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Abstract
Graph Neural Networks (GNNs) have gained popularity in

various fields, such as recommendation systems, social net-

work analysis and fraud detection. However, despite their

effectiveness, the topological nature of GNNs makes it chal-

lenging for users to understand the model predictions. To

address this challenge, we built a user-friendly UI to visual-

ize the most important relationships for both homogeneous

and heterogeneous static graphs models, which a post-hoc

explanation technique called GNNExplainer is implemented.

This UI can be applied to a wide range of applications that

use graph models. It offers an intuitive and interpretable way

for users to understand the complex relationships within a

graph and how they influence the model’s predictions.
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1 Introduction
GraphNeural Networks (GNNs) are achieving ever-increasing

performance on many artificial intelligence tasks. It drives

several real-world applications including drug-discovery,

recommendation systems, social networks, and fraud de-

tection etc. Unfortunately, a major limitation of graph model

is that they are not amenable to interpretability since usu-

ally graphs contain topological information represented as

feature and adjacency matrices, and are less intuitive than

images and texts. Understanding the graph model often re-

quires domain knowledge. However, without reasoning the

underlying mechanisms behind the predictions, GNNs can-

not be fully trusted. We need to provide convincing evidence
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to support the predictions. In order to make GNNs fully ef-

fective, it is desired to provide both accurate predictions and

human-intelligible explanations.

In the past few years, tree-based model interpretation

methods [4, 2] are popular and used by many researchers.

For example, TreeSHAP [2] is designed for tree-based model

interpretation. It computes Shapley [6] values for tree-based

machine learning models, which provide a way to fairly

allocate the contribution of each feature to the prediction

made by the model. It helps interpret the model’s predictions

and gain insights into the importance of different features

in the decision-making process. Recently, explainability of

GNNs has achieved significant progress. Many post hoc tech-

niques [11, 8, 13] have been developed to explain predic-

tions, giving rise to the area of GNN explainability. PGEx-

plainer [3] trains a mask predictor to generate a discrete

masks for learning the importance. SubgraphX [14] uses the

Shapley value and onbtain the most important subgraphs

with Monte Carlo Tree Search (MCTS). These methods fo-

cus on different aspects of the graph models and provide

different views to understand these models. They typically

address a set of queries, such as determining the relative

importance of input edges, identifying critical input nodes,

evaluating the significance of node features, and uncovering

optimal graph patterns for maximizing the prediction of a

particular class. [12] The explainability of a prediction model

is important for making it reliable. In addition, it sheds light

on potential flaws and generates insights on how to further

refine a model.

To provide transparent and easy to understand explana-

tions for the predictions of complex graph models, it is de-

sired to have a user-friendly tool that allows users to un-

pack a model’s black box through interactive exploration of

graphs and visualizations. Many graph database visualiza-

tion tool exists [5, 7], however, they do not provide expla-

nations for the connections that contribute to predictions

in graph models. To address this, we propose a new tool

that utilizes GNNExplainer [12] as the backend explainer

model and displays the most critical connections leading to

model predictions. Our focus is on providing explanations

for predictions, thereby improving the comprehensibility,

this include both homogeneous and heterogeneous graph

models.

Our main contribution in the paper is to build an UI, which

provides a more interpretable way to understand complex

graph models and identify the significant connections that

contribute to predictions. We expect this UI provide deeper
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model understanding formodel developers and improveman-

ual investigation efficiency for non technical person.

2 Method
2.1 GNNExplainer
GNNExplainer is one of the most popular methods in explain-

ing graph model predictions as well as the very first methods

to interpret GNN. It learns soft masks for edges and node

features to explain the predictions via mask optimization. To

obtain masks, it randomly initializes soft masks and treats

them as trainable variables. Then GNNExplainer combines

the masks with the original graph via element-wise multipli-

cations. Next, the masks are optimized by maximizing the

mutual information between the predictions of the original

graph and the predictions of the newly obtained graph. Sup-

pose we want to explain a prediction Y of a given node 𝑣𝑖 and

define the GNN model as 𝑓𝜃 . GNNExplainer acts to provide a

local interpretation𝐺𝑆 = (𝑨𝑺 ,𝑿𝑺 ) , where𝑨𝑺 is the relevant

adjacency matrix and 𝑿𝑺 is the relevant subgraph structure.

