
SpotTarget: Rethinking the Effect of Target Edges for Link
Prediction in Graph Neural Networks

Jing Zhu∗
University of Michigan,

Ann Arbor
jingzhuu@umich.edu

Yuhang Zhou∗
University of Maryland,

College Park
tonyzhou@umd.edu

Vassilis N. Ioannidis
AWS AI Research and

Education
ivasilei@amazon.com

Shengyi Qian
University of Michigan,

Ann Arbor
syqian@umich.edu

Wei Ai
University of Maryland,

College Park
aiwei@umd.edu

Xiang Song
AWS AI Research and

Education
xiangsx@amazon.com

Danai Koutra
University of Michigan,

Ann Arbor
dkoutra@umich.edu

ABSTRACT
Graph Neural Networks (GNNs) have demonstrated promising out-
comes across various tasks, including node classification and link
prediction. Despite their remarkable success in various high-impact
applications, we have identified three common pitfalls in message
passing for link prediction, especially within industrial settings.
Particularly, in prevalent GNN frameworks (e.g., DGL and PyTorch-
Geometric), the target edges (i.e., the edges being predicted) consis-
tently exist as message passing edges in the graph during training.
Consequently, this results in overfitting and distribution shift, both
of which adversely impact the generalizability to test the target
edges. Additionally, during test time, the failure to exclude the test
target edges leads to implicit test leakage caused by neighborhood
aggregation. In this paper, we analyze these three pitfalls and in-
vestigate the impact of including or excluding target edges on the
performance of nodes with varying degrees during training and
test phases. Our theoretical and empirical analysis demonstrates
that low-degree nodes are more susceptible to these pitfalls. These
pitfalls can have detrimental consequences when GNNs are im-
plemented in production systems. To systematically address these
pitfalls, we propose SpotTarget, an effective and efficient GNN
training framework. During training, SpotTarget leverages our
insight regarding low-degree nodes and excludes train target edges
connected to at least one low-degree node. During test time, it
emulates real-world scenarios of GNN usage in production and ex-
cludes all test target edges. Our experiments conducted on diverse
real-world datasets, demonstrate that SpotTarget significantly en-
hances GNNs, achieving up to a 15× increase in accuracy in sparse
graphs. Furthermore, SpotTarget consistently and dramatically
improves the performance for low-degree nodes in dense graphs.

ACM Reference Format:
Jing Zhu∗, Yuhang Zhou∗, Vassilis N. Ioannidis, Shengyi Qian, Wei Ai, Xiang
Song, and Danai Koutra. 2023. SpotTarget: Rethinking the Effect of Target

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD MLG’23, August, 2023, Long Beach CA, USA

© 2023 Association for Computing Machinery.
ACM ISBN XXXXXXXXXXXXXXXXXX. . . $15.00
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

Edges for Link Prediction in Graph Neural Networks. In Proceedings of KDD

MLG’23. ACM, New York, NY, USA, 11 pages. https://doi.org/XX.XXXX/
XXXXXXX.XXXXXXX

1 INTRODUCTION
Graphs or networks serve as fundamental representations for re-
lational data, and their analysis is useful in numerous scientific
and industrial applications. Link prediction, the task of predicting
whether a link is likely to form between two nodes or entities in a
graph, has wide-ranging downstream applications, including drug
repurposing, recommendation systems, and knowledge graph com-
pletion [1, 3, 15, 16, 18, 31]. Link prediction is widely employed
as a pre-training technique to generate high-quality entity repre-
sentations applicable to diverse business applications. Techniques
for solving this task vary, ranging from heuristics (e.g., predicting
links based on the number of common neighbors between node
pairs) to graph neural network (GNN) models. GNN models uti-
lize message passing and leverage both the graph structure and
node features. Recently, GNN-based approaches, which frame the
link prediction problem as a binary classification task over node
pairs, have achieved state-of-the-art performance in numerous high-
impact applications and have emerged as the go-to approach in
both industry and academia [12, 14, 32, 34].

However, in most existing GNN models, the target edges (i.e.,
the edges whose existence or absence is predicted) exist consis-
tently in the training graph and serve as message passing edges
during training. This results in two pitfalls during training: (P1)
overfitting and (P2) distribution shift. We observe that these pitfalls
are prevalent in the majority of GNN-based frameworks used for
link prediction. For instance, PyTorch Geometric (PyG)[9], a widely
used library, lacks support for excluding target edges during the
construction of mini-batch graphs for training. Although DGL[26]
offers support for excluding target edges through one of its sampler
arguments, the significance of excluding these target links is fre-
quently ignored by the community. These pitfalls are prevalent in
both industry and academia, where researchers frequently develop
application code using open-source frameworks such as PyG and
DGL. Consequently, it is easy to overlook the problems associated
with overfitting and distribution shift. In addition to training time,
failure to exclude the test target edges from the test graph leads
to (P3) implicit test leakage through neighborhood aggregation.
∗ equal contribution

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

KDD MLG’23, August, 2023, Long Beach CA, USA Jing Zhu et al.

(a) Train graph

0 1

2 3
Exclude

train target edges

0 1

2 3

Inclu
de

trai
n tar

get e
dges

Training Time

(b) Test graph

A B

C D
Exclude

test target edges

A B

C D

Inclu
de

tes
t ta

rget e
dges

Test Time

4 E

F

0 1

2 3

A B

C D

(a1) 1-hop train graph
for nodes 1 and 2

(a2) 1-hop train graph
for nodes 1 and 2

(b1) 1-hop test graph
for nodes B and C

(b2) 1-hop test graph
for nodes B and C

tra
ini

ng
tar

ge
t

ed
ge

?

tes
t tar

ge
t e

dg
e

Training Target Edges Test Target Edges Results Pitfalls
Include (a1) - ✗ (P1) Overfitting
Include (a1) Exclude (b2) ✗ (P2) Distribution shift

- Include (b1) ✗ (P3) Leakage
Exclude (a2) Exclude (b2) ✓ –

Figure 1: Common pitfalls in message passing for link prediction when the training and/or test target links are included as
message passing edges. [Left] Training time: Given a toy train graph and training target edge 𝑒12 (a), illustration of the impact
of the inclusion (a1) and exclusion (a2) of 𝑒12 in the 1-hop induced train graph for nodes 1 and 2, which is used for message
passing. [Right] Test time: The same illustration for a given test graph and test target edge 𝑒𝐵𝐶 (b). [Table]: Overview of the
three main pitfalls and when they arise: (P1) When train target links are included, GNNs overfit on them instead of making
predictions based on the graph structure and features. (P2) When train target links are present but test target edges are absent,
there is a distribution shift between training and testing. (P3) The presence of test target links results in implicit test leakage.
These pitfalls can be resolved by excluding the target links from both the training and test message passing graphs.

While some popular benchmarks [11] have deliberately addressed
this issue during their construction, it remains a frequently over-
looked problem for applications that heavily rely on proprietary
data. Specifically, deployed systems are more prone to experiencing
these pitfalls. In this paper, we emphasize the significance of
excluding target edges during both training and testing time,
quantify the adverse impact of their inclusion on the perfor-
mance of deployed solutions, and introduce an effective and
efficient GNN framework that mitigates all these pitfalls.

Example 1.1. We give an illustrative example of the pitfalls in
message passing during training and test time in Fig. 1. During
training, the existence of training target edges during message pass-
ing leads to (P1) overfitting and (P2) distribution shift. In Fig. 1(a),
𝑒12 is a training target edge for which we want to predict the ex-
istence. When this edge is not excluded from the training graph,
GNNs would use the message passing graph shown in Fig. 1(a1) for
nodes 𝑣𝐵 and 𝑣𝐶 , which leads to overfitting on 𝑒12 and memorizing
its existence instead of learning to predict it based on the graph
structure and node features. Moreover, in a realistic testing scenario
as in Fig. 1(b) where the goal is to predict whether the edge 𝑒𝐵𝐶
exists or not, GNNs would use the message passing graph shown
in Fig. 1(b2) for nodes 𝑣𝐵 and 𝑣𝐶 , which are connected by a missing
edge 𝑒𝐵𝐶 . This leads to distribution shift: There is discrepancy be-
tween the message passing graphs used during training and testing
despite the similarity between the train and test graphs as well
as the target links. Pitfalls (P1) and (P2) lead to poor performance
for GNN models and inability to effectively generalize to (truly)
unobserved links at test time or in production.

