
Active Learning for Graphs with Noisy Structures
Hongliang Chi
hc443@njit.edu

New Jersey Institute of Technology
USA

Cong Qi
cq5@njit.edu

New Jersey Institute of Technology
USA

Suhang Wang
szw494@psu.edu

Penn State University
USA

Yao Ma
yao.ma@njit.edu

New Jersey Institute of Technology
USA

Abstract
Graph Neural Networks (GNNs) have seen significant success in
tasks like node classification, primarily dependent on the availability
of abundant labeled nodes. However, the excessive cost of labeling
large-scale graphs led to a focus on active learning methods on
graphs, which aim for efficient data selection. While most methods
assume reliable graph topology, real-world scenarios often present
noisy graphs. Designing an active learning framework for noisy
graphs is challenging, as selecting data for labeling and obtaining
a clean graph are naturally interdependent: selecting high-quality
data requires clean graph structure while cleaning noisy graph struc-
ture needs adequate labeled data. Considering the challenge men-
tioned above, we propose a robust active learning framework named
GALClean that adopts an iterative approach to achieve data selection
and graph purification simultaneously. Furthermore, we summarize
GALClean as an instance of the Expectation-Maximization (EM) al-
gorithm, which provides a theoretical understanding of the design
and mechanisms in GALClean and naturally leads to an enhanced
version GALClean+. Extensive experiments have demonstrated the
effectiveness and robustness of our proposed method.

1 Introduction
Graph neural networks (GNNs) [21, 30, 33] have demonstrated signif-
icant potential in learning graph representation and thus facilitate
the advancements of many graph-related applications including
fraud detection [23, 37], recommender system [11, 17], drug discov-
ery and repurposing [9, 14], and traffic prediction [8, 36]. Despite
their unprecedented success, GNNs typically require a large number
of labeled data, especially when dealing with large-scale graphs [35].
However, it is often time-consuming and labor-intensive to obtain
high-quality labels. Consequently, recent efforts have been devoted
to developing active learning (AL) algorithms tailored for graphs
to efficiently acquire labels with low cost [12, 15, 22, 24, 39, 47].
Specifically, graph active learning algorithms aim to select a limited
amount of the most valuable nodes for labeling, which is expected
to reduce the labeling efforts while benefiting the training process
the most. These graph active learning algorithms often extract and
combine the key characteristics of nodes from both graph topology
and node features [3, 22, 35, 47] which helps measure the value of
nodes, leading to efficient and effective node selection strategies.

However, themajority of existing graphALmethods [3, 35, 42] are
developed under the assumption that the underlying graph is noise-
free, a condition that is rarely met in real-world applications [31].
Moreover, as suggested in [18], adversarial attacks on graphs could
exacerbate the situation by introducing noisy edges that connect

dissimilar nodes. The presence of this structural noise can signifi-
cantly impair the performance of existing graph AL algorithms, as
many of these algorithms rely on graph topology information for
node selection. For example, AGE [3] directly utilizes node-centric
topological properties, such as degree, to guide node selection, favor-
ing nodes with higher degrees. Furthermore, AGE employs Graph
Neural Networks (GNNs) to integrate topological information for
learning node embeddings, which are subsequently used to iden-
tify the most representative nodes. The noisy graph structures may
lead nodes with a larger degree to propagate inaccurate supervision
signals more significantly. Also, the embeddings generated through
GNNs might be infiltrated by noise, thereby failing to accurately re-
flect the representativeness of nodes. Our preliminary investigation
(detailed in Section 3) shows that several advanced graph AL algo-
rithms have seen a drop in performance in the presence of structural
noise. Therefore, it is of great importance to develop AL algorithms
that can handle the noises in graphs.

Given this damaging effect of the noisy structure on the graph
AL methods, one natural idea to handle the noise in graphs is to
adopt graph cleaning algorithms to obtain a cleaner graph first
and then apply the existing graph AL algorithms on the cleaned
graph. However, most existing graph cleaning methods such as Pro-
GNN and RS-GNN [6, 18] require labels for the cleaning process,
which are not available in the active learning setting. Although
unsupervised graph cleaning algorithms such as GCN-Jaccard [34]
and GCN-SVD [10] do exist, typically, they can only slightly mitigate
the issue of the noisy graph structure.

In this paper, we focus on addressing a significant and practi-
cal issue that has been largely overlooked: the task of conducting
efficient active learning on noisy graphs. We primarily face three
challenges: (i) how to accurately select valuable nodes for label-
ing with the presence of noisy graph structures? (ii) how to purify
the noisy graph structures with limited labeled data? (iii) how to
manage the complex interdependence of the first two objectives,
given that the success of each is mutually dependent on the suc-
cessful completion of the other? To tackle these issues, we present
a novel iterative Graph Active Learning and Cleaning (GALClean)
framework that maximizes the synergy between node selection and
graph cleaning. Specifically, to reduce the impact of structural noise
on data selection, we utilize the most recently cleaned graph on
training a well-designed representation-generating model to learn
a latent representation space for data selection. Moreover, a robust
node selection strategy, focusing on choosing nodes that are not
only valuable for the downstream task but also resilient to structural
noise, is applied for choosing nodes for labelling. In parallel, the

Conference’17, July 2017, Washington, DC, USA Hongliang Chi, Cong Qi, Suhang Wang, and Yao Ma

latent representations are also utilized to train an edge-predictor
that aids in purifying the noisy graph. The newly cleaned graph
reciprocates by assisting the node selection process in the next it-
eration with a cleaner topology. We further demonstrate that the
iterative process in GALClean can be naturally interpreted as an
instance of Stochastic Expectation Maximization (Stochastic EM)
algorithm [1, 26, 46], which provides theoretical understanding and
support for GALClean. Expanding upon this theoretical interpre-
tation, we further introduce an enhanced framework GALClean+,
which runs a few more iterations of EM algorithm after the labeling
budget is exhausted. Extensive experiments have been done to show
the effectiveness and robustness of our frameworks under different
noise settings.

2 Problem Definition
A graph is denoted as G = (V, E), where V and E are the sets of
nodes and edges, respectively. The connection can be also described
as an adjacency matrix A ∈ R𝑁×𝑁 with 𝑁 denoting the number of
nodes in V . A𝑖 𝑗 is the 𝑖, 𝑗-th element of A reflecting the strength
of the connection between nodes 𝑣𝑖 and 𝑣 𝑗 . Each node 𝑣𝑖 ∈ V is
associated with a 𝑑-dimensional feature vector x𝑖 ∈ R𝑑 . The features
for all nodes can be summarized as X ∈ R𝑁×𝑑 . Also, each node 𝑣𝑖
has an underlying label y𝑖 . The graph G is assumed to contain some
noises in graph structures. In particular, there is a certain proportion
of edges in E which are heterophilous.

The objective is to select a limited number of nodes for labeling
while also cleaning the graph such that a downstream GNN model
trained with these labeled nodes and the cleaned graph, achieves
strong performance—specifically, it should be capable of inferring
unknown node labels with high accuracy. For this purpose, we are
provided access to an oracle O that can supply the label of a given
node within a limited budget of 𝐵. We are permitted to select a
set of 𝐵 nodes from a candidate pool V𝑝𝑜𝑜𝑙 ⊂ V for labeling. We
denote the set of selected nodes asV𝑙 and the cleaned version of the
graph as G′. This process is initialized by creating a set of labeled
nodes V𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , typically containing a few nodes from each class.
The process to obtain these outputs can be described as follows.

