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ABSTRACT

In the contemporary era of social media and online communication,
comprehending the dynamics of information diffusion in social
networks has become crucial. This research article investigates the
effects of deception on information diffusion, specifically focusing
on influence maximization and polarization in social networks. We
propose an analytic model of deception within social networks.
Building upon the sheaf Laplacian diffusion model derived from
algebraic topology, we examine opinion dynamics in the presence of
deception. Next, we redefine the Laplacian centrality, an influential
node detection method originally designed for regular graphs, to
quantify the influence of deception in influence maximization using
the sheaf Laplacian. Additionally, we employ the sheaf Laplacian
to model polarization in networks and investigate the impact of
deception on polarization using two distinct polarization measures.
Through extensive experiments conducted on synthetic and real-
world networks, our findings suggest that deceptive individuals
wield more influence than honest users within social networks.
Furthermore, we demonstrate that deception amplifies polarization
in networks, with influential individuals playing a significant role
in deepening the polarization phenomenon.
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1 INTRODUCTION

Social networks have become an integral part of our daily lives,
revolutionizing the way we connect, communicate, and share in-
formation. With the widespread popularity of platforms such as
Facebook, Tiktok, and Instagram, studying social networks has
gained significant importance in understanding human behavior
and the dynamics of information diffusion [5, 6, 27]. As one’s beliefs
and opinions emerge in discourse dialogically [17, 21], it is essential
to examine the network influence by focusing on social interaction
and social actors in a network.

Within a social network, not all individuals contribute equally
to the network effect. Certain users possess greater influence than
others when it comes to shaping the beliefs and opinions of oth-
ers. Identifying these highly influential users is an essential task
for various reasons, such as predicting behavior and trends [22],
understanding information diffusion [7], and enhancing marketing
strategies [29].

On the other hand, polarization within social networks is a sig-
nificant social phenomenon that can have far-reaching implications
[3]. It may occur when influential users promote polarizing views
that resonate with their followers on social networks. This can lead
to the formation of echo chambers, where people only consume
information and interact with others who share their views, leading
to further entrenchment in their beliefs [9].

There are many influence maximization and polarization models
in the literature [2, 8, 23, 24]. Although these models are widely
used for different graph mining problems, they suffer from an im-
portant issue: They assume that in social networks, users are honest
with each other. They ignore the role of deception on social net-
works. However, deception appears to be surprisingly common
among humans and within social networks [1, 19, 26]. Some studies
report that lies are more common in online interactions than face-
to-face interactions [13]. Hence, deception is inevitable in social
networks and we need to take deception into consideration while
modeling information diffusion and detecting influential nodes and
polarization in social networks.
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In this paper, we study the effect of deception in influence maxi-
mization and polarization on social networks to understand whether
liars are more influential and/or cause deeper polarization in so-
cial networks. Inspiring from [16], we first model deception on
social networks consisting of honest interactions and exchanging
prosocial, lying to protect someone or to benefit or help others, or
antisocial, lying to hurt someone else intentionally, lies between
individuals [11]. We also control the honesty level of users with
an honesty parameter to see the effect of different deception levels.
Next, we model the opinion dynamics in social networks using
the sheaf Laplacian [14]. Sheaf Laplacian provides a flexible model
that allows users to express their opinion however they choose and
selectively lie to their neighbors. As the next step, we redefine a
node centrality measure, namely Laplacian centrality, for the sheaf
Laplacian to detect influential nodes when deception is present in
the network. Then, we employ this centrality measure for detecting
the influence of each node to see the effect of deception on influence
maximization. We further use sheaf Laplacian to model polarization
when deception is present.

We conduct extensive experiments to evaluate our model on
various synthetic and real-world social networks. Our experimental
results show that liars, regardless of being prosocial or antisocial,
are more influential than honest users. We further show that liars
can cause deeper polarization in networks compared to honest
people.

The paper is formatted as follows. In Section 2, we discuss the
preliminary concepts for sheaf Laplacian and the related work. In
Section 3, we present our methodology on modeling deception
in social networks and constructing the sheaf Laplacian. We also
explain how we extend Laplacian centrality to the sheaf Laplacian
and model polarization. In Section 4, we explain our evaluation
method and present our results on various synthetic and real-world
datasets. Our final remarks with future work directions are found
in Section 5.

2 BACKGROUND

In this section, we present the preliminary concepts for sheaf data
structure and the sheaf Laplacian that we use to model the opinion
dynamics on social networks when deception is present. We further
present the related work on the effects of deception.

