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ABSTRACT
Graph can straightforwardly represent the relations between the

objects, which inevitably draws a lot of attention of both academia

and industry. Achievements mainly concentrate on homogeneous

graph and bipartite graph. However, it is difficult to use existing

algorithm in actual scenarios. Because in the real world, the type

of the objects and the relations are diverse and the amount of the

data can be very huge. Considering of the characteristics of "black

market", we proposeHGsuspector, a novel and scalable algorithm for

detecting collective fraud in directed heterogeneous graphs.We first

decompose directed heterogeneous graphs into a set of bipartite

graphs, then we define a metric on each connected bipartite graph

and calculate scores of it, which fuse the structure information

and event probability. The threshold for distinguishing between

normal and abnormal can be obtained by statistic or other anomaly

detection algorithms in scores space. We also provide a technical

solution for fraud detection in e-commerce scenario, which has been

successfully applied in Jingdong e-commerce platform to detect

collective fraud in real time. The experiments on real-world datasets,

which has billion nodes and edges, demonstrate that HGsuspector is

more accurate and fast than the most practical and state-of-the-art

approach by far.
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1 INTRODUCTION
With the rise of e-commerce, both the platforms and their users

benefit from the great change in business model. However, it intro-

duces a series of frauds and causes serious risks at the same time.

Malicious users cooperate with each other and commit collective

fraud in the platform for illegal profits. With a clear division of

labor, they eventually form steady organizations and cause great

damage to the e-commerce platforms and normal users. Thus a

series of algorithms are proposed to detect the collective frauds,

such as fake review and fake rate, in recent years.

Traditional approaches of fraud detection mainly relied on au-

diting, which is inefficient and unreliable [25]. However, machine

intelligence (MI)-based techniques employing conventional data

mining algorithms have been proven to be useful for detecting

anomalies, especially in large data sets. With the promotion of

graph-based data, graph anomaly detection attractsmany attentions

of researchers in recent years rapidly. Compared with the conven-

tional techniques, there are several reasons it might be preferable

to use graphs for anomaly detection, as discussed in [2]. Due to

the challenges of traditional methods investigated in survey [2],

graph-based anomaly detection could effectively find abnormal

structures with (semi)-unsupervised techniques.

However, most of the previous algorithms only focus on fraud

in a certain scenario and don’t give a systematical solution within

a real e-commerce situation with coherent scenarios. With the

analyses of various kinds of fraud cases among all the scenarios on

our e-commerce platform, we find that based on the modularization

and process standardization of operation, the "black market" can

produce a number of fake account in a short period of time, but they

also leave their traces in the patterns of the information generation

and authenticity improvement. Based on the prior knowledges, we

provide a novel and effective method HGsuspector to improve the

performance of collective fraud detection on heterogeneous graph

which has been successful used on our e-commerce platform.

In summary, themain contributions of this paper are summarized

as follows:

• Feasibility of reducible heterogeneous graphs: for any
heterogeneous graph, we could always decompose it into ir-

reducible bipartite graphs on which we can detect fraudulent

behaviors in the specific scenario, according to the relation

types of the problem domain.

https://doi.org/10.475/123_4
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• Metric on connected bipartite graph: a metric is pro-

posed to reveal the suspicious level of connected bipartite

graph preserving both structural information and node/edge

attributes.

• Edge density function: we propose a density function

p(i, j) for enhancing the ability of detecting suspicious sub-

graphs and list several edge density functions. For each edge

density function, it corresponds to a fraud pattern to be

detected which depends on the problem domain.

• Efficiency and Scalability: HGsuspector is very efficient

in calculating scores on connected bipartite subgraphs and

could process large graphs with billion nodes and edges.

The remaining of this paper is organized as follows. Section 2

states recent work on graph-based anomaly detection algorithms.

In section 3, we formally define our problem, propose a metric on

connected bipartite subgraphs, and present our algorithm HGsus-
pector. Experiments are conducted to demonstrate the efficiency

and scalability of HGsuspector in section 4, compared with other

state-of-art algorithms. Finally, we draw conclusions and discuss

some related work in section 5.

2 RELATEDWORK
Over the past few decades, graph-based anomaly detection algo-

rithms have developed vastly with the explosion of big data. These

methods could be applied to both the static and dynamic graphs

with labels or attributes, and cover lots of areas of networks such

as security, health-care, financial networks and so on. Graph-based

anomaly detection could be categorized into two classes: quantita-

tive detection and qualitative explanation [2]. In applications, those

two methods are both used to detect fraud precisely from structural

information or from attributes of nodes and edges of networks.