V𝑙 ,G′ = A
(
G,X,V𝑝𝑜𝑜𝑙 ,O,V𝑖𝑛𝑖𝑡𝑖𝑎𝑙

)
,

where A is the framework to be proposed in this paper.

3 Preliminary Analysis
The detrimental effects of structure noise for active learning on
graphs and the consequent modeling step are two folded:
• Data Effect: Current graph active learning methods intensively
rely on graph information to identify key nodes. The presence of
noise edges can compromise the quality of the nodes selected.

• Model Effect: Graph Neural Networks (GNNs) utilize message-
passing to aggregate information from neighboring nodes on
graphs. Consequently, the training and inference of downstream
GNNs could be significantly distorted if noise information propa-
gates across nodes [48].
To examine how the noisy graph impacts the effectiveness of

existing graph active learning methods, we conduct an empirical
experiment on several recent advanced graph active learning mod-
els such as AGE [3], LSCALE [22], GRAIN [42] and ALG [39]. A brief

Table 1: Node classification performance under four different
noise conditions.

Model Noise Scenario Cora Citeseer Pubmed

AGE
Noise-Free 77.07% 68.26% 76.52%
Perturbed* 76.09% 67.21% 73.60%
Perturbed** 52.74% 45.95% 54.91%
Precleaned 57.50% 51.56% 56.95%

LSCALE
Noise-Free 78.54% 68.79% 78.39%
Perturbed* 76.38% 65.87% 72.93%
Perturbed** 50.31% 44.50% 53.48%
Precleaned 57.12% 49.67% 55.22%

GRAIN
Noise-Free 78.42% 68.46% 78.27%
Perturbed* 78.31% 66.36% 75.97%
Perturbed** 53.76% 48.41% 56.61%
Precleaned 61.26% 54.80% 56.83%

ALG
Noise-Free 77.68% 69.44% 78.66%
Perturbed* 75.91% 68.15% 75.53%
Perturbed** 52.10% 47.54% 56.81%
Precleaned 58.73% 53.99% 59.45%

introduction on these methods can be found in Section 5.1. Specif-
ically, we first generate a perturbed graph by randomly adding
edges between nodes from different classes. The number of noisy
edges added equals the number of edges in the original graph. To
clearly understand the Data Effect and Model Effect of the detrimen-
tal effects of structure noises. We execute each baseline under four
Noise Scenarios related to the usage of the perturbed graph.
• Noise-Free: In this scenario, execute both the active learning and
GCN model evaluation on the clean graph.

• Perturbed*: Here, we utilize the perturbed graph for graph active
learning model. When it comes to training and testing the GCN
model, we revert to using the original graph. This setup allows
us to examine the data effect of the noisy structures, i.e, how the
noisy structures compromise the quality of active learning.

• Perturbed**: In this case, we fully incorporate the perturbed
graph into our experiment. Both the execution of the graph ac-
tive learning models and the downstream GCN evaluation are
conducted on this perturbed graph. As such, this scenario reveals
the impacts of both the data effect and the model effect.

• Pre-cleaned: In this setup, we utilize a graph pre-processing
technique known as Jaccard-GCN [34] to cleanse the noisy graph
and generate a pre-cleaned graph. Both the graph active learning
model and the subsequent GCN evaluation are conducted on this
pre-cleaned graph.
Under all those scenarios, we run all active learning methods to

select the same number of nodes for labeling. In particular, we fix
the budget as 10 ×𝐶 , with 𝐶 denoting the number of classes. The
comparative results of this empirical investigation are shown in
Table 1. It is evident that the use of a perturbed graph in either the
active learning step or the downstream GNN training and inference
steps can strongly impair the models’ performance. This highlights
the importance and necessity for a robust graph active learning
model that is capable of selecting high-quality nodes for labeling
and producing a cleaner graph to facilitate the training and inference
of the downstream GNNs. Also, under the Pre-cleaned scenario,

Active Learning for Graphs with Noisy Structures Conference’17, July 2017, Washington, DC, USA

Representation Learning

Graph Cleaning

Node SelectionNode Selection

Graph Cleaning

Next Iteration

Figure 1: Overall framework of GALClean.

the active learning methods achieve better performance compared
with the Perturbed** setting. However, their performances are
still significantly worse than those under the Noise-Free scenario,
which demonstrates the incapability of the pre-cleaning technique
without labeled data and motivates us to design a framework that
performs graph cleaning and active learning simultaneously.

4 Methodology
As demonstrated in Table 1 of Section 3, the abnormal graph struc-
tures affect both the node selection and the training and inference of
the downstream GNN, leading to unsatisfactory model performance.
Supervised graph cleaning method is not even applicable from at
the start of active learning due to label limitation, and unsuper-
vised graph cleaning techniques offer only limited improvements.
It’s key to recognizing that graph cleaning and node selection are
two interdependent tasks. While this interdependence introduces
complexity when addressing either problem individually, it also
presents significant potential for these tasks to iteratively enhance
one another.

Motivated by the aforementioned observations, we propose an
iterative framework GALClean, where node selection and graph
cleaning are alternately executed upon the most recent information
derived from the other task. At each iteration, batch-wise data se-
lection is performed to select 𝑆 nodes, concurrently with the graph
cleaning step. Detailed procedures for this method are introduced
in Section 4.1. This iterative process of GALClean enjoys a sound
theoretical interpretation as an EM algorithm, treating the clean
edges as the latent variable, as elaborated in Section 4.2. By subtly
reformulating the EM algorithm, we extend GALClean to GALClean+
by leveraging selected labels and pseudo labels to continue the graph
cleaning process. A description of GALClean+ is presented in Sec-
tion 4.3.

4.1 GALClean Framework
At GALClean, we iterate over representation learning, node selection,
and graph cleaning modules multiple times to gradually gather la-
beled nodes and purify the graph. A visual demonstration is provided
at Figure 1. In essence, both the node selection and graph cleaning
components aim to extract more information from the graph data.
This is achieved by acquiring additional labeled data and mitigat-
ing noise within the graph structures from two perspectives. The
information thus obtained is utilized to learn high-quality node

representations in the representation learning component, which
informs further iterations of node selection and graph cleaning.

To provide an overview of GALClean, we use the 𝑘-th iteration
to briefly illustrate this process. Specifically, we define the labeled
set and the graph after (𝑘 − 1)-th iteration asV (𝑘−1)

𝑙
and G (𝑘−1) ,

respectively. Then, in the 𝑛-th iteration, we first utilize V (𝑘−1)
𝑙

and G (𝑘−1) to learn node representations E(𝑘) by training a repre-
sentation learning model. These representations E(𝑘) incorporate
the additional gained information from (𝑘 − 1)-th iteration. They
are utilized to expand the labeled set toV (𝑘)

𝑙
in the node selection

component and obtain a cleaner graph G (𝑘) in the graph cleaning
component by utilizing reliable pseudo labels derived from them.
V (𝑘)
𝑙

and G (𝑘) will then be utilized to conduct the (𝑘 + 1)-th itera-

tion of the process. To initialize this process, we setV (0)
𝑙

= V𝑖𝑛𝑖𝑡𝑖𝑎𝑙
and G (0) = G. Note that V𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and G are introduced in Section 2.
After a total of 𝐾 iterations, we exhaust the labeling budget and
conclude with a labeled set of nodesV (𝐾)

𝑙
and a graph G (𝐾) . The

final set of labeled nodes,V (𝐾)
𝑙

, is also the output of the framework,

i.e., V𝑙 = V (𝐾)
𝑙

.
The design focus of GALClean is to execute batch-wise active

learning concurrent with graph cleaning, and pass the new acquired
and clean information through iterations to maximize its benefits. In
this section, we first describe the process of representation learning
with structural noises. Then, we introduce the node selection and
graph cleaning processes which take the learned representations as
input.