The method will find the optimal explanation𝐺𝑆 , which has

the maximum Mutual Information (MI) with prediction 𝑌 :

𝑀𝐼 (𝑌, (𝑨𝑺 ,𝑿𝑺 )) := 𝐻 (𝑌 ) − 𝐻 (𝑌 | 𝑨 = 𝑨𝑺 ,𝑿 = 𝑿𝑺 ) ,

where 𝐻 is the entropy. Since 𝑓𝜃 is already trained, the entropy

𝐻 (𝑌 ) is also fixed. That is to say, the explanation for 𝑣𝑖 ’s prediction

Y is a subgraph 𝑨𝑺 and features 𝑿𝑺 that minimize the uncertainty

of pretrained GNN 𝑓𝜃 when the message-passing is limited to 𝐺𝑆 :

max

(𝑨𝑺 ,𝑿𝑺 )
𝑀𝐼 (𝑌, (𝑨𝑺 ,𝑿𝑺 )) ≈

min

(𝑨𝑺 ,𝑿𝑺 )
−

𝐶∑︁
𝑐=1

𝐼 [𝑦𝑙 = 𝑐] ln 𝑓𝜃 (𝑨𝑺 ,𝑿𝑺 )𝑐𝑣𝑖

where 𝑐 is the number of class. In practice, the objective function

of GNNExplainer can be optimized to learn adjacency mask ma-

trix 𝑴𝑨 and feature selection mask matrix 𝑴𝑭 in the following

equation:

min

(𝑴𝐴,𝑴𝐹 )
L (𝑓𝜃 ,𝑨,𝑴𝑨,𝑿 ,𝑴𝑭 , 𝑣𝑖 , 𝑦𝑙 ) :=

−
𝐶∑︁
𝑐=1

𝐼 [𝑦𝑙 = 𝑐] ln 𝑓𝜃 (𝑨 ⊙ 𝜎 (𝑴𝑨) ,𝑿 ⊙ 𝜎 (𝑴𝑭 ))𝑐𝑣𝑖

where ⊙ denotes element-wise multiplication, and 𝜎 is the sigmoid

function that maps the mask to [0, 1]𝑛×𝑛 . After the optimal mask is

obtained 𝑨𝑆 = 𝑨 ⊙ 𝜎 (𝑴𝑨) use a threshold to remove low values,

similarly 𝑿𝑺 = 𝑿 ⊙ 𝜎 (𝑴𝑭 ).

2.2 Heterogeneous Graph Neural Network
Suppose we have a heterogeneous graph denoted as𝐺 = {𝑉 , 𝐸, 𝑅},
where 𝑣𝑖 ∈ 𝑉 is a node, 𝑒𝑖 =

(
𝑣𝑖 , 𝑟 , 𝑣 𝑗

)
∈ 𝐸 is a labeled relation in

which the label is defined as the label of source node 𝑣𝑖 and 𝑟 ∈ 𝑅

is a relation type. A single layer of heterogeneous GNN aggregates

information for every node from their neighbors and updates the

node’s hidden state with a linear transformation followed by a

nonlinear elementwise activation function as in:

ℎ
(𝑙+1)
𝑖

= 𝜎
©­«
∑︁
𝑟 ∈R

∑︁
𝑗∈N𝑟

𝑖
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where ℎ
(𝑙 )
𝑖

∈ 𝑅𝑑𝑙 denotes the hidden state of 𝑣𝑖 in the 𝑙-th layer

of heterogeneous GNN with 𝑑𝑙 being the hidden state dimensions

in layer 𝑙 . For 𝑙 = 0, ℎ
(0)
𝑖

= 0 if 𝑣𝑖 is an attribute node; if 𝑣𝑖 is a

node, ℎ
(0)
𝑖

= 𝑋𝑖 is the node feature of 𝑖 . A relation-specific scaler

𝑐𝑖,𝑟 is applied at 𝑣𝑖 , which is typically set as the r-degree of 𝑣𝑖 ,

i.e., 𝑐𝑖,𝑟 = |𝑁 𝑟
𝑖
| with 𝑁 𝑟

𝑖
being the set of neighbors of 𝑣𝑖 under

the relation 𝑟 . 𝑾𝒓
(𝑙 ) ,𝑾0

(𝑙 ) ∈ 𝑅𝑑𝑙×𝑑𝑙+1 are learnable parameters

in the 𝑙-th layer for interaction with relations of type 𝑟 as well as

within themselves, respectively. This formula is an extension of the

classical GCN [1].

2.3 HGNNExplainer
To apply the GNNExplainer to a heterogeneous graphs, where each

relation weight matrix𝑾𝒓 represents the nodes’ interaction with

relations of type 𝑟 , the approach taken here is to use masks 𝑴𝒘𝒓

on𝑾𝒓 to learn the importance (masks). When we developed this

tool, there was no pre-existing code available for this particular

extension. As a result, we have provided the following pseudo code

to outline our approach:

Algorithm 1: Implementation of (Heterogeneous

GNN) HGNNExplainer.