At test time, since most popular GNN frameworks do not explic-
itly emphasize the importance of excluding the test target edges
from the test graph, it is easy to overlook the fact that the test target
edges included by default in message passing causes data leakage.
In our example, if the test target edge 𝑒𝐵𝐶 is used in the message
passing graph for nodes 𝑣𝐵 and 𝑣𝐶 (Fig. 1(b1)), when performing
neighborhood aggregation, the target node 𝑣𝐵 would aggregate the
messages from 𝑣𝐶 and vice versa, resulting in a higher likelihood of
predicting 𝑣𝐵 and 𝑣𝐶 forming an edge compared to the case where
𝑒𝐵𝐶 does not exist on the message passing graph. But in real-world
applications in deployment, the goal is to predict the future links
that are not observed in the data, so the inclusion of test target links
corresponds to implicit data leakage.

To address three identified pitfalls, we present SpotTarget, a
framework that systematically excludes the target edges during
both training and testing. SpotTarget builds upon the crucial ob-
servation that low-degree nodes are more susceptible to these pit-
falls due to the substantial relative degree changes resulting from
the inclusion of target edges, in contrast to high-degree nodes.
This is because, for high-degree nodes, the erroneously-considered
additional message passing edges (target links) have minimal im-
pact on performance, as they constitute a small fraction of the
edges involved in message passing and neighborhood aggregation.
Therefore, addressing these pitfalls is crucial in industrial settings,
especially for e-commerce applications, where the observed data
is incomplete and highly sparse, containing numerous low-degree
nodes [20]. While excluding all training targets may seem like an
ideal solution, we explored that it significantly disrupts the mini-
batch graph and harms the GNN learning. Theoretical and empirical

SpotTarget: Rethinking the Effect of Target Edges for Link Prediction in GNNs KDD MLG’23, August, 2023, Long Beach CA, USA

evidence demonstrate that excluding the target links connected to
at least one low-degree node achieves the optimal balance between
avoiding pitfalls (P1)–(P2) and acquiring strong node representa-
tions from resilient mini-batch graphs during training. During test
time, we assert the significance of emulating real-world scenarios
and preventing leakage by excluding all target edges from the test
graph. Our framework SpotTarget consists of two modules: (1)
an edge sampler that excludes target edges connected to at least
one low-degree node, and (2) a leakage check module that verifies
the exclusion of target test edges for any user-defined dataset and
automatically excludes them if necessary. We are currently in the
process of integrating our plug-and-play framework into the DGL
library [25]. Our contributions can be summarized as follows:

• Systematic Analysis of Target Edges’ Effects: Focusing on
link prediction, we conduct the first theoretical and empirical
analysis to examine the impact of including target edges as mes-
sage passing edges during training and test time. Our key insight
reveals that low-degree nodes are more susceptible to the pitfalls
of including the target edges as message passing edges.

• Unified Framework: We present SpotTarget, the first unified
GNN training framework that addresses the pitfalls by automat-
ically excluding target edges that are incident to at least one
low-degree node during training and excludes all target edges
during testing to ensure robust model training without any im-
plicit data leakage.

• Rigorous Experiments: To quantify the impact of target edges
during training and test time, we performed extensive exper-
iments on a diverse range of datasets, including widely-used
link prediction benchmarks as well as real-world datasets. Addi-
tionally, we conducted a specific analysis of the impact on the
low-degree nodes in dense datasets. Our findings demonstrate
that SpotTarget achieves up to a 15 × increase in the accuracy
of GNN models on sparse graphs. Moreover, it notably enhances
the performance of low-degree nodes on dense graphs.

2 RELATEDWORK
Link Prediction using GNNs. Graph neural networks (GNNs)
are popular neural network architectures that learn representa-
tions by capturing the interactions between objects. While per-
haps most often used for node- or graph-level classication, the
applications of graph neural networks have expanded to include
edge-level inference tasks like link prediction. Methods that use
GNNs for link prediction mainly fall into two categories: Graph
Autoencoder (GAE)-based methods and enclosing subgraph-based
methods. GAE-based methods use GNNs as the encoder of nodes,
and edges are decoded by their nodes’ encoding vectors using score
functions [5, 14, 24, 30, 36]. For enclosing subgraph-based methods
including SEAL [32, 34], IGMC [33], GraIL [23], TCL-GNN [29] first
extract an enclosing subgraph for the target edge , apply GNNs to
encode the node representations of nodes in enclosing subgraph,
and then aggregate the node representations by pooling meth-
ods. Subsequently, the learned subgraph features are utilized as
inputs to a classifier to predict the presence of the target edge.
Despite the fact that enclosing subgraph-based methods, such as
SEAL, yield more accurate predictions, GAE-based methods are

Table 1: Major symbols and their definitions.

Symbols Definitions

𝐺 Graph
𝑑𝑖 Degree of node 𝑖
𝑒𝑖 𝑗 The target edge between nodes 𝑖, 𝑗 to be predicted
𝑇tr The set of train target edges
𝑇tst The set of test target edges
𝑇low Set of target edges incident to at least one low-degree node
𝛿 Degree threshold to filter edges in 𝑇low
typically significantly faster to compute and require fewer compu-
tational resources. In industrial applications, graphs often exhibit
a massive scale, encompassing millions or even billions of nodes.
Consequently, GAE-based methods are commonly preferred [35].
Issues in Link Prediction using GNNs. In contrast to node clas-
sification, where edges serve solely as message passing edges, the
edges in the link prediction task play dual roles: (1) message passing
edges and (2) prediction objectives. Consequently, it is crucial to
pay special attention to dataset construction and loading to mitigate
potential pitfalls that can negatively impact the performance of de-
ployed systems. However, this distinction is frequently overlooked,
particularly in GAE-based methods, which often directly adapt
GNN models designed for node classification to generate node em-
beddings. This oversight leads to problems in training GNN models
for link prediction. The training pitfalls caused by the existence of
target edges were initially identified by SEAL [27, 32], which made
efforts to mitigate them through negative injection. Expanding on
this work, FakeEdge [7] delves into the distribution shift issues
that arise from the presence of target edges during training and
their absence during testing. They further propose frameworks that
involve the addition, removal, or a combination of both of the target
edges from the induced subgraph in subgraph-based methods like
SEAL. In contrast to SEAL or FakeEdge, our work aims to conduct a
comprehensive analysis of all the pitfalls arising from the presence
of target edges. Through an extensive degree-based analysis, we
demonstrate which types of nodes are more susceptible to these
pitfalls and present strategies to strike an optimal balance between
avoiding training pitfalls and maintaining graph structure based on
node degrees. In comparison to SEAL and FakeEdge, our proposed
framework specifically addresses this concern within GAE-based
methods. This holds greater practical significance as GAE-based
methods are frequently employed in industry due to their high effi-
ciency and their ability to leverage nodes’ natural features for link
prediction. Additionally, our proposed framework exhibits greater
scalability compared to FakeEdge. For instance, while FakeEdge re-
quires over 20 hours to complete a single epoch on Ogbl-Citation2,
SpotTarget achieves the same task in just 2 hours.

3 PRELIMINARIES
In this section, we formally define key notions aswell as the problem
that we seek to solve. The major symbols we use is defined in Tab. 1.

3.1 Definitions
3.1.1 Graphs. We consider a graph 𝐺 = (𝑉 , 𝐸,X), where 𝑉 is the
set of vertices, 𝐸 is the set of edges, andX ∈ R |𝑉 |×𝑑 represents the𝑑-
dimensional input node features. We denote the 𝑘-hop neighbors
of node 𝑢—i.e., the set of nodes at a distance less than or equal

KDD MLG’23, August, 2023, Long Beach CA, USA Jing Zhu et al.

to 𝑘 from 𝑢—as 𝑁𝑘 (𝑢). The degree 𝑑𝑢 of node 𝑢 is defined as the
number of its 1-hop neighbors or adjacent nodes, i.e., 𝑑𝑢 = |𝑁1 (𝑢) |.

3.1.2 Link Prediction. Given a graph 𝐺 = (𝑉 , 𝐸,X), the link pre-
diction task aims to determine whether there is or will be a link
𝑒𝑖 𝑗 between a pair of nodes 𝑖 and 𝑗 , where 𝑖, 𝑗 ∈ 𝑉 and 𝑒𝑖 𝑗 ∉ 𝐸. We
refer to 𝑒𝑖 𝑗 , the edge for which we want to predict the existence or
absence, as target edge or link.