4.1.1 Representation Learning The objective of the representation
learning component is to incorporate the new information gained
from the previous iteration to learn better quality representations,
which supports the processes of node selection and graph cleaning
in future iterations. Graph active learning methods often learn node
representations using GCN models with supervision from labeled
data [3, 12]. The GCN model incorporates both the supervision
signals and graph structural information in a coupled manner. In
particular, the structural information is captured through a forward
feature aggregation process. For noisy graphs, a major limitation
of this learning process is that it inevitably incorporates structural
noises, leading to undesirable node representations. To address this
issue, as inspired by [13, 16], we propose to decouple the process of

Conference’17, July 2017, Washington, DC, USA Hongliang Chi, Cong Qi, Suhang Wang, and Yao Ma

capturing the graph structural information and the label informa-
tion. With the set of labeled nodes V (𝑘−1)

𝑙
and the graph G (𝑘−1)

produced in the (𝑘−1)-th iteration, the overall objective is as follows.

L = L𝑙 (V (𝑘−1)
𝑙

, E(𝑘)) + 𝛼L𝑔 (G (𝑙−1) , E(𝑘)), (1)

E(𝑘) = 𝑀𝐿𝑃1 (X;W(𝑘)
1) (2)

where E(𝑘) denotes the representations produced by Multi-layer
Perceptron (MLP) with the original node features X as input and
W(𝑘)

1 denotes all parameters of the MLP model in 𝑘-th iteration. The
terms L𝑙 and L𝑔 capture label information and graph structural
information respectively. The hyper-parameter 𝛼 balances the two
terms. Specifically, L𝑙 is the classification loss of MLP.

L𝑙 =
∑︁

𝑣𝑖 ∈V
(𝑘−1)
𝑙

ℓ (y𝑖 , p(𝑘)𝑖
), with p(𝑘)

𝑖
= 𝑀𝐿𝑃2 (E(𝑘)

𝑖
;W(𝑘)

2) (3)

where p(𝑘)
𝑖

denotes the vector of logits for node 𝑣𝑖 obtained by
transforming E(𝑘)

𝑖
through𝑀𝐿𝑃2, and ℓ (·) is the cross entropy loss.

To capture the graph structural information in G (𝑘−1) , in general,
we aim to pull nodes connected by clean edges to be close to each
other while pushing non-connected nodes or those connected by
noisy edges apart in the representation space. Hence, we adapt the
neighborhood contrastive loss [16] to include the edge strength
weights learned in the previous iteration. Specifically, the adjacency
matrix A(𝑘−1) of the graph G (𝑘−1) contains these edge strength
weights (the process to obtainA(𝑘−1) will be introduced in the graph
cleaning process in Section 4.1.3. In particular, 𝐴(𝑘−1)

𝑖 𝑗
is non-zero

only when node 𝑣𝑖 and 𝑣 𝑗 are connected and a larger value of𝐴
(𝑘−1)
𝑖 𝑗

indicates a higher probability that the edge between them is “clean”.
The adapted neighborhood contrastive loss is as follows.

L𝑔 = −
∑︁
𝑣𝑖 ∈V

log

∑𝑁
𝑗=1 A

(𝑘−1)
𝑖 𝑗

exp
(
cos

(
E(𝑘)
𝑖
, E(𝑘)

𝑗

)
/𝜏
)

∑
𝑣𝑚 ∈M(𝑣𝑖) exp

(
cos

(
E(𝑘)
𝑖
, E(𝑘)

𝑚

)
/𝜏
) (4)

where M(𝑣𝑖) denotes a set negative samples, cos denotes the co-
sine similarity, and 𝜏 denotes the temperature parameter. With the
numerator of Eq. (4), we push “clean” neighbors close in the repre-
sentations space. On the other hand, we push 𝑣𝑖 away from those
negative samples inM(𝑣𝑖). In practice, following [4, 20, 25],M(𝑣𝑖)
is randomly sampled from V . When the dataset is relatively small,
the entire setV can serve as the set of negative samples.

With the overall decoupled loss L, the supervision signals are
free from structural noises. This is because we could flexibly control
the incorporation of graph structural information by adjusting 𝛼 . In
the extreme case when the graph is totally unreliable, the balancing
parameter 𝛼 can be set to 0, making the supervised signals learned
in L𝑙 free of the effect of structural noise. The parametersW(𝑘) are
learned byminimizing the overall decoupled lossL, which generates
representations and predictions applied in processes of node selection
and graph cleaning.

4.1.2 Node Selection In each iteration of node selection, we aim
to select 𝑆 nodes from V𝑝𝑜𝑜𝑙 that can represent V𝑝𝑜𝑜𝑙 in the best
way. To achieve this goal, following FeatProp [35] and other core-set
approaches [3, 12, 28, 39], we run the K-means clustering algorithm

a b

Figure 2: Node colors indicate classes; Node 𝑎 has a cleaner neigh-
borhood than node 𝑏.
with 𝑆 clusters utilizing the representations E(𝑘) produced by the
representation learning process. Then, we aim to select one node from
each cluster. A straightforward way to do this is to select the most
representative node from each cluster (the one close to the centroid).
However, if the selected representative nodes are surrounded by
noisy edges, inaccurate supervision signals will be propagated over
the graph, which may even mislead the mode training. As shown in
the preliminary investigation in Section 3, the existence of structural
noise could affect the performance of those representativeness-based
active learning methods [3, 12, 35, 39]. Therefore, when selecting
nodes, in addition to representativeness, we also care about the
cleanliness of the neighborhood of candidate nodes. For example, as
shown in Figure 2, node 𝑎 has a cleaner neighborhood than 𝑏 and
thus a higher cleanliness score. Based on this, we propose a novel
cleanliness score that measures the risk of a node being influenced
by noisy graph structures. When selecting nodes for labeling, we
consider both the node representativeness score and the cleanliness
score. As for the example in Figure 2, assuming node 𝑎 and 𝑏 have
similar representativeness scores, we prefer 𝑎 over 𝑏.

As we have obtained a set of labeled nodes V (𝑘−1) from the
previous iteration, we do not want to select these nodes and also
some other nodes that are well represented by them. Thus, we first
remove these nodes from the candidate pool. Next, we first describe
the process of removing well-represented nodes. Then, we introduce
the representativeness score and the robust cleanliness score. We
conclude this section by describing how we use these metrics for
selecting nodes for labeling.
Removing Well-Represented Nodes. Intuitively, nodes similar
to ones in V (𝑘−1)

𝑙
should not be selected for labeling since they

are already well-represented and will not provide rich additional
information. Therefore, before running the formal node selection
process, we need to remove nodes that are close to V (𝑘−1)

𝑙
from

V𝑝𝑜𝑜𝑙 . In particular, we model the distance between a node 𝑣𝑖 ∈
V𝑝𝑜𝑜𝑙 and the set V (𝑘−1)

𝑙
as follows.

𝑑 (𝑣𝑖 ,V (𝑘−1)
𝑙

) = min
𝑣𝑗 ∈V

(𝑘−1)
𝑙

𝑑 (𝑣𝑖 , 𝑣𝑗), (5)

where 𝑑 (𝑣𝑖 , 𝑣 𝑗) measures the Euclidean distance between node
𝑣𝑖 and 𝑣 𝑗 using representations E(𝑘) . We rank all nodes in V𝑝𝑜𝑜𝑙
in a non-decreasing order according to their distance to V𝑘−1

𝑙
and

remove the top |V (𝑘−1)
𝑙

| · ℎ of them. ℎ > 1 is a hyper-parameter
indicating how many nodes each labeled node covers. Note that
nodes in V (𝑘−1)

𝑙
will always be removed as they have distance 0.