1 Class HGCNLayer(nn.Module):
2 def __init__(self, in_size, out_size, etypes,

dropout=0):
3 super().__init__()
4 self.weight = nn.ModuleDict(name:

nn.Linear(in_size, out_size) for name in etypes)

5 def forward(self, graph, feat, eweight=None):
6 func = {}

7 for srctype, relation, dsttype in

graph.canonical_etypes:
8 wh = self.weight[relation](feat[srctype])

9 graph.nodes[srctype].data[f‘wh_relation’] =

wh

10 if eweight is None
11 func[relation] = (fn.copy_u(f’wh_relation’,

’m’), fn.mean(‘m’, ‘h’))

12 else
13 graph.edges[relation].data[‘w’] =

eweight[relation]

14 func[relation] =

(fn.u_mul_e(f‘wh_relation’, ‘w’, ‘m’),

fn.mean(‘m’, ‘h’))

15 graph.multi_update_all(func, ‘sum’)

16 return {ntype: graph.nodes[ntype].data[‘h’]

for ntype in graph.ntypes if ‘h’ in

graph.nodes[ntype].data}

3 Visualization
Visualization is crucial for understanding and interpreting graph

models. Graph models are complex and can capture intricate rela-

tionships among nodes and edges in a graph, making it difficult to

comprehend their inner workings without visualization. Visualiza-

tion provides a way to visually inspect the learned representations
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from the graph and infer the model’s behavior. It also facilitates

error analysis and model debugging, which are essential for improv-

ing model performance. Several literature reviews have highlighted

the importance of visualization in graph models. For example, a

review of GNN applications in biology [15] emphasized the need

for visualization to interpret and communicate the results of GNN

models. Similarly, a survey of GNN applications in social network

analysis [9] identified visualization as an essential component of

GNN model interpretation.

The backend of the UI utilizes AWS services including Amazon

S3 (Simple Storage Service), AWS Lambda, AWS Sagemaker to store

and process the explanations. And we use Python package pyvis
(>= 0.3.2) for graph visualizations. To provide users some interac-

tive functionalities, we use flask (>= 2.2.3), which is a popular web

framework written in Python to build this visualization tool and

APIs. Specifically, we build a backend pipeline for data processing,

graph model explanation and visualization, and then use flask’s

template engine to create a frontend user interface for users to

interact with the data. Figure 1 shows the UI pipeline, the detailed

workflow follows

1. Users bring their own trained model, including model class

in a python file and graph. We currently support graph and

model deployed with DGL >= 0.9.1.

2. Lambda function is triggered and invoke a docker image

deployed on Sagemaker. Pre-implemented explainer model

on our backend is implemented for graph nodes, i.e. finding

the most important edges that contributes to the node pre-

diction. Subgraph visualizations and some other customized

meta data will be produced internally.

3. The explainer model dumps the output produced in the pre-

vious step to a S3 bucket.

4. Users put a node id to the UI, and the corresponding graph

visualization will be displayed. Other interactive functionali-

ties such as filter nodes and edges are enabled as well.

Figure 1. UI pipeline overview.

Noticeable, step 2 and 3 can be fully integrated to the backend of

the UI (refers to the code part that uses flask), where the explainer
model will be trained directly once user request to visualize some

nodes. This will resolve a scalability issue that when the graph is too

big, pre-computing all the explanations would be time consuming.

4 Applications
4.1 Fraud Detection with RGCN Model
Many e-commerce companies work on developing models for find-

ing fraud entities like sellers or buyers based on their relationships.

They use advanced graph models like Relational Graph Convolu-

tion Network (RGCN) and temporal graph neural network (TGN)

to improve the predictions. We onboard one e-commerce fraud

detection RGCN model to our UI and help the investigators with

several goals:

1. Help with manual investigations: the tool has a wide range

of applications for the business team, such as handling es-

calations and audits for graph models, analyzing a graph

network’s spread, detecting problematic edges or relations,

identifying new patterns of suspicious behavior, and exam-

ining aggregated data for person that necessitate manual

investigations. By providing insights into an entity’s graph

structure, this tool can improve overall investigation pro-

cesses.

2. Improve bad actor recall: although RGCN performs well in

general, some fraudsters are still missed. Providing important

neighbors of each person in the graph enables investigators

to identify underlying relationships between predicted bad

and good person. If predicted good person is strongly related

to bad person, such suspicious person can be sent for manual

investigations.

The graphmodel ingests twelve edge types, including anonymized

credit card, and anonymized bank account etc. The main goal of

the explainer model is to keep the top few important edges (based

on their contribution to final model prediction), which reveals the

critical relations among person. Intuitively, importance means if

we remove an edge, the more important an edge, the less accurate

of the model’s predictions. Therefore, these edges should be kept

when making the explanations.