Meanwhile, algorithms of graph-based semi-supervised learning

(GSSL) [17, 20, 26] predict the label of the unlabelled nodes with

some manually labeled seed risky nodes.

Anomaly detection with graph embedding is a new approach

emerging in recent years. These methods either have their own se-

mantic embeddings according to the characteristics of the graph [1,

6, 7], or embed the whole graphwith existing embedding algorithms

and then detect anomalies with traditional machine learning algo-

rithms. Existing graph embedding methods can be categorized into

mainly three classes: factorization [5, 16], random walk [10, 19, 21],

deep learning [13, 24] and others [23] according to the survey [9].

After a graph is embedded into a p-dimensional vector space, then

the embedding can be used to cluster the nodes. Graph clustering

can be of two types [21]: (a) structure-based, (b) attribute based

clustering. For structure based clustering, it aims to identify dense

subgraphs or nodes with similar roles (outliers). Hence, embedding

based anomaly detection methods are of 2-step: embedding and

clustering.

The embedding method mentioned above is on the basis of the

feature-based approaches [2], and they need either large compu-

tation or feature engineering on graphs, which can not scale to

large graphs. To overcome this problem, metric-based methods

introduce a metric on a subgraph to quantify the normality of the

subgraph [11, 12, 14, 18]. Fraudar [11] detects fraudulent blocks

by introducing a density metric to measure the total suspicious-

ness of the gradually reduced bipartite graph. HoloScope [14], on
the basis of Fraudar, introduces a dynamic weighting approach

to detect not only dense fraudulent blocks but also low-density

ones. In addition, it can also be adapted to the sudden bursts and

drops of attacking patterns. AMEN [18] detects anomalous neigh-

borhoods with a quality score normality that utilizes both structure

and attribute information. CatchSync [12] can automatically de-

tect suspicious connectivity patterns from a directed graph with

a parameter-free algorithm, using synchronicity and normality to

measure the behavior pattern of the bipartite graph. Among these

methods, FRAUDAR, HoloScope and AMEN define the metric on the

subgraph, while CatchSync is on the node. For the purpose of detect-
ing suspicious subgraphs, the previous three methods are unable

to discriminate two directed subgraphs with the same undirected

structure.

3 METHODOLOGY
In this section, we will present HGsuspector, a novel and effec-

tive algorithm for detecting collective fraud. It mainly focuses on

defining problem, introducing our metric and finally proposing our

algorithm HGsuspector. Firstly we introduce several symbols and

terminologies that will be used throughout the whole paper and

define the problemwe aim to solve. Next, we propose a novel metric

on connected bipartite graphs and discuss several properties of this

metric. Finally, we propose our algorithm for detecting suspicious

subgraphs on the basis of the metric.

3.1 Definition of collective fraud on
e-commerce platform

As the mediation between shops and users, the e-commerce plat-

form would have promotion activities at intervals to increases sales

and profits. However, the fraudsters saw the great opportunity in

promotion activities at the same time. As the preferential measure is

always subjected to the account, the fraudsters may operate many

accounts in a certain time range for illegal profits during each pro-

motion, which lead to a character convergence of these abnormal

accounts. We define this kind of fraud in e-commerce platform as

collective fraud. The typical scenarios of collective fraud include

shop brushing for reputation increment, bonus-getting and discount

scalper in promotion activities, money laundering by transaction,

etc.

Most of these accounts are provided by "black market" and regis-

tered automatically by programs. To evade the fraud detection, the

fraudsters frequently change the IP, the MAC, the phone number

and other information by a series technique in variable scenarios.

Even more, the accounts will be camouflaged by simulation opera-

tions like login and even browsing at intervals randomly. All above

operations make the abnormal accounts look like normal. We call

this processing "raising account".

Figure 1 shows an example of mainly scenarios of an account

which involves variable node types and relation types. With the

analyses and comparison of a large number of normal accounts

and abnormal accounts among all the scenarios on our e-commerce

platform, we find some clues. The random strategies of information

generation make the false information independent of each other
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Figure 1: An example of mainly scenarios of an account
which involves variable node types and relation types.