After the removal, we denote the set of nodes left in the V𝑝𝑜𝑜𝑙 as
the filtered candidate poolV𝑓 𝑖𝑙𝑡𝑒𝑟 .
Representativeness Score. Since we will select one node per clus-
ter, for each node inV𝑓 𝑖𝑙𝑡𝑒𝑟 , we define a representativeness score
for each cluster. We denote the centroid of the 𝑠-th cluster as 𝑐𝑠 . For

Active Learning for Graphs with Noisy Structures Conference’17, July 2017, Washington, DC, USA

node 𝑣𝑖 ∈ V𝑓 𝑖𝑙𝑡𝑒𝑟 , its representativeness score corresponding to the
𝑠-th cluster is defined as follows.

𝑟𝑖𝑠 = 1/𝑑 (𝑣𝑖 , 𝑐𝑠), (6)

where 𝑑 (𝑣𝑖 , 𝑐𝑠) measures the distance between 𝑣𝑖 and 𝑐𝑠 . Intuitively,
nodes with smaller distances are considered more representative.
Cleanliness Score.Nodes that are connected with clean edges often
share similar features. Hence, we define the cleanliness score for a
node 𝑣𝑖 ∈ V𝑓 𝑖𝑙𝑡𝑒𝑟 based on the feature similarity to its neighbors as
follows.

𝑐𝑙𝑖 =
∑︁

𝑣𝑗 ∈N(𝑣𝑖)
𝑐𝑜𝑠 (x𝑛, x𝑗), (7)

whereN(𝑣𝑖) denotes the set of neighbors of node 𝑣𝑖 and 𝑐𝑜𝑠 (x𝑛, x𝑗)
measures the cosine similarity between the original features of node
𝑣𝑖 and 𝑣 𝑗 .
Node selectionwithRepresentativeness andCleanliness Scores.
In this part, we leverage the representativeness score and the clean-
liness score together for node selection. Clearly, the representative-
ness score and the cleanliness score are at different scales and we
care more about the relative relations between the candidate nodes
inV𝑓 𝑖𝑙𝑡𝑒𝑟 . Hence, to combine these two scores, we rank the scores
of candidate nodes and convert the scores into percentiles following
[3, 43]. Specifically, for the 𝑖-th cluster, we rank all nodes in V𝑓 𝑖𝑙𝑡𝑒𝑟

according to their representativeness score corresponding to the 𝑠-th
cluster in a non-increasing order and obtain the percentile for each
node. We denote the percentile for node 𝑣𝑖 ∈ V𝑓 𝑖𝑙𝑡𝑒𝑟 corresponding
to 𝑖-th cluster as 𝑟𝑖𝑠 . Similarly, we obtain the percentile based on the
cleanliness score, which is denoted as 𝑐𝑙𝑖 for node 𝑣𝑖 . With these
two percentiles, we select nodes for labeling as follows.

V (𝑘)
𝑠𝑒𝑙𝑒𝑐𝑡

=

𝑆⋃
𝑠=1

{ argmin
𝑣𝑖 ∈V𝑓 𝑖𝑙𝑡𝑒𝑟

𝑟𝑖𝑠 + 𝛽 · 𝑐𝑙𝑖 },

where 𝛽 balances these two kinds of information, and we select
the node with the largest combined score from each cluster. The
labels of selected nodes V (𝑘)

𝑠𝑒𝑙𝑒𝑐𝑡
are then queried from the oracle

O. Finally, we include the newly selected node set V (𝑘)
𝑠𝑒𝑙𝑒𝑐𝑡

to the

previous labeled set V (𝑘−1)
𝑙

expand the labeled set as follows.

V (𝑘)
𝑙

= V (𝑘)
𝑠𝑒𝑙𝑒𝑐𝑡

⋃
V (𝑘−1)
𝑙

4.1.3 Graph Cleaning In this part, we aim to clean the graph struc-
ture by identifying and down-weighting the noisy edges in the
graph. In particular, to achieve this goal, we propose to train an
edge-predictor. However, building such an edge-predictor in an ac-
tive learning setting is extremely challenging as labels are scarce.
Specifically, it requires querying two nodes from the oracle to verify
whether an edge is noisy or clean. In light of this challenge, we pro-
pose to construct a training set with pseudo labels of edges utilizing
the representations E(𝑘) . We then utilize this training set to train
an edge-predictor, which is utilized for cleaning the graph. Next, we
first describe the training set construction, then introduce details
on utilizing the edge-predictor for graph learning.
Edge Training Set Construction. To produce pseudo labels for
edges, we first produce probability logits for all nodes utilizing𝑀𝐿𝑃2

and E(𝑘) obtained from the representation learning component. We
denote the vector of logits for node 𝑣𝑖 ∈ V as p(𝑘)

𝑖
. Note that for

labeled nodes, we use their one-hot label vectors to replace the
logits. We first obtain the pseudo labels for all nodes from the logits.
Specifically, for each node 𝑣𝑖 , the index corresponding to the largest
dimension in the logits p(𝑘)

𝑖
is treated as the pseudo label, denoted

as 𝑦𝑖 . Intuitively, we consider an edge is “clean” when its two nodes
share the same label with high confidence. Therefore, the nodes
in the following set are treated as positive samples for the edge
predictor.

E𝑝𝑠𝑒𝑢𝑑𝑜
+ = {𝑒𝑖 𝑗 ∈ E | 𝑣𝑖 ∈ V𝑐𝑜𝑛, 𝑣𝑗 ∈ V𝑐𝑜𝑛, �̂�𝑖 = �̂� 𝑗 }

whereV𝑐𝑜𝑛 = {𝑣𝑖 ∈ V | p𝑖 [𝑦𝑖] ≥ 𝜅} denote the set of nodes with
confident pseudo labels, and 𝜅 denotes a threshold of confident level.
On the other hand, we consider an edge as “noisy” when its two
nodes have different pseudo labels, which is formulated as follows.

E𝑝𝑠𝑒𝑢𝑑𝑜
− = {𝑒𝑖 𝑗 ∈ E | 𝑣𝑖 ∈ V, 𝑣𝑗 ∈ V, �̂�𝑖 ≠ �̂� 𝑗 } .

Note that, we do not enforce the confidence constraint to the nega-
tive samples, since the edge is still highly likely to be negative even
if the confidence of node pseudo labels is extremely high (larger
than 𝜅). In practical experiments, we tried to enforce the constraint,
which turns out to affect the overall performance insignificantly.
Edge-predictor.With the training data defined in the previous part,
we train an edge predictor. In particular, we model the probability
of an edge being clean as follows.

𝑝 (𝑒𝑖 𝑗 = 1) = 𝜎 (z⊤𝑖 z𝑗) with z𝑖 = 𝑀𝐿𝑃3 (x𝑖 ;W(𝑘)
3), (8)

where𝑀𝐿𝑃3 maps the original features into a representation space
that is suitable for the probability estimation. The edge predictor is
trained by maximizing the following probability.