2.1 Preliminaries

A sheaf is a data structure associating data spaces to vertices and
edges of a graph, with further telling how the data over different
parts of the graph should be related. More formally, we can define
a sheaf as follows.

DEFINITION 1. For a given graph, G = (V,E), a sheaf ¥ on G
consists of a vector space F for each vertexv € V, a vector space Fe
for each edge e € E, and a linear transformation Fy—e : Fo — Fe
for each incident vertex-edge pair.

In the notion of modeling opinion dynamics on social networks,
the vector space ¥, over each vertex v € V is the opinion space
of the vertex. Mathematically, this is a real vector space with a
basis of the collection of topics where the basis consists of users’
social, demographic, and cultural dynamics and the moral assem-
blages/bases behind their opinions. The scalar values on each basis
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Figure 1: A sheaf structure on an edge

element correspond to negative, neutral, or positive opinions about
the topic. We would like to note here that these base elements are
not necessarily the same nor the same number for each user. For
example, let the topic of discussion be vaccination during a pan-
demic. While for one user, the opinion basis could be politics and
religion, for another user, it could be health and risk-taking. Then,
they share their private opinion publicly based on their opinion
bases. See Figure 1 for an illustration of this example. The vertex
on the left (v1) thinks both politics and religion are important in
their opinion about the vaccination, i.e., its opinion base is {religion,
politics}, and the user does not support it. On the other hand, the
vertex on the right (v2) takes health very important but the user
also does not want to take risks, i.e., its opinion base is {health, risk
taking}. As a result, that user supports the vaccination.

Furthermore, in this opinion dynamics model, the vector space
Fe over each edge e € E is the discourse space where each user
represents their opinions on the topics of discussion by formulating
stances as a linear combination of existing opinions on personal
opinion basis. This expression of opinions is modeled using the
linear transformations F5—¢ : 5 — Fe. For example, let u and v be
two users that are connected with an edge e in a social network. Let
xy € Fy, and x, € F be their opinions. If F—,e (xy;) = Fooe(xo),
then there is a local consensus between u and v. For example, in
Figure 1, the users do not have a consensus initially since their
public discourse on vaccination does not coincide.

The sheaf Laplacian is defined similarly to the graph Laplacian.
We first bundle all the data over vertices and over edges into a
grouped vector spaces as follows

CGH = P R GH= P %

0eV(G) ecE(G)
(Y is called 0-cochains and it consists of a choice of data, x, € 5, for
every vertex v € V. Similarly, C! is called 1-cochains and it consists
of a choice of data over each edge e € E. Then, we tie the data over
vertices (0-cochains) and edges (1-cochains) together with a linear
transformation, called the coboundary map, § : C°(G;F) —
c! (G; F). For an (arbitrarily) oriented edge e = u — v, we define §
explicitly as follows:

(6x)e = Fo—e(x0) = Fo—e(xu)-
Then, the sheaf Laplacian is given by
Ly = 575 : %G, F) — C°(G; F).
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The sheaf Laplacian does not depend on the choice of orientations
while constructing the coboundary map.

ExAMPLE 2. The sheaf in Figure 2 has the following coboundary
map
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Figure 2: A sheaf structure on a 4-cycle graph. The dimension

of vector spaces over v; and v3 are 1 where it is 2 for v; and
v4. The dimension of vector spaces over edges are 1 as well.

After getting the sheaf Laplacian Ly, we can modify the heat
equation for graph Laplacian as

dx

dr
Here, x represents an opinion distribution over vertices and x, €
¥ (v) represents the opinion of individual v. This heat equation has
the following solution

x(t) = exp (—taLy)x(0)

where x(0) is the initial opinion distribution.

=—aLlgx,a > 0. (1)

2.2 Related Work

Trust plays an important role in social relations since it affects indi-
viduals’ willingness to engage in exchange interactions [18]. Hence,
deception becomes also important since it may destroy the stabil-
ity of trust-based relationships [30]. Deception has also effects on
social networks. For example, in [16], the authors show how lying
can cause social networks to become fragmented. They also study
the effects of prosocial and antisocial lies separately. Furthermore,
n [4], they find that lies shape the topology of social networks and
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cause the formation of tightly linked, small communities. They also
find that liars are the ones that connect communities of different
opinions, hence they have substantial centrality in the network.
[28] uses the positivity bias for predicting the use of prosocial lies
on Facebook. The authors in [10] study the retweeting activity on
Twitter to detect deception. We refer the readers to the survey paper
[12] for more studies on deception on social networks.