In this work, we distinguish different types of target links: (1) train-
ing vs. test target links: the training target edges, 𝑇tr, are used to
train a supervised link prediction model, while the test target links,
𝑇tst, are the links for which we want to predict the existence or
absence at test time (e.g., when evaluating the test performance or
making predictions in a deployed system). In our real experiments,
(2) target links that are incident to at least one low-degree
node vs. not: based on our theoretical insights in Sec. 5.1, our
framework leverages target links that are incident to at least one
low-degree node (i.e., edges 𝑒𝑢𝑣 for which min(𝑑𝑢 , 𝑑𝑣) is small),
denoted as 𝑇low. Throughout the paper, our discussion of the in-
clusion of test target links is done in the setting of evaluating test
performance instead of deployed system, where there exist ground
truth test links as labels. We primarily adopt the widely used train,
validate, test setting, where only the epoch that achieves best per-
formance on validation edges will be evaluated by test edges.

3.1.3 Graph Neural Networks. GNNmodels utilize a neighborhood
aggregation scheme to learn a representation vector ℎ𝑣 for each
node 𝑣 . In general, the node representation of node 𝑣 can be for-
mulated as a 𝑘-round neighborhood aggregation schema: ℎ (𝑘)𝑣 =

COMBINE(𝑘) ({ℎ (𝑘−1)𝑣 ,AGGREGATE(𝑘) ({ℎ (𝑘−1)𝑢 : 𝑢 ∈ 𝑁𝑘 (𝑣)})}),
where AGGREGATE(.) is typically mean or max pooling, and COM-
BINE(.) can be a sum/concatenation/attention on nodes’ ego- and
neighbor-embeddings. GNN models utilize a neighborhood aggre-
gation scheme to learn a representation vector ℎ𝑣 for each node 𝑣 .
For link prediction tasks, GNNs are typically trained using cross-
entropy loss to differentiate positive links versus negative links.
Given a set of target links, we define the 𝑘-hop message passing
graph of a GNN model as the induced subgraph that contains all
the endpoint nodes of the target edges, their k-hop neighbors, and
the edges of the original graph that connect these nodes. Examples
of (train and test) 1-hop message passing graphs are given in Fig. 1.

3.2 Problem Statement
Given a graph 𝐺 , a link prediction task, and a base GNN model in
a mini-batch training setting, we seek to: (1) explain the pitfalls
of including the target links 𝑇tr and 𝑇tst as message passing edges
during training and test time, respectively, and (2) propose solutions
to best avoid the pitfalls.

4 PITFALLS IN MESSAGE PASSING FOR LINK
PREDICTION

In this section, we aim to explain the pitfalls of including target
edges as message passing edges during training and test time.

4.1 Pitfalls during Training Time
When the train target edges are presented and used as message
passing edges, it causes overfitting and distribution shifts.

(P1) Overfitting. Suppose that we have an original train graph
𝐺 , as shown in Fig. 1(a). GAE based methods first generate node
1 and node 2’s embeddings by aggregating their 1-hop neighbor’s
information and decode the likelihood of node 1 and node 2 forming
an edge using a dot product decoder. When the target edge 𝑒12 is
present, node 1’s embedding aggregates node 2’s features, and vice
versa. And since the training objective is to predict 𝑦12 as high as
possible. The GNNs would learn that as long as it tries to overfit
on the train objective, it would achieve its train target. Similarly,
subgraph-based models first find an enclosing subgraph for target
edges 𝑇tr and then apply GNNs upon the enclosing subgraph to
predict the link existence also suffer from overfitting issues. And
this overfitting issue causes GNNs to generalize poorly to test data.
(P2) Distribution Shift. In typical GNN trainings for link predic-
tion, the train target edges 𝑇tr are usually present and used during
message passing, while the test target edges 𝑇tst are absent and
never used during test, and this poses a distribution shift problem.
As shown in Fig. 1, suppose that (a) is the train graph with 𝑒12 as
the train target edge and (b) is the test graph with 𝑒𝐵𝐶 as the test
target edge. At training time, when node 1 aggregates the message
from its neighbors, node 1 sees that node 2 is its direct neighbors,
and the messages from node 2 are aggregated and used to compute
node 1’s embeddings Fig. 1(a1). In the realistic test scenario, when
node B aggregates the message from its neighbors, it never treats
node C as its direct neighbor because future links are not observed
in the data. And this poses a distribution shift between training and
testing time and results in poor generalizability.

4.2 Pitfalls during Test Time
(P3) Data Leakage. During the test of the GNN models, popular
GNN frameworks do not provide explicit functions to remove the
testing edges frommessage passing. One may overlook the fact that
the test target edges are included by default in message passing.
We found that when test targets edges 𝑇tst are included in message
passing, it results in implicit data leakages, as shown in Fig. 1(b1).
When test target 𝑒12 exists in the test message passing graph, in
order to do the inference, the target node 𝑣1 would aggregate mes-
sages from 𝑣2 and vice versa, resulting in a higher likelihood of
predicting 𝑣1 and 𝑣2 forming an edge, compared with the case when
𝑒12 does not exist in the message passing graph. And this is actually
a test leakage because it would result in near-perfect performance
for expressive GNN frameworks even though GNNs never learn on
the test target edges. In real-world deployment applications, future
links that we want to predict upon are never observed in the data.

5 PROPOSED FRAMEWORK: SpotTarget
In this section, we detail SpotTarget, the first framework system-
atically resolving the issues of the presence of target edges in the
message passing graph for link prediction. We propose separate
solutions for training and inference time, respectively.

5.1 Training-time Solution: Exclude Target
Links Adjacent to Low-degree Nodes

As discussed in Sec. 4.1, when train target edges 𝑇Tr are used as
message passing edges, it causes overfitting and distribution shifts.

SpotTarget: Rethinking the Effect of Target Edges for Link Prediction in GNNs KDD MLG’23, August, 2023, Long Beach CA, USA

0 1

3 4

2

5

6 7

training target
edge

2-hop train graph

0 1

3 4

2

5

6 7

0 1

3 4

2

5

6 7

2-hop train graph (Exclude All) 2-hop train graph (SpotTarget)

Figure 2: Example 2-hop message passing graph for a mini-
batch of size 4. Red lines are train target edges and black lines
are other message passing edges induced by the target edges.
[Left] if all target (red) edges𝑇Tr are excluded during training,
it results in three disconnected components. [Right] If only
low-degree train targets edges are excluded 𝑇low, the graph
is still connected. There is limited corruption to the graph
structure while avoiding pitfalls P1 and P2.

One intuitive solution is to exclude all train target edges during
training. However, this exposes several challenges.
• First, when excluding all target edges in the batch, one excluded
target edge could be the message passing edge of another tar-
get edge. For example, in Fig. 2, 𝑒14 is both a target edge and a
message passing edge of node 4 and node 1. The existence of 𝑒14
can also influence the learning of target edges 𝑒46, 𝑒01 and 𝑒12.
Excluding all target edges causes significant corruption of the
graph structure. The extreme case is that some nodes become
isolated nodes after excluding all the target edges like node 2 in
Fig. 2. As a result, GNNs fail to learn good representations when
all target edges are excluded.

• Second, the corruption of graph structure resulting from the ex-
clusion of all target edges is applicable to both mini-batch and
full-batch settings. Moreover, in full-batch training, each training
step requires iterating over all edges in the graph to remove the
target edges, resulting in time-consuming operations. In indus-
trial settings, performing full-batch training for link prediction
on large graphs (consisting of millions of nodes) is uncommon
due to its inefficiency in terms of both time and space complexity.

• Third, although setting the batch size to 1 can resolve the issue of
structure corruption, it leads to a significantly small mini-batch
graph, resulting in inefficiency and instability during training.
The question at hand is: How can we attain the optimal trade-off

between mitigating the pitfalls (P1, P2) resulting from the presence

of train target edges and preserving the graph structure as much
as possible during mini-batch training?