𝑃𝑒𝑑𝑔𝑒 =
∏

𝑒𝑖 𝑗 ∈E
𝑝𝑠𝑒𝑢𝑑𝑜
+

𝑝 (𝑒𝑖 𝑗 = 1) ·
∏

𝑒𝑖 𝑗 ∈E
𝑝𝑠𝑒𝑢𝑑𝑜
−

(1 − 𝑝 (𝑒𝑖 𝑗 = 1)) . (9)

In practice, instead of maximizing 𝑃𝑒𝑑𝑔𝑒 , we minimize the negative
of its logarithm. Once we obtain W(𝑘)

3), we infer the probability
𝑝 (𝑒𝑖 𝑗 = 1) for all edges 𝑒𝑖 𝑗 ∈ E and update the edge weights in the
adjacency matrix as follows.

A(𝑘)
𝑖 𝑗

=

{
𝑝 (𝑒𝑖 𝑗 = 1), 𝑒𝑖 𝑗 ∈ E
0, others.

(10)

The probabilistic adjacency matrix A(𝑘)
𝑖 𝑗

defines a distribution for
the discrete clean graph G. In our case, we adopt the weighted
graph defined by A(𝑘)

𝑖 𝑗
as G (𝑘) for the representation learning in

the following iteration. Note that G (𝑘) is the expectation of the
distribution defined by A(𝑘)

𝑖 𝑗
.

4.2 GALClean as an EM algorithm
In this section, we show that the proposed GALClean framework can
be understood from the perspective of an expectation-maximization
(EM) algorithm. We first briefly introduce the concepts of the EM
algorithm. Then, we explain how our framework can be formulated
as an instance of the EM algorithm.

Conference’17, July 2017, Washington, DC, USA Hongliang Chi, Cong Qi, Suhang Wang, and Yao Ma

4.2.1 General Expectation Maximization algorithm An EM algo-
rithm [7] is an iterative method used in machine learning for param-
eter estimation in probabilistic models that involve latent variables.
The algorithm operates on a joint distribution 𝑝 (U, z | 𝜽) over the
observed variable U, the unobserved latent variables z ∈ Z and
model parameters 𝜽 . The goal is to maximize the likelihood function
𝑝 (U | 𝜽) with respect to 𝜽 . Given 𝑁 observations {u𝑖 }𝑁𝑖=1 of 𝑿 , The
EM algorithm typically follows a two-step process:

E-step: The E-step is to compute the expected value of the likeli-
hood function given the observed data, the posterior distribution of
the latent variables, and updated parameters 𝜽old:

Q (𝜽 ;𝜽𝑜𝑙𝑑) =
1
𝑁

𝑁∑︁
𝑖=1

∫
Z
𝑝 (z | u𝑖) · log𝑝 (u𝑖 , z) dz

M-step: The M-step is to update the parameters by maximizing
the function Q (𝜽 ;𝜽𝑜𝑙𝑑). Typically, the maximization in the M-step
is conducted through gradient based-methods. When dealing with
large datasets, obtaining the full gradient on all observations might
be probability expensive. The Stochastic Expectation Maximiza-
tion [1, 26, 46] was proposed to deal with such scenarios. Specifi-
cally, in the M-step of the stochastic EM, stochastic gradient-based
methods are adopted for the maximization, where the gradient is
estimated on a small batch of observations.

4.2.2 Interpret GALClean as a Stochastic EM Algorithm In our set-
ting, the original graph structure is provided but with noisy edges.
Since the clean graph structure is unknown, we treat the clean graph
structure as the latent variable. Ideally, if we were able to observe
labels for all nodes, they can serve as the observed variables in a
standard EM algorithm. In this case, the goal of EM is to maximize
the following marginal log-likelihood of all nodes inV with their
corresponding labels observed:∑︁

𝑣𝑖 ∈V
ln𝑝 (y𝑖 ,X | 𝜽) =

∑︁
𝑣𝑖 ∈V

∫
ln𝑝 (y𝑖 ,X,G | 𝜽)𝑑G. (11)

where 𝑝 (y𝑖 ,X,G, | 𝜽) is the likelihood for node 𝑣𝑖 with label y𝑖
given the latent graph G, and 𝜽 corresponds to the model param-
eters. However, in our scenario, only a very small subset of nodes
are observed with labels. Hence, we adopt stochastic gradient meth-
ods to optimize the log-likelihood in the M-step. In particular, the
iterative process of GALClean can be regarded as an instance of a sto-
chastic EM algorithm. We utilize the 𝑘-th iteration of the GALClean
to illustrate the corresponding E and M-steps.

E-step: In the E-step, we aim to obtain the expectation of likeli-
hood function given the observed data, the updated distribution of
latent variables, and the updated parameters:

Q
(
𝜽 ;𝜽 (𝑘−1)

)
=

∑︁
𝑣𝑖 ∈V

∫
𝑝

(
G | X, y𝑖 , 𝜽 (𝑘−1)

)
ln𝑝 (y𝑖 ,X,G | 𝜽)𝑑G, (12)

where 𝜽 (𝑘−1) refers to the model parameters estimated at the (𝑘−1)-
th iteration. 𝑝

(
G | X, y𝑖 , 𝜽 (𝑘−1)

)
is the posterior distribution of the

latent graph G, which is described by the probabilistic adjacency
matrix in Eq. (10). Computing the expectation in Eq. (12) is prohib-
itively expensive. Therefore, we approximate the entire posterior
distribution using a Dirac delta function (𝛿 distribution), a method
known as variational approximation. The optimal 𝛿 distribution is
defined at the Maximum a posteriori (MAP) ofG [2]. In particular, in

our case, the mass of 𝛿 distribution is concentrated at the expectation
of the posterior distributionG(𝑘−1) (obtained in graph cleaning) and
has 0 mass anywhere else. With the 𝛿 distribution, we approximate
Eq. (12) as follows.

Q
(
𝜽 ;𝜽 (𝑘−1)

)
=

∑︁
𝑣𝑖 ∈V

log𝑝 (y𝑖 ,X,G(𝑘−1) | 𝜽) (13)

In conclusion, the E-step corresponds to the graph cleaning compo-
nent in GALClean.

M-step: In the M-step, we aim to maximize Eq. (13). Due to the
limited availability of labeled data. We optimized it and obtain the
updated model parameters 𝜽 (𝑘) with stochastic gradient estimated
onV (𝑘−1)

𝑙
. The M-step corresponds to the representation learning

component in the GALClean framework. Specifically, 𝜽 (𝑘) summa-
rizes all parameters in Section 4.1.3 includingW(𝑘)

1 andW(𝑘)
2 . Note

that the data selection also plays an important role in the M-step, as
it gradually provides better V (𝑘−1)

𝑙
for a more accurate estimation

of the full gradient.
Next, we explain how the graph cleaning and data selection (ac-

tive learning) enhance each other from the perspective of the sto-
chastic EM algorithm: (a) The EM algorithm guarantees that the
log-likelihood value increases with each iteration until convergence,
leading to a progressively improved fit of the representation model.
This improvement ensures that both the active learning and graph
cleaning processes are fully leveraged based on the most recent and
reliable information obtained thus far, which leads to high-quality
data selection; and (b) Moreover, since only a batch of observed data
is used to optimize the likelihood function during the M-step, the
gradient derived from the batch data may exhibit high variance,
especially when the size of observations is small. The proposed data
selection strategy focuses on selecting data with representativeness
and cleanliness, which helps to obtain a more reliable mini-batch
gradient that is better aligned with the one derived from fully la-
beled nodes with the clean graph. This alignment ensures that the
Stochastic EM algorithm is updated in a more unbiased manner,
thereby enhancing the overall effectiveness and accuracy of the
model, which, in turn, helps the inference of the latent graph in the
graph cleaning component (E-step).