Follow the method section, in this paper we illustrate the tool

with 3-hop connections for a person (here the connection is person-

person interaction, back to RGCN model, we would have a 6-hop

connection heterogeneous graph), then the learned person-relation

edge mask 𝑴𝒘𝒓 can be obtained. Given a threshold 𝑡 (default 0.7),

normalized edge masks with values bigger than that threshold will

be considered as important and kept. Then pyvis is used to visu-

alize the graph, an example is shown in Figure 2. We provide this

interactive graph where the interested node will be highlighted

in yellow and the other important edges identified by RGCNEx-

plainer will be shown as well. In these two visualizations, both

interested person are predicted as high risk with probability greater

than 0.95, however, the explanations for Figure 2b indicates further

investigations need to be carried as most of the connections are

linked to good (green) person. Apart from graph, we show node

level metadata such as number of relations to better demonstrate

the explanations as well as some filter and selection options to filter

the graphs (see Appendix 3 for examples). More functionalities and

customization can be added upon requested.

4.2 Entity Cluster Visualization
Visualizing clusters and full entity relations are also valuable be-

cause it allows people to easily see the patterns and relationships

between data points within a cluster. This can make it easier to
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(a) (b)

Figure 2. Interactive graphs showing the important connections identified by the explainer (importance is determined by a

threshold). Red means bad, green means good, and the yellow one with a question mark is the interested person. Additional

information such as predicted probability, and label can be found by clicking the icons.

interpret the results of a clustering algorithm and gain insights that

may not have been immediately apparent from the raw data. For

example, by visualizing the clusters, one could see that a particular

segment of customers is highly correlated with certain products or

services, which could inform product development or sales strate-

gies. With the architecture already developed for GNNExplainer,

we further generalize this tool for visualizing entity clusters (see

Appendix 4 for an example) as well as holistic views of entities.

Users can bring their own clusters of data in a csv format and use

the tool to make more informed decisions by uncovering hidden

patterns and relationships.

5 Discussion
In this paper, we have created a novel visualization tool that utilizes

GNNExplainer [11] to uncover the inner workings of Graph Neural

Networks and explain their predictions. This tool is the first of its

kind, providing a comprehensive way to visualize and understand

the predictions made by GNN models. As e-commerce companies,

research institutions deploy multiple GNN models, our tool has

the potential to be widely used and shared, offering benefits for a

variety of people.

Our tool is advantageous for several reasons. For one, it can im-

prove the performance of GNN models by identifying ambiguous

or mislabeled nodes. By labeling these nodes correctly, the model

can make better predictions through active learning, improving its

training overall. Furthermore, our tool can detect potential biases

in the model, such as over-reliance on certain edge information or

vulnerability to simple connections. However, there are still some

other features can be further added to the tool. It would be more

general to include options for explaining various graph models. We

can add explanationmethods for graph attentionmodels, label prop-

agation, and temporal graph models (on recent paper has developed

a temporal graph explainer [10]), etc. As graph models are widely

adopted across multiple teams, adding this feature enables more

people benefit from it. Another critical feature is to make the UI

more user friendly and interactive, such as adding highlight options

etc. As discussed in the method section, the pipeline’s scalability is

limited when it comes to handling vast graph datasets. However,

this can be easily fixed once DGL is available on CodeBrowser.

Meanwhile, to address this challenge, one can leverage Neptune

database, which enables almost real-time inference. Combining this

tool with Neptune database can enhance the processing speed and

improve the overall performance of the pipeline.

To summary, the importance of explainable artificial intelligence

(XAI) has become increasingly apparent as real-world problems

grow more complex. Our tool offers a promising solution to this

problem, providing researchers a way to identify potential issues

and improve the accuracy and effectiveness of GNN models. In

addition, our tool has the potential to promote the wider adoption

of GNNs in practical applications and make data more accessible

to non-technical individuals.
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6 Appendix
Figures 3 and 4 shows additional information that will be displayed on the UI.

Figure 3. Extra information that will be displayed on the UI. Table a shows the most important 1 hop connections, where the

normalized importance scores are shown. Table b shows all the 1 hop edges of the interested seller, the number of connected

person (and how many of them are fraudster(blocked)) for each edge type are shown as well.



Graph Model Explainer Tool MLG’23, Aug 2023, Long Beach, CA, USA

Figure 4. Cluster view of a set of interested entities. Users can select and filters using the top boxes. Users need to bring a csv

file containing clusters of entities, where the format follows source entity, destination entity, and relation name.
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