The key to addressing this problem lies in analyzing which nodes
are most affected by P1 and P2 and selectively excluding only the
target edges incident to those highly affected nodes. We argue that
by exclusively excluding the target edges incident to low-degree
nodes, we can achieve the optimal trade-off between avoiding train-
ing pitfalls and minimizing graph corruption. Since low-degree
nodes have fewer neighbors compared to high-degree nodes, there
is a small probability that the excluded target edges adjacent to
low-degree nodes serve as message-passing edges for other nodes.
Next, we present a theoretical analysis demonstrating that low-
degree nodes are the most affected by the pitfalls. Based on this
analysis, we propose that target links in𝑇low incident to at least one
low-degree node should be excluded during mini-batch training.
Theoretical Analysis. In this section, we explain why low-degree
nodes suffer more from the pitfalls caused by the inclusion of train
targets than high-degree nodes from a theoretical perspective. In-
tuitively, we focus on comparing the distance a random node 𝑣𝑘 ’s
effect on node 𝑣ℎ, 𝑣𝑙 before and after excluding one neighboring
edge of 𝑣ℎ, 𝑣𝑙 respectively. We leverage the notion of influence/ef-
fect functions in statistics [22, 28] to measure the relative influence
of a node on another node through a specific train edge.

Theorem 1. Let 𝑣ℎ and 𝑣𝑙 be two nodes in a graph with 𝑑ℎ > 𝑑𝑙 , let

node 𝑣𝑘 be an arbitrary node in the graph. Assume that ReLU is the

activation function, the Λ-layer GNN is untrained, and all random

walk paths from 𝑣ℎ to 𝑣𝑙 have a return probability of 0. We denote the

effect of node 𝑣𝑘 on node 𝑣ℎ after Λ-th layer GNN as

𝜕𝑥Λ
ℎ

𝜕𝑥𝑘
where 𝑥ℎ, 𝑥𝑘

are 𝑛−dimensional vectors indicating the embeddings for node 𝑣ℎ, 𝑣𝑘 .

Further we denote that effect of node 𝑣𝑘 on node 𝑣ℎ after removing

one neighboring edge of node 𝑣ℎ as
𝜕𝑥ℎ

Λ

𝜕𝑥𝑘
. Define the change of effect

of 𝑣𝑘 on 𝑣ℎ before and after removing one neigboring edge of 𝑣ℎ as

a distance function 𝐷 (𝑘, ℎ), where 𝐷 (𝑘, ℎ) = 1 − E(
𝜕�̃�Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) for

any entry 1 ≤ 𝑠, 𝑡 ≤ 𝑛 of 𝑥ℎ and 𝑥𝑘 . And similarly, for node 𝑣𝑙 , we

also have 𝐷 (𝑘, 𝑙) = 1 − E(
𝜕�̃�Λ

𝑙,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

𝑙,𝑠

𝜕𝑥𝑘,𝑡
) for any entry 1 ≤ 𝑠, 𝑡 ≤ 𝑛 of

𝑥𝑙 and 𝑥𝑘 . Then 𝐷 (𝑘, ℎ) < 𝐷 (𝑘, 𝑙).

We provide the proof in Appendix B. From Theorem 1, we prove
that the change of effect of a random node 𝑣𝑘 on 𝑣ℎ , 𝑣𝑙 brought
by excluding target edges is higher for 𝑣𝑙 than 𝑣ℎ . This shows that
low-degree nodes benefit more by excluding target edges. As a
result, when all target edges are present, low-degree nodes are
more vulnerable to the pitfalls brought by the inclusion of target
edges. And this holds for any message passing GNNs.

Besides the theoretical analysis, we also provide a quantitative
analysis of average degree change in Appendix A.3 and conclude
that when excluding training targets, the relative degree change
for nodes with low degrees is much larger than high-degree nodes.
Solution: Exclude edges incident to at least one low-degree
node lower than 𝛿 . To achieve the best trade-off between these,
we propose to exclude the train target edges where at least one
incident node is lower than a degree threshold 𝛿 . We denote the set
of these target edges as 𝑇low. We claim that excluding train targets
in𝑇low achieves the best trade-off between avoiding pitfalls brought

KDD MLG’23, August, 2023, Long Beach CA, USA Jing Zhu et al.

Algorithm 1 SpotTarget: Leakage Check(𝐺)
1: Input: An input graph G, edge splits S, an argument K if valid

edges are used as inference inputs, K = {𝑇, 𝐹 }
2: Output: The desired inference graph Ginfer

/* STEP 1. Check if the input graph contains validation and

test edges */

3: 𝐶valid = Check Existence(G, Svalid)
4: 𝐶test = Check Existence(G, Stest)

/* STEP 2. Delete Test and Validation Edges According to User

Requirement*/

5: if 𝐶test is True then
6: Ginfer = RemoveEdge(G, Stest)
7: else
8: Ginfer = G

/*If Validation Edges Exist in the Inference Graph and is not

Desired*/

9: if 𝐶valid is True and K is False then
10: Ginfer = RemoveEdge(Ginfer, Svalid)
11: return Ginfer

Table 2: Statistics of the datasets used for link prediction
experiments. All numbers are counted in the training dataset
without valid and test edges.

Dataset # Nodes # Edges Node deg. Attr. dim.

ogbl-collab [11] 235,868 2,358,104 8.20 128
ogbl-citation2 [11] 2,927,963 30,387,995 20.73 128
USAir [21] 332 3,402 10.25 332
E-commerce [20] 346,439 238,818 1.38 768

by the inclusion of train targets and graph structure distraction.
Implementation-wise, to ensure the scalability of our sampler and
the usability of our sampler in real-world deployed systems, we
implemented it as a subclass of DGL’s edge sampler. This is equiva-
lent to the DGL’s original edge sampler and can be combined with
other functions in DGL smoothly.

5.2 Test-time Right Practices: Exclude All Test
Target Links

As discussed in Sec. 4.2, one may overlook the inclusion of test
target edges in message passing or to add them into the graph to
maintain no distribution shifts, but this practice can result in test
leakage. We firmly assert that under no circumstance should test
edges be utilized as message passing edges. In real-world deployed
systems, the future links between nodes are unknown, making
it imperative to avoid any utilization of test edges for message
passing.

We propose that test target edges should always be excluded
from the test message passing graph. To facilitate this, we provide
a module that automatically checks for the presence of test tar-
get edges in the inference graph and removes them if necessary.
The algorithms outlining this process are presented in Alg. 1. In
previous literature [11], it was sometimes common to include val-
idation edges in the message passing graphs to gather additional
information, particularly for time-split data. The inclusion of vali-
dation edges in the message passing graph is not considered as data

Table 3: Train-Pitfall Results: Test performance of different
training frameworks across GNN models and datasets. Per
dataset, we report the recommended evaluationmetric in the
literature. *OOM = out of GPU memory

Model ExcludeNone(Tr) ExcludeAll SpotTarget
Ogbl-Collab (H@50 ↑)

SAGE 48.57 ± 0.74 45.82 ± 0.41 49.00 ± 0.65
MB-GCN 43.03 ± 0.50 37.75 ± 1.42 39.58 ± 1.06
GATv2 45.61 ± 0.85 45.71 ± 0.87 45.46 ± 0.19
SEAL 61.27 ± 0.28 64.11 ± 0.30 64.57 ± 0.30

Ogbl-Citation2 (MRR ↑)

SAGE 82.06 ± 0.06 81.47 ± 0.17 82.18 ± 0.18
MB-GCN 79.70 ± 0.25 79.06 ± 0.30 79.88 ± 0.14
GATv2 OOM OOM OOM
SEAL 86.75 ± 0.20 86.74 ± 0.23 86.93 ± 0.55

USAir (AUC ↑)

SAGE 95.97 ± 0.17 95.71 ± 0.12 96.19 ± 0.53
MB-GCN 94.00 ± 0.14 94.09 ± 0.11 94.28 ± 0.15
GATv2 95.05 ± 0.66 95.66 ± 0.24 95.87 ± 0.46
SEAL 95.36 ± 0.24 95.94 ± 0.04 96.39 ± 0.09

Rank ↓ 2.27 2.45 1.27

leakage. However, the decision of whether to use validation edges
as message passing edges relies heavily on the user’s preference.
In our algorithm, we prompt users to deliberately specify their
preference and return the desired inference graph accordingly.

6 EXPERIMENTS
We aim to address the following questions through experiments.
• How well does SpotTarget address P1 and P2 on commonly
benchmarked datasets?

• What is its performance in the e-commerce setting, where the
most nodes have a very low degree?

• How well does SpotTarget address P1-P2 on edges incident to
low-degree nodes specifically on commonly-used benchmarks?

• For test-related pitfall P3, what is the “fake” performance increase
that is introduced by implicit data leakage?
We also provide analysis on the degree threshold 𝛿 in App. A.4

and show that SpotTarget has comparable computational com-
plexity with baseline models in App. A.5.