Table 1: Symbols of graph terminologies

Symbols Interpretation

V vertices(nodes) set of a graph

E edges(relations) set of a graph

G graph G = (V ,E)
B bipartite graph B ⊂ G
S subject set of B
O object set of B
Ai j adjacency matrix

ai the i − th node in Ai j
ai j element of Ai j
ei j edge connecting node ai and aj
di degree of node ai
p(i, j) density function of edge ei j
Ssi j , S

d
i j score of an edge ei j

Ss , Sd score of a connected bipartite

graph

N = {N1,N2, · · · ,Nm } set of node type

R = {R1,R2, · · · ,Rn } set of relation type

S = {S1,S2, · · · ,Sk } set of application scenario.

Br set of connected graph for rela-

tion r ∈ R.
#cc number of connected graphs.

in the same scenario. But the fraud behaviors, such as simulating

normal browsing to popular goods in the processing of account

masquerade, are consistent. It means we could consider about each

type of false information related to the account of a scenario re-

spectively, and then integrate the discrete results to judge collective

fraud. Meanwhile, we could filter the abnormal account throughout

all account life-cycle.

3.2 Problem Definition
Table 1 gives a complete list of the symbols we use throughout

the paper. Now we formally give the definition of the directed

heterogeneous graph (i.e. heterogeneous information network) that

is similar to [22].

Figure 2: A directed bipartite graph which contains two con-
nected directed bipartite graphs.

Figure 3: Symmetric and asymmetric bipartite graphs. (a)
Symmetric bipartite graph. For each edge ei j , it has the prop-
erty that di = dj , and it contains two connected components,
each of which is a k-regular graph; (b) Asymmetric bipartite
graph. For all edges in it, there always exists an edge that
satisfies di , dj .

Definition 3.1. Directed Heterogeneous Graph: A directed hetero-

geneous graph (DHG) is a graph G = (V ,E) with node type n ∈ N
and relation type r ∈ R, where |N| > 1 or |R | > 1.

Definition 3.2. Directed Bipartite Graph and Connected Directed
Bipartite Graph: A directed bipartite graph (DBG) B is a directed

graph, its vertices are composed of subject set S and object set O ,
where S ∩ O = ∅. For an edge ei j , it satisfies the condition that

source node ai ∈ S and destination node aj ∈ O . More specifically,

a DBG is composed of connected directed bipartite graphs (CDBG),

in which for arbitrary two nodes u and v there always exists a path

connecting u andv after all edges in B are replaced with undirected

edges. Especially, DBG is a bi-DHG composed of 2 node types and

only one edge type. See Figure 2.

Definition 3.3. Symmetric and Asymmetric Bipartite Graph: A
asymmetric bipartite graph B is a graph that always contains an

edge ei j ∈ E satisfied that di , dj , where di and dj are the degree of
vertex ai and aj respectively. If di = dj for all edges in B, then B is

symmetric. In fact, symmetric bipartite graph is a regular bipartite

graph (graph where every vertex has the same degree) contain-

ing multiple connected components, each of which is regular. See

Figure 3.

Now we define our problem formally. As discussed in [4], we

describe our problem as collective fraud detection that aims to de-

tect both the suspicious nodes and the subgraphs within a hetero-

geneous graph in an unsupervised approach with structural and
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attribute information preserved. And furthermore verify the appli-

cation scenario s ∈ S of each suspicious subgraph detected (e.g.,

register and login). It is defined as follows.

Given: a directed heterogeneous graph G = (V ,E) with |V |
nodes.

Define: a metric to evaluate the suspicious level of connected

bipartite subgraph, similar to that in [12, 18].

Find: a set of connected bipartite subgraphs {Br }. The suspi-
cious nodes can be further obtained from the union of nodes in

{Br }.

3.3 Metric
In this section, we propose a novel metric on connected bipartite

graphs to measures the suspiciousness of a connected bipartite

graph. The novelty is that the proposed metric distinguishes the

graphs with the same structure, which often represent different

behavior patterns, to improve the accuracy of the detection. Fur-

thermore, we also propose several edge density functions as the

attribute component in the metric in order to enhance the ability

to detect suspicious subgraphs.

In Newman’s [15] work, modularity is introduced as follows.