4.3 GALClean+
As described in the previous section, GALClean can be understood
as an instance of a stochastic EM algorithm. A natural idea to ex-
tend the GALClean is to run a few more iterations of EM even after
the labeling budget is exhausted, which may help further clean the
graph with the available information. Hence, we propose an en-
hanced version of GALClean named GALClean+. In particular, after
𝐾 iterations of GALClean, we run out of the labeling budget and
obtain V (𝐾)

𝑙
. We then continue the EM algorithm for a few more

iterations, where, in the𝑀-step, we always useV (𝐾)
𝑙

to calculate
the gradient. Another slight modification we made is that we also
treat the unlabeled data V/V (𝐾)

𝑙
as unobserved latent variables

and involve them in the remaining EM iterations.

5 Experiments
In this section, we start by introducing the dataset, baselines, noise
generation mechanism, and the experimental settings that have been

Active Learning for Graphs with Noisy Structures Conference’17, July 2017, Washington, DC, USA

0 20 40 60 80 100
Perturb Ratio (%)

45
50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(a) Cora

0 20 40 60 80 100
Perturb Ratio (%)

40
45
50
55
60
65
70
75

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(b) Citeseer

0 20 40 60 80 100
Perturb Ratio (%)

50
55
60
65
70
75
80

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(c) Pubmed

0 20 40 60 80 100
Perturb Ratio (%)

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(d) Amazon-Photo

0 20 40 60 80 100
Perturb Ratio (%)

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(e) Amazon-Computers

0 20 40 60 80 100
Perturb Ratio (%)

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

GALClean+
AGE
LSCALE
GRAIN
ALG
Random

(f) Coauthor-CS

Figure 3: Active learning performance under random attacks

employed. Next, we present the performance of our framework,
GALClean+, and various baselines under two distinct types of noise
at varying levels. The primary objective of these experiments is to
assess the effectiveness and robustness of our framework in diverse
noisy scenarios. Lastly, we highlight the significance of key modules
within our framework by conducting ablation studies, wherein we
systematically remove key design components and report the impact
on the overall performance.

5.1 Experimental settings
5.1.1 Dataset Our framework and baselines are evaluated on six
datasets: Cora, Citeseer, Pubmed[27], Amazon-photo, Amazon-Computer,
and Coauthor-CS [29]. The initial labeled set, V𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , is created
by randomly sampling two nodes per class. We randomly select 50
nodes for the validation set,V𝑣𝑎𝑙𝑖𝑑 , and 1000 nodes for the test set,
V𝑡𝑒𝑠𝑡 . All methods select 8𝐶 nodes, V𝑠𝑒𝑙𝑒𝑐𝑡 , for labeling from the
candidate pool, V𝑝𝑜𝑜𝑙 , where 𝐶 represents the number of classes,
and V𝑝𝑜𝑜𝑙 encompasses nodes not included in V𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , V𝑣𝑎𝑙𝑖𝑑 , or
V𝑡𝑒𝑠𝑡 . Ultimately, the labeled set V𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = V𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∪ V𝑠𝑒𝑙𝑒𝑐𝑡 is
employed to train a downstream GCN model [21]. We record the
testing performance over V𝑡𝑒𝑠𝑡 . The experiments are performed
60 times using 10 different random initializations and six different
random seeds. The report presents the average performance of the
experiments.

5.1.2 Baselines We adopt the following classic and effective ac-
tive learning models on graphs. (a) AGE [35] is a foundation active
learning model on graphs, which combines several metrics including
node centrality, node classification uncertainty, and node embedding
representativeness to query nodes for labeling; (b) LSCALE [22] is a
graph active learning model that utilizes a self-supervised learning
method to construct an informative embedding space for node selec-
tion; (c)GRAIN [42] considers the magnitude of the node influence
and the diversity of the influence simultaneously as the criterion
to select nodes for labeling; (d)ALG [39] leverages a model-free rep-
resentativeness measurement and a cost-effective informativeness
measurement empowered by a decoupled GCN model to conduct

data selection; (e) Random: We select nodes for labeling at random
as the simplest strategy baseline.

5.1.3 Implementation Configuration Our framework is tuned on
𝛼 , 𝛽 and 𝜅. The batch size 𝑆 is 10 across all datasets. In assessing
the GCN, we implement a two-layer GCN with a hidden dimension
of 16 across all datasets, Amazon-Photo and Amazon-Computers
being the exception. For Amazon-Photo andAmazon-Computers, we
utilize a GCNmodel equipped with a hidden layer of 128 dimensions,
as smaller hidden layers adversely impact the performance of the
baselines.

5.1.4 Noisy Graph Generation To demonstrate the robustness of the
proposed model against the structural noise, we randomly link two
unconnected nodes from different classes to introduce a noisy edge
into the graph. The number of newly added noisy edges increases
from 0% of the number of edges (original graph) to 100% (highly
perturbed graph) by a stride of adding 20% of the number of edges
in the original graph. In addition, we leverage the recent state-of-
the-art unsupervised attack model Contrastive Loss Gradient Attack
(CLGA) [38] to generate attacked graph by adding 5%, 10%, 15%, and
20% additional noisy edges.

5.2 Main Results
In this section, we assess GALClean+’s performance under various
types and levels of noise. We present and discuss the results under
the Random Attack Graphs and Unsupervised Adversarial Attacked
Graphs as follows.

5.2.1 Random Attacked Graphs The performances of our frame-
work and baselines on graphs with random noises are shown in
Figure 3. It can be observed from the table that our framework
GALClean+ outperforms various baselines by a large margin on all
6 datasets, which indicates that the effectiveness of GALClean+ on
selecting high-quality nodes for labeling while cleaning the graph.

5.2.2 Unsupervised Adversarial Attacked Graphs In this section, we
investigate how robust GALClean+ is when graphs are perturbed by
unsupervised adversarial attacks. The performances of GALClean+
and baselines are reported in Figure 4. As shown in the table, again,

Conference’17, July 2017, Washington, DC, USA Hongliang Chi, Cong Qi, Suhang Wang, and Yao Ma

5 10 15 20
Perturb Ratio (%)

62
65
67
70
72
75
77
80

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(a) Cora

5 10 15 20
Perturb Ratio (%)

30
35
40
45
50
55
60
65
70
75

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(b) Citeseer

5 10 15 20
Perturb Ratio (%)

60
62
65
67
70
72
75
77
80

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(c) Pubmed

5 10 15 20
Perturb Ratio (%)

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(d) Amazon-Photo

5 10 15 20
Perturb Ratio (%)

30
35
40
45
50
55
60
65
70
75

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(e) Amazon-Computers

5 10 15 20
Perturb Ratio (%)

70

75

80

85

90

Ac
cu

ra
cy

 (%
)

GALClean+ AGE LSCALE GRAIN ALG Random

(f) Coauthor-CS

Figure 4: Active learning performance under Contrastive Loss Gradient Attack

GALClean+ has the best performance over all baselines on all 6
datasets. The performance demonstrates the superiority of GALClean+
even under a sophisticated unsupervised attack.

5.3 Ablation Study and Parameter Analysis
In this section, we scrutinize the design modules of GALClean+
through ablation study and parameter analysis. We report the re-
sults under 100% random noise setting on three citation datasets
including Cora, Citeseer, and Pubmed as the observations on other
settings and datasets are similar.