6.1 Experimental Setup
Data. We evaluate our framework on four real-world datasets from
multiple domains. Ogbl-Collab and Ogbl-Citation2 [11] are the au-
thor collaboration and citation networks. USAir [21] is a network of
US Air lines. We notice that these datasets are relatively dense, with
average node degree of 8-20. In real-world deployed systems, the ob-
served data is typically more sparse, with many low-degree nodes.
Hence, we adapt a sparse graph dataset from E-commerce [20]. E-
commerce is a real-world dataset constructed according to shopping
queries and related products in Amazon Search, which captures
whether the queries are exact matches of the products. We give the
details of dataset construction in Appendix A.1. Detailed statistics
of all datasets are shown in Tab. 2 .

SpotTarget: Rethinking the Effect of Target Edges for Link Prediction in GNNs KDD MLG’23, August, 2023, Long Beach CA, USA

Table 4: Train-Pitfall Results: Test performance on the sparse E-commerce dataset. SpotTarget achieves a consistently better
performance boost on E-commerce across metrics and datasets. For SAGE and GATv2, SpotTarget is up to 15× more accurate.

SAGE MB-GCN GATv2
Metrics ExcludeNone(Tr) SpotTarget ExcludeNone(Tr) SpotTarget ExcludeNone(Tr) SpotTarget

MRR ↑ 4.40 ± 0.31 65.85 ± 0.31 17.07 ± 7.38 69.67 ± 0.52 5.98 ± 0.56 69.44 ± 0.55
H@10 ↑ 6.55 ± 0.37 89.67 ± 0.19 28.35 ± 7.47 89.79 ± 0.25 9.64 ± 1.10 90.52 ± 0.26
H@1 ↑ 3.04 ± 0.31 52.84 ± 0.46 10.83 ± 5.21 57.63 ± 0.57 3.94 ± 0.81 57.11 ± 1.03

Metrics. Following prior works, we use Mean Reciprocal Rank
(MRR) on Ogbl-Citation2 and Hits@50 on Ogbl-Collab [11]. Area
Under the Curve (AUC) is used for USAir [32]. For E-commerce,
we choose to report MRR, Hits@10, and Hits@1, the three most
commonly-used evaluation metrics for link prediction [11, 24, 34].
For all evaluation metrics, the higher the number is, the better.
GNN models. We select four GNN models to validate our method.
SAGE [10], MB-GCN [13] and GATv2 [4] are GAE-based models.
MB-GCN [13] is a mini-batch GCN model that follows the same
message passing functions as GCN. At each iteration, only a portion
of the entire graph is seen instead of the entire graph. We call it as
MB-GCN, namely mini-batch GCN. SEAL [32] is a subgraph-based
model that extracts an enclosing subgraph for each target edge and
predicts the link likelihood based on the subgraph’s embeddings.
Implementation Details. All GNN models are implemented in
DGL [19, 26]. We conduct a comprehensive hyperparameter tuning
and choose the best ones. More details are in Appendix A.2.
Baselines. For train pitfalls P1 and P2, we use ExcludeNone(Tr),
ExcludeAll as our baselines, which indicates two different ways
of including/excluding target edges. ExcludeNone(Tr) does not ex-
clude any training target edges, and ExcludeAll exclude all train
target edges 𝑇Tr. Note that ExcludeAll on SEAL is essentially Fa-
keEdge, which excludes all target edges on subgraph-based models.

For test pitfalls P3, our baseline is ExcludeNone(Tst), which uses
the test target edges in the inference graph. Note that Exclude-
None(Tst) is the case where data leakage happens, which should be
avoided at all time in real-world deployed systems.
SpotTargetVariants. At training time, our proposed framework
SpotTarget excludes the set of target edges𝑇low incident to at least
one low-degree node, where the degree threshold is denoted as 𝛿 .
Experimentally, we choose 𝛿 to be 10 and 20, which corresponds
to the average degrees of the datasets used, and report the best
performing ones. More discussions of 𝛿 is in Appendix A.4.

At test time, our SpotTarget includes two variants Exclude-
ValTst and ExcludeTst. ExcludeValTst excludes both validation and
test target edges in the test graph, while ExcludeTst only excludes
test target edges in the test graph. Whether to use ExcludeValTst
or ExcludeTst depends on the user’s preference.

6.2 Train Pitfalls: Results on Dense Datasets
Setup. To evaluate SpotTarget’s ability on addressing train pitfalls
P1 and P2 on common benchmarks, we report the link prediction
performance of four GNN models on three dense datasets and three
trials for each setting. For Ogbl-Collab and Ogbl-Citation2, we
generate one negative per edge during training and use the recom-
mended negatives during evaluation. For USAir, we also generate
one negative per edge during training, and during evaluation, we

treat all edges that do not appear in the train,test,validation as nega-
tive edges. Besides the performance for each setting, we also report
the average rank of our baselines ExcludeNone(Tr), ExcludeAll and
proposed method SpotTarget. Results are summarized in Tab. 3.
Results. SpotTarget consistently achieves the best performance
(lowest rank) across different datasets and models. This indicates
SpotTarget’s successful resolution of pitfalls P1 and P2 without
corrupting the mini-batch graphs. Although ExcludeAll is used in
the original implementation of SEAL, replacing ExcludeAll with
SpotTarget leads to further performance improvement. It is worth
noting that ExcludeAll generally leads to slightly lower performance
compared to ExcludeNone(Tr). This is because excluding all target
edges in a single mini-batch leads to a significant alteration of the
graph structure, including the isolation of certain nodes. Hence,
GNNs struggle to learn effective node representations.

Observation 1. (1) SpotTarget outperforms both ExcludeNone(Tr)

and ExcludeAll, achieving the best average results and the lowest

rank. This suggests SpotTarget successfully resolving the pitfalls P1

and P2. (2) In some cases (6/11), ExcludeAll in the mini-batch graphs

results in performance degradation due to graph structure corruption.

6.3 Train Pitfalls: Results on Sparse Datasets
Setup. We repeat our experiments on E-commerce dataset with the
similar setup in Section 6.2. Since more than 99.5% of the edges in
E-commerce have a degree less than 5, ExcludeAll is the same as
SpotTarget, so we only report ExcludeNone(Tr) and SpotTarget.
We do not report SEAL for E-commerce because for a dataset with
average degree of 1, it is impractical to construct subgraphs for
each node. The results are shown in Table 4.
Results. SpotTarget achieves a 14.9 × performance boost across
models on the sparse E-commerce graph. This observation demon-
strates that SpotTarget is well-suited for training GNNs on the
task of link prediction for sparse datasets, which are commonly
encountered in real-world deployed systems. For example, common-
sense knowledge graphs and biochemical graphs, with an average
degree of 2 [8, 17], exemplify the prevalence of sparse graphs.

Observation 2. SpotTarget has 14.9 × better performance com-

pared to ExcludeNone across models. This empirical evidence confirms

that low-degree nodes are more affected by P1 and P2, and excluding

𝑇
low

proves to be effective, particularly for datasets with a significant

number of low-degree nodes.

6.4 Train Pitfalls: Results on Low-degree Nodes
Setup. To quantify how much low-degree nodes in dense datasets
suffer from P1 and P2, we are interested in analyzing the perfor-
mance of edges adjacent to low-degree nodes in dense graphs. We

KDD MLG’23, August, 2023, Long Beach CA, USA Jing Zhu et al.

Table 5: Train-Pitfall Results: We report the test MRR of SAGE on Ogbl-Citation2 on target edges which have at least one low-
degree nodes. In addition to𝑇𝑙𝑜𝑤 , we also report cases where target edges are only incident to low-degree nodes:𝑚𝑎𝑥 (𝑑𝑖 , 𝑑 𝑗) < 10, 5.
SpotTarget achieves the best performance for 𝑇𝑙𝑜𝑤 and target edges that are incident to both low-degree nodes.