M =
1

2m

∑
i, j
(ai j −

didj

2m
), (3.1)

It measures the strength to divide graphs into modules. Conse-

quently, it is suitable to measure the clustering characteristics of

connected subgraphs within a graph. According to the decomposi-

tion schema of a directed heterogeneous graph (See section 3.4), we

score each connected bipartite subgraph. However, two connected

subgraphs with the same structure using Equation 3.1 will yield the

same score (See Figure 4), thus we need a technique to distinguish

these connected subgraphs since they might stand for very different

behaviors.

Based on this fact, we propose ourmetric on a connected bipartite

graph which is defined as follows.

Ss =
∑
i, j

ai j − didj/2m
di

· p(i, j) (3.2)

Sd =
∑
i, j

ai j − didj/2m
dj

· p(i, j), (3.3)

wherem is the number of edges of a connected bipartite graph, Ss
and Sd are scores of all possible edges normalized by the degree

of each endpoint for each connected bipartite graph respectively.

The item in Ss consists of two parts. The first part describes the

structural information asmodularity does, normalized by the degree

of source node ai . While the second part p(i, j) reveals the strength
node ai and aj co-occur, e.g., edge density function. thus it depends
on the problem domain heavily. The item in Sd is the same as that

in Ss .
Furthermore, p(i, j) can be defined as follows:

p(i, j) =
{
д(i, j), ai j = 1

1, ai j = 0,
(3.4)

where д(i, j) is the emerging probability of edge ei j with endpoints

type A,B ∈ N and A , B when ai j = 1. In the case of ai j = 0,

i.e., node ai and aj are not connected in the observed graph, we

Figure 4: (a) and (b) are distinct bipartite graphs and they
share the same structure, whichmodularity [15] can not dis-
tinguish. (c) is the mapped points of (a) and (b).

penalize the contribution of the score with only a structure item

−didj /2mdj
= − di

2m . Hence, for each pair of nodes (ai ,aj ) doesn’t
form an edge in a connected bipartite graph, we give a penalty score

(− dj
2m ,−

di
2m ) which corresponds to the normalization of source and

destination nodes respectively.

According to the definitions above, we have the following lem-

mas.

Lemma 3.1. Score defined in Equations 3.2 and 3.3 can distinguish
any two arbitrary asymmetric bipartite graph B1 and B2 with opposite
directions. See Figure 4 for illustrating.

Proof. Denote the number of edges of B1 and B2 bym. For an edge
ei j in B1, it corresponds to edge eji in B2, and thus the degrees (di ,dj )
of endpoints of ei j correspond to (dj ,di ) of edge eji in B2. For edges
ei j and eji , their scores are

Sei j =
1 − didj

2m
di

, Seji =
1 − djdi

2m
dj

(3.5)

respectively. Summing over on each side of the equations, we can
obtain

Se
1,s =

∑
ei j

Sei j =
∑
ei j

1 − didj
2m

di
= Se

2,d ,

Se
2,s =

∑
eji

Seji =
∑
eji

1 − djdi
2m

dj
= Se

1,d ,

(3.6)

where the equations in 3.6 represent scores of edges in both B1 and
B2. Similarly, we can obtain the penalties of C1 and C2, i.e.,

S
p
1,s = Se

2,d ,

S
p
2,s = Se

1,d .
(3.7)

Finally, we obtain

S1,s = Se
1,s + S

p
1,s = S

2,d ,

S
1,d = Se

1,d + S
p
1,s = S2,s .

(3.8)

For C1 and C2, their corresponding scores follows that

(S1,s , S1,d ) = (S2,d , S2,s ) , (S2,s , S2,d ). (3.9)

Thus the lemma follows. □

Lemma 3.1 indicates that for any two asymmetric bipartite graphs,

we can always map two graphs into points on a plane if their
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euclidean distance not equal to zero, e.g., distinguishing the two

connected subgraphs.

For complete bipartite graph, there will be |S | ∗ |O | edges with |S |
and |O | vertices in S and O respectively without punishment. For

each edge ei j , the degrees of the endpoints satisfy that didj = m.

Thus the corresponding score of the complete bipartite graph is

( 1

2di
, 1

2dj
), where di ≥ 1 and dj ≥ 1. And we have the following

lemma (or property):

Lemma 3.2. For any complete bipartite graph B, the lower bound
of score with edge density function д(i, j) = 1 satisfies Ss ≥ 1

2
and

Sd ≥ 1

2
. Furthermore, the score of B is ( |O |

2
,
|S |
2
).

Proof. From the definition of degree, we have dv ≥ 1 for arbitrary
complete bipartite graph. Thus it easily follows that Ss ≥ 1

2
and

Sd ≥ 1

2
.

