% across all
configurations, further highlighting the applicability of our model.

6 CONCLUSION
We have introduced a SPDT graph model and demonstrated its
utility for a case study of airborne disease diffusion. The SPDT
graph captures both direct and indirect contacts for simulating dif-
fusion process. The proposed graph model is capable of capturing
contact dynamics, applying reinforcement for capturing repetitive
interactions and public accessibility-based attractiveness to engage
in interactions. We demonstrated how the model can be fitted to
empirical geo-tag data from social networking App and its ability to
reproduce both graph structural properties and diffusion dynamics
of empirical graphs. The model generates co-located interaction
parameters with considerably low RSE error and reduces predic-
tion error of cumulative spread by up to 95% over existing graph
models. The graph model shows similar response of real graphs to
environmental conditions for changing diffusion dynamics.

The significance of our SPDT model lies in its capture of indirect
interactions for diffusion phenomena, which accounts for previ-
ously disregarded pathways for transmission. We expect the model

to be useful for forecasting infectious disease diffusion within a
population given contacts data of a population. More importantly,
the model can be used to simulate what-if scenarios to aid health
managers and authorities in planning for possible outbreaks and
allocating resources for targeted responses. The SPDT graph model
can be applied to study diffusion phenomena in on-line social net-
work (OSN) such as on-line post can be seen by current active users
instantly while inactive users sees them later on [21]. This model
can also be used to model online and offline activities of users in
OSN [22]. There are several interesting directions for future devel-
opments of our model. Nodes in the current model activate with the
same frequency. Thus, it would be interesting to study graph prop-
erties with heterogeneous frequencies and find correlation with
public accessibility. Another interesting direction is to study the
contact set size growth and temporal properties like betweenness.
The sensitivity of model parameters to graph stability and model
performances against other graph models will also be studied.
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