Exclusion 𝑚𝑎𝑥 (𝑑𝑖 , 𝑑 𝑗) < 10 𝑚𝑎𝑥 (𝑑𝑖 , 𝑑 𝑗) < 5 𝑚𝑖𝑛(𝑑𝑖 , 𝑑 𝑗) < 10 𝑚𝑖𝑛(𝑑𝑖 , 𝑑 𝑗) < 5 𝑚𝑖𝑛(𝑑𝑖 , 𝑑 𝑗) = 2 𝑚𝑖𝑛(𝑑𝑖 , 𝑑 𝑗) = 1

MRR ↑
ExcludeNone(Tr) 73.11 ± 0.25 62.15 ± 0.84 78.78 ± 0.12 69.54 ± 0.37 47.02 ± 0.56 27.54 ± 0.88
ExcludeAll 77.45 ± 0.41 75.39 ± 1.42 79.17 ± 0.12 73.86 ± 0.33 60.05 ± 1.11 48.60 ± 1.11
SpotTarget 78.08 ± 0.06 76.23 ± 0.56 79.30 ± 0.18 73.87 ± 0.18 61.48 ± 0.51 51.47 ± 2.51

Table 6: Test-Pitfall Results: We report the test results of four
GNN models over three datasets. Note that despite Exclu-
deNone(Tst)’s good performance, it is essentially a case of
data leakage because test target edges are never observed in
real-world scenarios. We should avoid using test edges in the
inference graph and SpotTarget helps you to automatically
check this. *OOM = out of GPU memory.

Models SpotTarget Baseline

ExcludeValTst ExcludeTst ExcludeNone(Tst)

Ogbl-Collab (H@50 ↑)
SAGE 48.57 ± 0.74 57.61 ± 0.88 83.82 ± 0.59
MB-GCN 43.03 ± 0.50 50.53 ± 1.10 75.41 ± 0.43
GATv2 45.61 ± 0.85 54.94 ± 0.19 84.16 ± 2.62
SEAL 57.50 ± 0.31 55.16 ± 1.94 99.91 ± 0.05

Ogbl-Citation2 (MRR ↑)
SAGE 82.06 ± 0.06 82.28 ± 0.11 89.22 ± 0.10
MB-GCN 79.70 ± 0.25 81.25 ± 0.22 88.32 ± 0.14
GATv2 OOM OOM OOM
SEAL 86.75 ± 0.20 87.01 ± 0.39 97.14 ± 0.18

USAir (AUC ↑)
SAGE 95.97 ± 0.17 95.51 ± 0.53 99.15 ± 0.59
MB-GCN 94.00 ± 0.14 94.11 ± 0.13 98.66 ± 0.22
GATv2 95.05 ± 0.66 94.07 ± 0.21 98.96 ± 0.11
SEAL 95.36 ± 0.24 95.10 ± 0.76 97.20 ± 0.78

No Leakage? ✓ ✓ ✗

Deployment ✓ ✓ ✗

report the performance of two different edge types: (1) edges that
are adjacent to at least one low-degree node, i.e.,𝑚𝑖𝑛(𝑑𝑖 , 𝑑 𝑗) < 𝛿

and; (2) edges that are only adjacent to low-degree nodes, i.e.,
𝑚𝑎𝑥 (𝑑𝑖 , 𝑑 𝑗) < 𝛿 . Our analysis is mainly done on Ogbl-Citation2 for
SAGE. We compare SpotTarget against two baselines: Exclude-
None(Tr) and ExcludeAll. Results are shown in Tab. 5.
Results. In general, both ExcludeAll and SpotTarget achieve sig-
nificantly better performance than ExcludeNone(Tr) for edges that
are incident to low-degree nodes. This finding aligns with our ear-
lier discussion in Sec. 5.1, which highlights that low-degree nodes
are more adversely affected by train pitfalls P1 and P2 and excluding
train target edges proves to be more advantageous for low-degree
nodes. Specifically, when comparing SpotTarget and ExcludeAll,
we observe that SpotTarget, which only excludes 𝑇low instead
of 𝑇Tr, achieves superior performance on edges incident to low-
degree nodes. This observation suggests that SpotTarget excels
in preserving the graph structures during mini-batch training.

Observation 3. The performance improvement observed on edges

adjacent to low-degree nodes in dense graphs demonstrates the success-

ful resolution of P1 and P2 for low-degree nodes in dense graphs by our

SpotTarget. Furthermore, SpotTarget can be applied to mitigate

performance bias in individuals on the periphery of the community.

6.5 Test Pitfalls: Leakage Quantification
Setup. Besides training pitfalls, we are interested in quantifying
the performance gap introduced by the data leakage from the test
pitfall (P3). We report results on excluding different types of edge in
the inference graph (validation, test edges). Although here we are
not evaluating in a deployed system, by excluding different types of
edge, we are mimicking what would happen in a deployed system.
All GNN models are trained using train edges only. ExcludeValTst
excludes all validation and test target edges during inference, and
ExcludeTst only excludes validation edges. Both ExcludeValTst and
ExcludeTst are variants of SpotTarget. ExcludeNone(Tst) keeps
all validation and test target edges during testing, resulting in data
leakage(P3) and should be avoided in deployed systems.
Results. Utilizing validation targets as message passing edges in
inference graphs typically leads to a marginal performance im-
provement, consistent with previous findings [11]. In the case of
Ogbl-Collab, a dataset split by time, utilizing validation targets as
message passing edges results in a 10% performance boost. However,
when test targets are employed as message passing edges in the in-
ference graph, it yields a performance boost of up to 20%. However,
the performance improvement resulting from the incorporation
of test targets is undesirable. In real-world deployed systems, test
links are unobserved and cannot be utilized for message passing.
Particularly, in the case of SEAL, the presence of test targets in the
inference phase leads to near-perfect results, which is what we aim
to prevent. SpotTarget effectively addresses P3.

Observation 4. Utilizing test edges results in a fake performance

boost across multiple datasets, which is caused by data leakage (P3).

The performance boost is particularly significant in time-split datasets

such as Ogbl-Collab. The increased performance validates the impor-

tance of SpotTarget, which consistently excludes the test target edges

from the inference graphs during testing. In real-world deployed sys-

tems, future (test) links are always unobserved. If the model utilizes

information from test target edges, it undeniably generates an artifi-

cial performance improvement that does not reflect real-life scenarios.

Conclusion. Our study systematically examines the challenges of
using target edges as message passing edges in GNNs. We empir-
ically and theoretically establish that low-degree nodes are more
susceptible to these issues and propose SpotTarget. SpotTarget
strikes a balance between eliminating the challenges introduced by
target edges and preserving the integrity of mini-batch graphs.
Acknowledgements We thank Yongyi Yang for discussing and
proofreading our theoretical proof.

SpotTarget: Rethinking the Effect of Target Edges for Link Prediction in GNNs KDD MLG’23, August, 2023, Long Beach CA, USA

REFERENCES
[1] Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the web. Social

networks 25, 3 (2003), 211–230.
[2] Derrick Blakely, Jack Lanchantin, and Yanjun Qi. 2021. Time and Space Com-

plexity of Graph Convolutional Networks. Accessed on: Dec 31 (2021).
[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational
data. Advances in neural information processing systems 26 (2013).

[4] Shaked Brody, Uri Alon, and Eran Yahav. 2021. How attentive are graph attention
networks? arXiv preprint arXiv:2105.14491 (2021).

[5] Tim RDavidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and JakubM Tomczak.
2018. Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891
(2018).

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Kaiwen Dong, Yijun Tian, Zhichun Guo, Yang Yang, and Nitesh V Chawla.
2022. FakeEdge: Alleviate Dataset Shift in Link Prediction. arXiv preprint

arXiv:2211.15899 (2022).
[8] Vijay Prakash Dwivedi, Ladislav Rampášek, Mikhail Galkin, Ali Parviz, GuyWolf,

Anh Tuan Luu, and Dominique Beaini. 2022. Long range graph benchmark. arXiv
preprint arXiv:2206.08164 (2022).

[9] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and

Manifolds.
[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in neural information processing systems 30
(2017).

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems

33 (2020), 22118–22133.
[12] Vassilis N Ioannidis, Xiang Song, Da Zheng, Houyu Zhang, JunMa, Yi Xu, Belinda

Zeng, Trishul Chilimbi, and George Karypis. 2022. Efficient and effective training
of language and graph neural network models. arXiv preprint arXiv:2206.10781
(2022).

[13] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[14] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[15] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009), 30–37.

[16] David Liben-Nowell and Jon Kleinberg. 2003. The link prediction problem for so-
cial networks. In Proceedings of the twelfth international conference on Information

and knowledge management. 556–559.
[17] Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, and Yejin Choi.

2020. Commonsense knowledge base completion with structural and semantic
context. In Proceedings of the AAAI conference on artificial intelligence, Vol. 34.
2925–2933.

[18] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. 2016. A survey of
link prediction in complex networks. ACM computing surveys (CSUR) 49, 4 (2016),
1–33.