For each vertex ai ∈ S , we have di = |O |. Similarly, dj = |S |. Thus
we have ∑

ai ∈S

1

2di
=

m

2di
=
dj

2

=
|O |
2

, (3.10)

∑
aj ∈O

1

2dj
=

m

2dj
=
di
2

=
|S |
2

. (3.11)

Hence, the lemma follows. □

Lemma 3.2 gives the lower bound of score on 2-dimensional

vector space, and it is proportional to the number of edges in a

complete bipartite graph. It is also indicated that the score on a

complete bipartite graph are resting on integer coordinates.

To capture domain specific suspicious nodes, we need to enhance

our score Equations 3.2 and 3.3. Therefore we propose several types

of edge density functions p(i, j), which is listed as follows:

• p(i, j) = 1: Any additional attribute information of nodes

and edges is ignored, and the density is only related to its

structure, namely, the distribution of the probability of all

edges are uniform. In this case, the scores are more suitable

to distinguish connected subgraph with different structures.

• p(i, j) =
∑
i∈S, j∈O ei j

m .m is the number of edges of the whole

directed heterogeneous graph, and the numerator is the to-

tal number of the edge type r (s,o) ∈ R. It reveals the prior
probability of the edge type r (s,o), and is more apt to distin-

guish two connected subgraphs with the same structure but

different distributions of edge types.

• p(i, j) = P(eo1o2 · · ·ot , r (s,o)). r (s,o) ∈ R is the edge type

where s ∈ S and o ∈ O , and eo1o2 · · ·ot is the event sequences
occurring with edge type r (s,o). This edge density function

describes the joint probability of r (s,o) and eo1o2 · · ·ot , and
can reflect the pattern of rare events occurring between s
and o. It is very useful to detect suspicious subgraphs rare

events occurring.

3.4 Algorithm
The algorithm consists of two procedures:HGsuspector andCalculateScore .
The former inputs a directed heterogeneous graph and outputs a

set of suspicious bipartite subgraphs. The latter calculate scores of

a given connected bipartite graph as detailed in algorithm 1.

Algorithm 1: HGsuspector(G) // detects suspicious structures
in a large DHG.

Input: a DHG G.
Output: suspicious CDBG.

1 decompose G into k directed bipartite graphs

B = {B1,B2, · · · ,Bk }, where k = |R |
2 S ← {} // suspicious set of bipartite graph of

each type.

3

4 foreach B in B do
5 C ← ConnectedComponents(B)
6 SB ← {} // score set of bipartite graph B

7

8 foreach C in C do
9 s ← CalculateScore(C)

10 add s to SB

11 ˆSB ← DetectOutlier (SB )
12 add ˆSB to S
13 Return S

Algorithm 2: CalculateScore(C)
Result: a 2-dimensional score vector of the given connected

bipartite subgraph.

1 (Ss , Sd ) ← calculate scores of C with Equations 3.2 and 3.3. ;

2 Return (Ss , Sd )

The algorithm 1 first decomposes the whole DHG into k directed

bipartite graphs. The number of bipartite graphs obtained depends

on the size of R as illustrated in Table 1. For each relation type

r ∈ R, it corresponds to a bipartite graph in G, thus G can always

be decomposed into k edge-disjoint bipartite graphs.

Of the main procedure HGsuspector, ConnectedComponents(B)
is the subprocedure calculating the connected components of the

given bipartite graph B, which yields a set of connected bipartite

subgraphs denoted by C. And then DetectOutlier detects outliers
in the graph with scores.It can be any outlier detection algorithms

(e.g., dbscan and so on).

Finally, we obtain the suspicious subgraphs and further the sus-

picious nodes within these subgraphs.

4 EXPERIMENTS
In this section, we conduct the experiments with HGsuspector and
several other fraud detection algorithms to demonstrate its effective-

ness and scalability on our real-world dataset. Finally, we demon-

strate that HGsuspector could outperform other state-of-the-art

algorithms.

4.1 Experiment setup
We utilize a Decomposition-Score (DS) step to conduct our experi-

ments. At first, we decompose a DHG into multiple bipartite graphs

on a real-world dataset, score each connected bipartite subgraph,
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Figure 5: Scatter plot of scores of pin-ip and pin-eid bipartite
graph in login stage after transforming the axis into polar
coordination, and each point corresponds to a specific con-
nected bipartite subgraph. The points circled in red are the
abnormal structures detected.