5.3.1 Effectiveness of the Proposed Node Selection Strategy To bet-
ter understand how the proposed data selection Strategy, partic-
ularly the necessity of the node cleanliness metric introduced in
Section 4.1.2. We run GALClean+ with and without the cleanliness
score (C-score) applied in the data selection. All other parameters
and settings were kept the same. The results are shown in Table 2. As
we can observe from the table, on all three datasets, the cleanliness
score helped improve the performance significantly, which shows
the effectiveness of the proposed data selection strategy for noisy
graphs.

Table 2: The effectiveness of cleanliness score (C-Score)

Setting Cora Citeseer Pubmed

w/ C-Score 70.40%±1.35% 67.65%±1.52% 75.76%±2.32%
w/o C-Score 69.21%±1.47% 64.37%±2.68% 73.31%±3.91%

5.3.2 GALClean+ vs GALClean To verify the effectiveness of the
additional EM iterations in GALClean+ as introduced in Section 4.3,
we compare GALClean and GALClean+. The results are included in
Table 3. As indicated in Table, GALClean+ consistently outperforms
GALClean by a decent margin, which demonstrates the effectiveness
of the additional EM iterations for producing a cleaner graph. How-
ever, the improvement is rather marginal, which also indicates that
the additional EM iterations are not the most critical component of
GALClean+.

Table 3: Performance of GALClean+ and GALClean

Model Cora Citeseer Pubmed

GALClean+ 70.40%±1.35% 67.65%±1.52% 75.76%±2.32%
GALClean 69.81%±1.14% 65.99%±1.62% 75.08%±2.29%

5.3.3 Effectiveness of the Pseudo Label Threshold in Section 4.1.3
In this part, we investigate how the parameter 𝜅 introduced for
controlling the filtering threshold of pseudo labels affects the final
performance. A higher 𝜅 means more pseudo labels will be filtered.
In particular, we vary 𝜅 from 0 (without filtering out any pseudo
labels) to 0.99. The results are demonstrated in Figure 5. The figure
reveals that with 𝜅 = 0, the model’s performance is subpar across all
three datasets. This outcome underlines the essentiality of filtering
less confident pseudo labels for training the edge predictor. As 𝜅
ascends, model performance generally improves due to the inclusion
of more confident pseudo labels, thus providing more precise super-
vision. Upon further increasing𝜅 , however, the model’s performance
begins to decline on the Cora and Citeseer datasets, attributed to the
limited labeled data employed in training. Conversely, on PubMed,
performance steadily escalates with 𝜅 up to 0.99. This pattern is
predominantly owing to the relatively high confidence scores on
PubMed, where over 52% of pseudo labels possess a confidence score
exceeding 0.99. Therefore, a meticulous tuning of 𝜅 on PubMed may
further enhance the proposed framework’s performance.

0.0 0.1 0.2 0.4 0.6 0.8 0.99
Pseudo Label Threshold

0.6

0.65

0.7

0.75

0.8

Pe
rf

or
m

an
ce

Cora
Citeseer
PubMed

Figure 5: Parameter sensitivity analysis of 𝜅 of GALClean+

Active Learning for Graphs with Noisy Structures Conference’17, July 2017, Washington, DC, USA

6 Related Work
Graph Active Learning. Active learning has been studied specifi-
cally for GNNs. AGE [3] mix multiple data selection metrics includ-
ing information entropy, embedding representativeness, and graph
centrality into its strategy. GPA [15] regards active learning as a
sequential decision process on graphs and trains a GNN-based policy
network to learn the optimal query strategy. ANRMAB [12] uses an
active discriminative network representations with a multi-armed
bandit mechanism for the graph active learning task. FeatProp [35]
selects nodes for labeling in the representation space constructed by
a parameter-free node feature propagation. LSCALE [22] exploits
both labeled and unlabelled node representations for active learn-
ing on graphs. ALG [39] selects nodes for labeling by considering
both node representativeness and informativeness and leverages
decoupled GCNs to improve efficiency. GRAIN [42] performs data
selection on graphs by achieving social influence maximization.
RIM [40] converts node selection to a social influence maximization
problem and also considers oracle noises. IGP [41] first proposes a
soft-label approach to conduct active learning for GNNs. ALLIE [5]
designs active learning specifically for large-scale imbalanced graph
data. BIGENE [44] proposes a multi-agent Q-network consisting of
a graph convolutional network module and a gated recurrent unit
module for data selection. IGP [41] proposes the first GNN-based
AL method suitable for soft labels. JuryGCN [19] quantifies the un-
certainty of nodes with a frequentist-based approach and selects
nodes based on uncertainties.
Graph Cleaning. Graph Structure Learning (GSL) aims to learn
both a graph learning model and a graph structure simultaneously.
GCN-Jaccard [34] remove edges according to the Jaccard similarity
of node features. GCN-SVD [10] applies the low-rank approximation
of the perturbed graph to reduce the effect of the adversarial attack.
RGCN [45] reduces the impacts of adversarial attacks by introducing
variance-based attention weight in the message-passing. Pro-GNN
[18] learns the graph structure and the GNN model simultaneously
considering the low rank and sparsity property of clean graphs.
RS-GNN [6] mines information in the noisy graph as an additional
supervision signal to obtain a cleaned graph, which helps to improve
predictions of GNNs. GEN [32] optimizes a graph structure model
and an observation model to gain the optimal graph in an iterative
manner.

7 Conclusion
Current graph active learning methods universally rely on the uti-
lization of accurate graph information to select high-quality nodes
for labeling. However, structural noise is ubiquitous in real-world
graphs. We first investigate how the edge noise deteriorates the
performance of widely used graph active learning models. By identi-
fying the challenges of performing active learning on noisy graphs,
we propose a novel iterative graph active learning framework robust
to graph noise by performing data selection and graph learning
simultaneously. Not only high-quality data is selected at the end of
the algorithm, but a cleaned graph will also be generated and utilized
in the downstream graph tasks. Importantly, our framework has a
solid theoretical interpretation as an EM algorithm. This interpreta-
tion provides a robust theoretical foundation. Extensive empirical
experiment shows the proposed framework GALClean+ has strong
performance superiority over various baselines, especially when the
noise is heavy.

References
[1] Sivaraman Balakrishnan, Martin J Wainwright, and Bin Yu. 2017. Statistical

guarantees for the EM algorithm: From population to sample-based analysis.
(2017).

[2] Matthew James Beal. 2003. Variational algorithms for approximate Bayesian infer-
ence. University of London, University College London (United Kingdom).

[3] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2017. Active
learning for graph embedding. arXiv preprint arXiv:1705.05085 (2017).

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[5] Limeng Cui, Xianfeng Tang, Sumeet Katariya, Nikhil Rao, Pallav Agrawal, Karthik
Subbian, and Dongwon Lee. 2022. ALLIE: Active Learning on Large-scale Imbal-
anced Graphs. In Proceedings of the ACM Web Conference 2022. 690–698.

[6] Enyan Dai, Wei Jin, Hui Liu, and Suhang Wang. 2022. Towards robust graph
neural networks for noisy graphs with sparse labels. In Proceedings of the Fifteenth
ACM International Conference on Web Search and Data Mining. 181–191.

[7] Arthur P Dempster, Nan M Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the royal statistical society:
series B (methodological) 39, 1 (1977), 1–22.

[8] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll. 2019. Graph
neural networks for modelling traffic participant interaction. In 2019 IEEE Intelli-
gent Vehicles Symposium (IV). IEEE, 695–701.

[9] Siddhant Doshi and Sundeep Prabhakar Chepuri. 2020. Dr-COVID: graph neural
networks for SARS-CoV-2 drug repurposing. arXiv preprint arXiv:2012.02151
(2020).