[19] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

[20] Chandan K. Reddy, Lluís Màrquez, Fran Valero, Nikhil Rao, Hugo Zaragoza,
Sambaran Bandyopadhyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. 2022.
Shopping Queries Dataset: A Large-Scale ESCI Benchmark for Improving Product
Search. (2022). arXiv:2206.06588

[21] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. 2017. struc2vec:
Learning node representations from structural identity. In Proceedings of the 23rd

ACM SIGKDD international conference on knowledge discovery and data mining.
385–394.

[22] Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal,
Prasenjit Mitra, and Suhang Wang. 2020. Investigating and mitigating degree-
related biases in graph convoltuional networks. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management. 1435–1444.
[23] Komal Teru, Etienne Denis, andWill Hamilton. 2020. Inductive relation prediction

by subgraph reasoning. In International Conference on Machine Learning. PMLR,
9448–9457.

[24] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019.
Composition-basedmulti-relational graph convolutional networks. arXiv preprint
arXiv:1911.03082 (2019).

[25] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing
Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. 2019. Deep graph library: A graph-
centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019).

[26] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang
Li, and Zheng Zhang. 2019. Deep Graph Library: A Graph-Centric, Highly-
Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315
(2019).

[27] XiyuanWang, Haotong Yang, andMuhan Zhang. 2023. Neural CommonNeighbor
with Completion for Link Prediction. arXiv preprint arXiv:2302.00890 (2023).

[28] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs
with jumping knowledge networks. In International conference on machine learn-

ing. PMLR, 5453–5462.
[29] Zuoyu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. 2021. Link pre-

diction with persistent homology: An interactive view. In International Conference
on Machine Learning. PMLR, 11659–11669.

[30] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In International conference on machine learning. PMLR, 7134–7143.

[31] Xiangxiang Zeng, Xiang Song, Tengfei Ma, Xiaoqin Pan, Yadi Zhou, Yuan Hou,
Zheng Zhang, Kenli Li, George Karypis, and Feixiong Cheng. 2020. Repurpose
open data to discover therapeutics for COVID-19 using deep learning. Journal of
proteome research 19, 11 (2020), 4624–4636.

[32] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. Advances in neural information processing systems 31 (2018).

[33] Muhan Zhang and Yixin Chen. 2019. Inductive matrix completion based on graph
neural networks. arXiv preprint arXiv:1904.12058 (2019).

[34] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling trick:
A theory of using graph neural networks for multi-node representation learning.
Advances in Neural Information Processing Systems 34 (2021), 9061–9073.

[35] Da Zheng, Chao Ma, Minjie Wang, Jinjing Zhou, Qidong Su, Xiang Song, Quan
Gan, Zheng Zhang, and George Karypis. 2020. Distdgl: distributed graph neural
network training for billion-scale graphs. In 2020 IEEE/ACM 10th Workshop on

Irregular Applications: Architectures and Algorithms (IA3). IEEE, 36–44.
[36] Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. 2021.

Neural bellman-ford networks: A general graph neural network framework for
link prediction. Advances in Neural Information Processing Systems 34 (2021),
29476–29490.

A APPENDIX
A.1 Dataset Construction
For E-commerce, over 94% of the nodes have a degree less than
5 and more than 99.5% of the edges in E-commerce are adjacent
to a node with a degree less than 5. The E-commerce dataset is
constructed as follows. We first adopt the ESCI dataset which cat-
egorizes the relationship between between shopping queries and
products as “exact”, “substitute”, “complement”, and “irrelevant”.
We extract the shopping queries and their “exact” matching prod-
ucts only, and randomly split them to train, validation, and test
splits according to a 70%/10%/20% ratio. We also remove all isolated
nodes in the dataset. We use the pretrained BERT embeddings [6]
as text features.

A.2 Hyperparameter Tuning
We conduct extensive hyperparameter tuning using grid search.
We search on the learning rates = {1e-1, 1e-2, 1e-3, 1e-4, 5e-4,
5e-5} and the number of layers = {1, 2, 3}, hidden dimension =

{128, 256, 512, 1024}. We report the best performing hyperparame-
ters for each setting.

Throughout the experiments, we use the numbers of training
batch size for ogbl-collab, ogbl-citation2, USAir and E-commerce
is set to 256, 1024, 64 and 512, respectively. For SAGE models, the
learning rate is 5e-4, the dimension of hidden layers is 256, and
the number of hidden layers is 3. For GCN, the number of hidden
layers is 1 and others remain the same as the SAGE. For GATv2,
the number of heads is 8, the learning rate is 5e-4, the dimension of
hidden layers is 64. For SEAL, the learning rate is 1e-4, the number
of hops is 1, the training percent is 15%, 2% and 100% and the

https://arxiv.org/abs/2206.06588

KDD MLG’23, August, 2023, Long Beach CA, USA Jing Zhu et al.

dimension of hidden layers is is 256, 256 and 32 for ogbl-collab,
ogbl-citation2, and USAir respectively.

Note that our result on FakeEdge is a bit lower than what they
report because (1) we use a different split of USAir than theirs
because there is no public splits for USAir. (2) For their reported
FakeEdge results, they set number of hops to be 2 and hidden
channel to be 128, as well as using all training sets. We found this
to be extremely computation intensive and cannot be run on larger
datasets like Ogbl-Citation2. So in our reported results, we follow
the hyperparameters that SEAL uses, namely setting number of
hops to be 1 and hidden channel to be 32.

We used a single Nvidia A40 GPU to train the model and repeat
our experiments with three different random seeds. The test re-
sults are reported on the epoch with the best performance in the
validation set.

A.3 Quantitative Analysis of Average Degree
Change

We further support our claim that low-degree nodes are more af-
fected by providing a quantitative analysis on the relative changes
of degree before and after excluding the train target edges 𝑇Tr. The
analysis is done in four datasets of various scales and sparsity. For
each dataset, we sort its nodes according to their degrees and report
the average degree change before and after excluding the train tar-
get edges for each mini-batch epoch. As shown in Fig. 3, for nodes
with lower degrees, the relative degree change can go as high as
100 % while for high-degree nodes, the relative degree change is
pretty small.

A.4 Ablation: Which Degree to Use?
Setup. For our SpotTarget at training time, we only exclude edges
with adjacent nodes smaller than a degree threshold 𝛿 . But what
will be a good threshold 𝛿 to use? In order to answer this question,
we conduct experiments on USAir with varying degree thresholds.
The results are shown in Fig. 4.
Results. When 𝛿 = 0, we do not exclude any target edges, and when
𝛿 = +∞, we exclude all train target edges. As shown in Fig. 4, we
see that as we exclude target edges with a higher degree threshold
(exclude more target edges), the performance of the model will first
go up and then go down, forming a U-shape curve. This indicates
that we need to strike a balance between eliminating the issues
brought by the target edges as well as not corrupting the mini-batch
graphs too much. We found that the best choice of 𝛿 is typically
the average degree of the dataset.

Observation 5. To get the best effects of our SpotTarget, we need to
conduct the sensitivity check to discover the optimal degree threshold

𝛿 . The optimal threshold may be positively correlated with the average

node degrees of the graph.

A.5 Time Complexity Analysis
The additional computational complexity of SpotTarget is due to
the target edge exclusion part. For each training iteration, we need
to iterate over the edges in the mini-batch to examine whether
they are incident to low-degree nodes. The time complexity of
excluding target edges is O(|𝐵 |), where |𝐵 | is the number of edges

in the message passing graph. The time complexity of training in
the ExcludeNone(Tr), ExcludeAll and SpotTarget frameworks is
similar since the time of additional edge exclusion is much smaller
compared with the model training time. The difference of number
of edges in the message passing graph only make marginal changes
of GNNs training time [2].

B EXTENDED THEORETICAL ANALYSIS
We first prove theorem 1 on GCN and then extend the proof into
general message-passing GNN models.

B.1 GCN
Proof. Here, we want to prove the when a neighboring edge of

a node is removed in order to eliminate the train pitfalls: overfitting
(P1) and distribution shift (P2)., the changes on high degree nodes
is smaller than the change on low degree nodes.

We first define the overall influence of node 𝑣𝑘 on node 𝑣ℎ after

L-th layer GCN as
𝜕𝑥Λ

ℎ

𝜕𝑥𝑘
[22, 28].