Table 2: Summary of DHG dataset from our e-Commerce
platform.

#user #device id(eid) #IP total

77.5M 101.4M 36.8M 215.7M

Figure 6: Histogram for user, ip and eid in the heteroge-
neous graph in login scenario. It is apparent that all these
histograms follow a power law distribution.

and find the suspicious subgraphs with anomaly detection algo-

rithms. Next, we extract the nodes from the suspicious subgraphs

detected and calculate the precision and recall. Finally, we run other

algorithms on the decomposed bipartite graphs to obtain the sus-

picious nodes and compare the corresponding performance with

HGsuspector.

4.2 Data set
Here we provide a dataset describing users’ login behaviors within

one month(Jun 2017) collected from our e-Commerce platform.The

graph contains over 215million nodes and 230million edges, which

is composed of 3 types of nodes and 2 types of edges. It is summa-

rized in Table 2.

Now we provide an overview of this heterogeneous graph.

• Distribution of nodes’ degree. For each node, its degree

suggests how many other nodes linked to it. For example, if

a user logins at 3 eids from 6 ips, then its degree is 9. Figure 6

illustrates the distribution of the degrees of each type of

nodes.

Figure 7: Histogram of size of connected components of het-
erogeneous graph in login scenario. The majority of con-
nected components is of size 2 ∼ 4.

Figure 8: Methods on graph based
fraud/anomaly/outlier/spam detection listed in [3].

• Distribution of the size of connected components. The
whole heterogeneous graph is composed of a series of con-

nected components as is illustrated in Figure 7. However,

there exists a component of size 190M accounting for over

90% nodes in the graph. And many components are of size

2 ∼ 4, which follows a power law distribution.

4.3 Evaluation
We select several methods [3] that are comparable in our problem

domain (See Figure 8). Among these methods, both FRAUDAR [11]

and CopyCatch [3] detect suspicious substructures from bipartite

graphs. Considering the application scenario, we choose FRAUDAR
as our baseline method.

We conduct the experiment on the user-login graph, and compare

the detection accuracy of HGsuspector with FRAUDAR. At last, we
demonstrate the efficiency and scalability of HGsuspector on large

graphs with billion nodes and edges.

First we extract a smaller graph that contains only users sus-

pected as bulk registry to shrink the large heterogeneous graph

as Figure 9. Then decompose it and rate it. finally, we perform

a 2-step operation to map a connected bipartite subgraph into a

2-dimensional vector.

A. Decomposition. From dataset 4.2 we find two relation types:

user-eid and user-ip that denote users’ devices and locations when

they login. In this case, we obtain bipartite graphs: user-eid graph

and user-ip graph as illustrated in Figure 10. The fraud pattern can

be described as the fraud users take actions with very specific EIDs

and IPs in a short time. And our goal is to detect these users, EIDs

or IPs With HGsuspector.
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Figure 9: (a) The process of shrinkage. After shrinking, there
are only 35K active users in the login stage; (b) The distribu-
tion of each type of nodes after shrinkage.

Figure 10: (a): user-ip graph. The relations between users
and IPs may indicate a fraudulent block; (b) user-eid graph.
Many users login on two EIDs within 10 minutes, which is
very likely to be an attack.NOTE: (a) and (b) might share the
same nodes, who login on variance of eids and ips.

Figure 11: The suspicious pattern found by HGsuspector. As
shown, fraudsters registermany fake accounts (blue) and op-
erate them with fake phones (green) randomly.

B. Scores. With the Equations 3.2 and 3.3, wemap each connected

bipartite subgraph into a 2-dimensional vector. And employ an

anomaly detection algorithm to find suspicious subgraphs.

4.3.1 Suspicious Patterns. We run HGsuspector on the graphs

in login and placing order scenario with edge density function

д(i, j) =
∑
i∈S, j∈O ei j

m . And detect two suspicious patterns which are

illustrated in Figure 10 and Figure 11.