[10] Negin Entezari, Saba A Al-Sayouri, Amirali Darvishzadeh, and Evangelos E Pa-
palexakis. 2020. All you need is low (rank) defending against adversarial attacks
on graphs. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 169–177.

[11] Chen Gao, Xiang Wang, Xiangnan He, and Yong Li. 2022. Graph neural net-
works for recommender system. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining. 1623–1625.

[12] Li Gao, Hong Yang, Chuan Zhou, Jia Wu, Shirui Pan, and Yue Hu. 2018. Ac-
tive discriminative network representation learning. In IJCAI International Joint
Conference on Artificial Intelligence.

[13] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[14] Kanglin Hsieh, YinyinWang, Luyao Chen, Zhongming Zhao, Sean Savitz, Xiaoqian
Jiang, Jing Tang, and Yejin Kim. 2021. Drug repurposing for COVID-19 using
graph neural network and harmonizing multiple evidence. Scientific reports 11, 1
(2021), 1–13.

[15] Shengding Hu, Zheng Xiong, Meng Qu, Xingdi Yuan, Marc-Alexandre Côté,
Zhiyuan Liu, and Jian Tang. 2020. Graph policy network for transferable ac-
tive learning on graphs. Advances in Neural Information Processing Systems 33
(2020), 10174–10185.

[16] Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou, and Yue Gao.
2021. Graph-MLP: node classification without message passing in graph. arXiv
preprint arXiv:2106.04051 (2021).

[17] Tinglin Huang, Yuxiao Dong, Ming Ding, Zhen Yang, Wenzheng Feng, Xinyu
Wang, and Jie Tang. 2021. Mixgcf: An improved training method for graph neural
network-based recommender systems. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 665–674.

[18] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining. 66–74.

[19] Jian Kang, Qinghai Zhou, and Hanghang Tong. 2022. JuryGCN: quantifying
jackknife uncertainty on graph convolutional networks. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 742–752.

[20] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020. Supervised contrastive
learning. Advances in neural information processing systems 33 (2020), 18661–
18673.

[21] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[22] Juncheng Liu, Yiwei Wang, Bryan Hooi, Renchi Yang, and X. Xiao. 2020. LSCALE:
Latent Space Clustering-Based Active Learning for Node Classification.

[23] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing
He. 2021. Pick and choose: a GNN-based imbalanced learning approach for fraud
detection. In Proceedings of the Web Conference 2021. 3168–3177.

[24] Kaushalya Madhawa and Tsuyoshi Murata. 2020. Active learning for node classi-
fication: an evaluation. Entropy 22, 10 (2020), 1164.

[25] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

Conference’17, July 2017, Washington, DC, USA Hongliang Chi, Cong Qi, Suhang Wang, and Yao Ma

[26] George Papandreou, Liang-Chieh Chen, Kevin P Murphy, and Alan L Yuille. 2015.
Weakly-and semi-supervised learning of a deep convolutional network for se-
mantic image segmentation. In Proceedings of the IEEE international conference on
computer vision. 1742–1750.

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[28] Ozan Sener and Silvio Savarese. 2017. Active learning for convolutional neural
networks: A core-set approach. arXiv preprint arXiv:1708.00489 (2017).

[29] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. Relational
Representation Learning Workshop, NeurIPS 2018 (2018).

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[31] Dan J Wang, Xiaolin Shi, Daniel A McFarland, and Jure Leskovec. 2012. Mea-
surement error in network data: A re-classification. Social Networks 34, 4 (2012),
396–409.

[32] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing
Xie. 2021. Graph structure estimation neural networks. In Proceedings of the Web
Conference 2021. 342–353.

[33] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR.

[34] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial examples on graph data: Deep insights into attack and
defense. arXiv preprint arXiv:1903.01610 (2019).

[35] Yuexin Wu, Yichong Xu, Aarti Singh, Yiming Yang, and Artur Dubrawski. 2019.
Active learning for graph neural networks via node feature propagation. arXiv
preprint arXiv:1910.07567 (2019).

[36] Yi Xie, Yun Xiong, and Yangyong Zhu. 2020. SAST-GNN: a self-attention based
spatio-temporal graph neural network for traffic prediction. In International Con-
ference on Database Systems for Advanced Applications. Springer, 707–714.

[37] Yufan Zeng and Jiashan Tang. 2021. Rlc-gnn: An improved deep architecture for
spatial-based graph neural network with application to fraud detection. Applied
Sciences 11, 12 (2021), 5656.

[38] Sixiao Zhang, Hongxu Chen, Xiangguo Sun, Yicong Li, and Guandong Xu. 2022.
Unsupervised graph poisoning attack via contrastive loss back-propagation. In
Proceedings of the ACM Web Conference 2022. 1322–1330.

[39] Wentao Zhang, Yu Shen, Yang Li, Lei Chen, Zhi Yang, and Bin Cui. 2021. ALG:
fast and accurate active learning framework for graph convolutional networks.
In Proceedings of the 2021 International Conference on Management of Data. 2366–
2374.

[40] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan,
Zhi Yang, and Bin Cui. 2021. Rim: Reliable influence-based active learning on
graphs. Advances in Neural Information Processing Systems 34 (2021), 27978–27990.

[41] Wentao Zhang, Yexin Wang, Zhenbang You, Meng Cao, Ping Huang, Jiulong Shan,
Zhi Yang, and Bin Cui. 2022. Information Gain Propagation: a new way to Graph
Active Learning with Soft Labels. arXiv preprint arXiv:2203.01093 (2022).

[42] Wentao Zhang, Zhi Yang, Yexin Wang, Yu Shen, Yang Li, Liang Wang, and Bin Cui.
2021. Grain: Improving data efficiency of graph neural networks via diversified
influence maximization. arXiv preprint arXiv:2108.00219 (2021).

[43] Ye Zhang, Matthew Lease, and ByronWallace. 2017. Active discriminative text rep-
resentation learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 31.

[44] Yuheng Zhang, Hanghang Tong, Yinglong Xia, Yan Zhu, Yuejie Chi, and Lei
Ying. 2022. Batch active learning with graph neural networks via multi-agent
deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 9118–9126.

[45] Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust graph
convolutional networks against adversarial attacks. In Proceedings of the 25th
ACM SIGKDD international conference on knowledge discovery & data mining.
1399–1407.

[46] Rongda Zhu, Lingxiao Wang, Chengxiang Zhai, and Quanquan Gu. 2017. High-
dimensional variance-reduced stochastic gradient expectation-maximization algo-
rithm. In International Conference on Machine Learning. PMLR, 4180–4188.

[47] Yanqiao Zhu, Weizhi Xu, Qiang Liu, and Shu Wu. 2020. When contrastive learn-
ing meets active learning: A novel graph active learning paradigm with self-
supervision. arXiv preprint arXiv:2010.16091 (2020).

[48] Yanqiao Zhu, Weizhi Xu, Jinghao Zhang, Yuanqi Du, Jieyu Zhang, Qiang Liu, Carl
Yang, and Shu Wu. 2021. A Survey on Graph Structure Learning: Progress and
Opportunities. arXiv e-prints (2021), arXiv–2103.

	Abstract
	1 Introduction
	2 Problem Definition
	3 Preliminary Analysis
	4 Methodology
	4.1 GALClean Framework
	4.2 GALClean as an EM algorithm
	4.3 GALClean+

	5 Experiments
	5.1 Experimental settings
	5.2 Main Results
	5.3 Ablation Study and Parameter Analysis

	6 Related Work
	7 Conclusion
	References