According to [22], we have that the partial derivative of 𝑥ℎ to 𝑥𝑘
for an Λ-th layer untrained GCN is

𝜕𝑥Λ
ℎ,𝑠

𝜕𝑥𝑘,𝑡
=
√︁
𝑑ℎ𝑑𝑘

Ψ∑︁
𝑝=1

0∏
𝜆=Λ

1
𝑑𝑝𝜆

diag(1𝜎𝜆)𝑠,𝑠W𝜆
𝑠,𝑡 (1)

for all 1 ≤ 𝑠, 𝑡 ≤ 𝑛. Here diag(1𝜎Λ) is a diagonal mask matrix
representing the activation result, Ψ is the set of all (Λ + 1)-length
random-walk paths on the graph from node 𝑣ℎ to 𝑣𝑘 , and 𝑝Λ

represents the Λ-th node on a specific path p (𝑝0 and 𝑝Λ denote
node i and k accordingly).

Excluding one neighboring edges of node 𝑣ℎ would bring two
changes: (1) the degree of node 𝑣ℎ will decrease to 𝑑ℎ − 1 as one of
its neighbors is removed, and (2) There will be less random walk
paths from node 𝑣ℎ to 𝑣𝑘 , |Ψ̃| < |Ψ|.

Thus we have

1 − E(
𝜕�̃�Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) = 1 −

√
(𝑑ℎ−1)𝑑𝑘

∑Ψ̃
𝑝=1 E(∏0

𝜆=Λ
1

𝑑
𝑝𝜆

diag(1𝜎𝜆
)𝑠,𝑠W𝜆

𝑠,𝑡)
√
𝑑ℎ𝑑𝑘

∑Ψ
𝑝=1 E(∏0

𝜆=Λ
1

𝑑
𝑝𝜆

diag(1𝜎𝜆
)𝑠,𝑠W𝜆

𝑠,𝑡)

(2)
From [22], we have

∑Ψ
𝑝=1 E(

∏0
𝜆=Λ−1

1
𝑑𝜆
𝑝

diag(1𝜎𝜆)𝑠,𝑠W𝜆
𝑠,𝑡) = 𝑣

is a constant.
Eq. 2 can rewritten as

1 − E(
𝜕�̃�Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) = 1 −

√︃
𝑑ℎ−1
𝑑ℎ

1/(𝑑ℎ−1)diag(1𝜎Λ)𝑠,𝑠W
Λ
𝑠,𝑡

∑
𝑣𝑛 ∈�̃� (ℎ) 𝑣

1/(𝑑ℎ)diag(1𝜎Λ)𝑠,𝑠W
Λ
𝑠,𝑡

∑
𝑣𝑛 ∈𝑁 (ℎ) 𝑣

(3)
Then we have

1 − E(
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) = 1 −

√︄
𝑑ℎ − 1
𝑑ℎ

1/(𝑑ℎ − 1) (𝑑ℎ − 1)𝑣
1/(𝑑ℎ)𝑑ℎ𝑣

= 1 −
√︄
1 − 1

𝑑ℎ

(4)

Since if 𝑑ℎ > 𝑑𝑙 , we can deduce
√︃
1 − 1

𝑑ℎ
>

√︃
1 − 1

𝑑𝑙
, thus 1 −

E(
𝜕�̃�Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) < 1−E(

𝜕�̃�Λ
𝑙,𝑠

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

𝑗,𝑠

𝜕𝑥𝑘,𝑡
) and𝐷 (𝑘, ℎ) < 𝐷 (𝑘, 𝑙) hold. □

SpotTarget: Rethinking the Effect of Target Edges for Link Prediction in GNNs KDD MLG’23, August, 2023, Long Beach CA, USA

d = 21

(a) Ogbl-Collab

d = 102

(b) Ogbl-Citation2

d = 17

(c) USAir

d = 8

(d) E-commerce

Figure 3: The average degree change of nodes when excluding training targets. The X axis the degree of the nodes in the sorts,
sorted from lowest to highest and the Y axis is the relative changes in degree before and after excluding all of the train target
edges in each mini-batch. Lower degree nodes get higher relative degree change, for nodes with degree less than 5, the relative
degree change can go as high as 100%.

(a) USAir with SAGE model (b) USAir with GATv2 model

Figure 4: The performance with varying degree thresholds.
We see a U-shape effect, which works best if you only exclude
the train target edges𝑇low. The red star indicates the average
degree of the dataset USAir. Empirically, we find empirically
selecting the threshold 𝛿 to be the average degree of the
dataset works well.

B.2 GNNs
Tn the previous section, we have proved that excluding a target
edge can cause a larger influence on low-degree nodes than high-
degree nodes with the GCN model. In this part, we will prove that
Theorem 1 can be extended to general GNN models.

Proof. For general GNNs, the output node features of the Λ-th
layer are generated as follows:

𝑥Λ+1
ℎ

= 𝜎 (𝑊 Λ
∑︁

𝑣𝑎∈𝑁 (ℎ)
𝛼𝑎,ℎ𝑥

Λ
𝑎) (5)

where 𝛼 could be the constant or pre-defined parameters related
with graph attributes such as node degrees or the parameters will
be learned, such as attention scores. The effect of node 𝑣𝑘 on node
𝑣ℎ can be expressed as follows:

E(
𝜕𝑥Λ

ℎ

𝜕𝑥𝑘
) = 𝑣𝑑𝑘

∑︁
𝑣𝑛∈𝑁 (ℎ)

𝛼𝑛,ℎ · diag(1𝜎Λ) ·WΛ (6)

For the effect of node 𝑣𝑘 after excluding one target edge, the cardi-
nality of the set of 𝑣ℎ neighbor nodes decreases from 𝑁 to 𝑁 − 1

and the value of 𝛼 may also change to 𝛼 .

E(𝜕𝑥ℎ
Λ

𝜕𝑥𝑘
) = 𝑣𝑑𝑘

∑︁
𝑣𝑛∈ ˜𝑁 (ℎ)

˜𝛼𝑛,ℎ · diag(1𝜎Λ) ·WΛ (7)

We have the effect ratio is

E(
𝜕 ˜𝑥ℎ,𝑠Λ

𝜕𝑥𝑘,𝑡
/
𝜕𝑥Λ

ℎ,𝑠

𝜕𝑥𝑘,𝑡
) =

𝑑𝑘 (
∑

𝑣𝑛∈ ˜𝑁 (ℎ) ˜𝛼𝑛,ℎdiag(1𝜎Λ)𝑠,𝑠WΛ
𝑠,𝑡𝑣)

𝑑𝑘 (
∑

𝑣𝑛∈𝑁 (ℎ) 𝛼𝑛,ℎdiag(1𝜎Λ)𝑠,𝑠WΛ
𝑠,𝑡𝑣)

=

∑
𝑣𝑛∈ ˜𝑁 (ℎ) ˜𝛼𝑛,ℎ∑
𝑣𝑛∈𝑁 (ℎ) 𝛼𝑛,ℎ

(8)

If the value of 𝛼 is unrelated with the degree of 𝑣ℎ , then the the-
orem holds since 𝛼 = 𝛼 the expectation of the ratio is 𝑑ℎ−1

𝑑ℎ
and

𝐷 (𝑘, ℎ) < 𝐷 (𝑘, 𝑙). If the value of 𝛼 ∝ (𝑑ℎ)𝑚 then we have the raio
is (𝑑ℎ−1) (𝑑ℎ−1)𝑚

𝑑ℎ (𝑑ℎ)𝑚 . If𝑚 >= −1, we still have the theorem holds. To
our best knowledge, we do not find the existing GNNs formula
with 𝛼 ∝ (𝑑ℎ)𝑚 as well as𝑚 < −1, so our theorem should hold for
general GNNs. □

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Definitions
	3.2 Problem Statement

	4 Pitfalls in Message Passing for Link Prediction
	4.1 Pitfalls during Training Time
	4.2 Pitfalls during Test Time

	5 Proposed Framework: SpotTarget
	5.1 Training-time Solution: Exclude Target Links Adjacent to Low-degree Nodes
	5.2 Test-time Right Practices: Exclude All Test Target Links

	6 Experiments
	6.1 Experimental Setup
	6.2 Train Pitfalls: Results on Dense Datasets
	6.3 Train Pitfalls: Results on Sparse Datasets
	6.4 Train Pitfalls: Results on Low-degree Nodes
	6.5 Test Pitfalls: Leakage Quantification

	References
	A Appendix
	A.1 Dataset Construction
	A.2 Hyperparameter Tuning
	A.3 Quantitative Analysis of Average Degree Change
	A.4 Ablation: Which Degree to Use?
	A.5 Time Complexity Analysis

	B Extended Theoretical Analysis
	B.1 GCN
	B.2 GNNs