4.3.2 Effectiveness. Herewe show the effectiveness ofHGsuspec-
tor on user-login graph, compared with the existing fraud detecting

algorithm FRAUDAR. The user-login graph contains 9, 061 validated

Table 3: Statistics of the number of connected bipartite sub-
graphs with anomalies and all subgraphs.

bipartite graph #cc #cc with anomalies ratio

pin-eid 19,317 4,075 21.1%

pin-ip 22,823 4,838 21.2%

Figure 12: The precision-recall curve of pin-ip and pin-eid
on FRAUDAR andHGsuspector. It says that with the increas-
ing of blocks detected by FRAUDAR, HGsuspector partially
outperforms FRAUDAR.

suspicious users. With these anomalies, we calculate and compare

the accuracy of HGsuspector and FRAUDAR.
For HGsuspector, we first score all the connected bipartite sub-

graphs, and then find the most suspicious subgraphs with dbscan [8]
algorithm. The statistics of the two bipartite graphs with anom-

alies is shown in Table 3. Then we compare the precision-recall of

FRAUDAR and HGsuspector on the two bipartite graphs. We first

find the subgraphs contain suspicious blocks detected by FRAUDAR
and the most suspicious subgraphs (the same number of subgraphs

detected by FRAUDAR) detected by HGsuspector. And then compare

their precision and recall. The result is illustrated in Figure 12.

For the comparison of pin-eid bipartite graph in Figure 12, HG-
suspector shows low precision when recall< 10%, since the most

suspicious subgraphs are much larger than normal ones. The reason

is that very few connected components account for over 99% nodes

of the pin-eid graph. Still, in application scenarios, the large sub-

graphs can be divided into smaller ones (e.g. communities), which

improve the precision.

4.3.3 Efficiency and Scalability. Here we show the efficiency

and scalability of the methods on a synthetic data set [11], and

construct larger graphs by sampling edges from the original one.

The induced graphs contain no isolated nodes of degree 0.

We claim that HGsuspector can run over large graphs with a

upper bound O(k ∗ M ∗ N ), which M and N are the numbers of

subjects and objects in the largest connected component within a

graph, and k is the number of connected components within the

graph. We claim that k is decrease, with more and more node types.

Thus the upper bound of HGsuspector is O(M ∗ N ).
The contrast experiments are carried out on an Intel(R) Xeon(R)

CPU E5-2640 v3 @ 2.60GHz server, 128 GB RAM, Linux version

2.6.32-431.el6.x86_64, both written in Python. And the result of

experiments is provided in Table 4.
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Table 4: The comparison of running time of HGsuspector
and FRAUDAR, and it is measured in seconds.

#Nodes HGsuspector FRAUDAR

∼1K 0.0979 0.4647

∼5K 0.3546 2.2188

∼10K 0.7053 5.7836

∼100K 6.9984 59.0910

∼500K 39.5725 303.1607

∼1M 81.3569 620.6280

∼5M 401.3197 3573.3650

∼10M 796.9520 7543.6963

In Table 4, the clustering algorithm dbscan in HGsuspector is
runningwith parameters eps = 0.03 andMinPts = 8, and FRAUDAR
runs with number of blocks 10. The running time of HGsuspector
contains calculation and scoring of connected bipartite subgraphs.

After scores are calculated, we apply dbscan or polar coordinate(See
Figure 5) to detect the abnormal subgraphs, the time complexity of

which is no more than O(n ∗ loд(n)).
From the result of the comparison, we can see that HGsuspector

can run over 9 times faster than FRAUDAR with the size of graph

increasing. In addition, after decomposing of the bipartite graphs,

the grading can run in parallel, which dramatically improves the

performance of the algorithm. Since FRAUDAR builds a priority

tree from the degree of a graph, it can not be extended to run in

parallel.

Besides the python version of HGsuspector, we also developed
a distributed version with spark computing framework. In princi-

ple, this version of HGsuspector could detect suspicious subgraphs

of large-scale graphs with billions of nodes and edges, which is

impossible for FRAUDAR.

5 DISCUSSION AND CONCLUSION
In this paper, we propose HGsuspector, a novel algorithm for detect-

ing collective fraud on directed heterogeneous graphs. The algo-

rithm transforms the heterogeneous graphs into bipartite graphs

according to our discovery that different types of false information

influence the fraud account in respective ways,which also guar-

antees our algorithm feasible and effective. A metric is proposed

to measure the suspicious level of connected bipartite subgraphs,

which can distinguish directed graphs with the same structure. In

perspective of graph embedding, the metric on connected bipar-

tite graphs can be regarded as a special solution of 2-dimensional

embedding. However, our metric is discriminative and thus can be

used to detect specific structures compared with methods based on

graph embedding.
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