3 METHODOLOGY

In this section, we first explain how we model deception in social
networks. Next, we discuss how we construct the sheaf Laplacian
using our deception model. Then, we redefine the centrality method
originally defined for the graph Laplacian for the sheaf Laplacian to
detect influential nodes in the network. We further model diffusion
where there is a user that does not change his opinion (i.e., stubborn)
and use this model on modeling polarization.

3.1 Modelling deception in social networks

For a vertex v; € G, let x;(t) represent the opinion of v; about a
topic at time t. We can take x; € [—1,1] with -1 meaning total
disagreement and 1 meaning total agreement. These are the private
opinion of users. To find the sheaf Laplacian of the graph, we
need to know how each user discloses his opinion publicly. For the
disclosing process, in this paper, we assume users are categorized
into three groups: honest, prosocial liar and antisocial liar following
[16]. As explained in the introduction, prosocial lies are said to
benefit someone whereas antisocial lies are intended to hurt.
Inspiring by Iniguez et. al. [16], we model these three different
opinion disclosure models based on both users’ and their friends’
opinions. The amount of the information, wj;, flowing from i to j
can be defined as
X; if i is honest
wji ={1x; + (1 —7)xj  if i is prosocial liar (2)

7x; — (1 - 1)x; if i is antisocial liar

where 7 € [0, 1] is the honesty parameter. When 7 = 1, liars are also
honest and = 0, they are completely dishonest. In this model, while
what others think does not change how they disclose their opinion
for honest users, liars (both prosocial and antisocial) express their
opinion based on the opinions of their neighbors, i.e., xj in wj;.
This is an issue since users cannot know the private opinions of
their neighbors, instead, they can only know how they disclose
their opinion publicly, i.e., their public opinion. To tackle this issue,
instead of using private opinion, we define the public opinion of the
user i, y;, by taking the average amount of the information flowing
from this user to his neighbors as follows

Yi = k Z Wiji (3)

where k; is the degree of vertex v; and N; is the set of neighbors
of v; in G. In other words, while users within a social network
may be unaware of their friends’ personal viewpoints on a particu-
lar subject, such as the importance of a flu vaccine, they can still
gather insights into their friends’ broader perspectives, such as their
political inclinations, whether they lean towards conservatism or
liberalism. Hence, y; keeps the overall perspective of the ith user in
the network. As we will explain in the next section, our deception
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model assumes that users communicate with their neighbors based
on their neighbors’ overall perspective, i.e., y;’s.

3.2 Sheaf Laplacian construction

The key information we need to construct the sheaf Laplacian L&
is the linear transformations Fy—e : ¥, — Fe between a vertex
and its neighbors. In other words, we need to know how each user
discloses his opinion publicly with his neighbors using his opinion
basis. As we discuss in the previous section, opinion disclosures
(i.e., linear transformations) depend on whether the user is honest,
a prosocial liar, or an antisocial liar. Based on the model in the
previous section, we combine Equations 2 and 3 and obtain the
linear transformation from v; to v; through the edge e as follows

Xj if user i is honest
Fooe(xi) = §rx;i + (1 - T)yj
™ — (1= 1)y;

if user i is prosocial liar

if user i is antisocial liar.

An illustrative example is available in Figure 3. In the matrix
notation, the linear transformation is given as

[1] if user i is honest
Fooe {1+ (1-1) L]

[t-(1-17) )yc_:] if user i is antisocial liar.

if user i is prosocial liar

In this model, we take the opinion space over each vertex and the
discourse space over each edge as 1-dimensional for simplicity. The
opinion space over each vertex simply takes the private opinion x;
for each user i, and the discourse space over each edge e = v; — v;
takes the public disclosure of ith user’s private opinion, x;, based on
the private jth user’s opinion, y;. On the other hand, this model can
be generalized to any dimension of opinion and disclosure spaces.

o Tz + (1=7)yy 722 +(L—7)ys 723 — (1 - 7)pa
> <€ > €
AR
D, ©2) vs
Honest Prosocial Liar Antisocial Liar

Figure 3: Linear transformations between vertices in the pres-
ence of a honest, a prosocial liar and an antisocial liar.

Next, to construct the sheaf Laplacian, we need to define the
coboundary map & for each edge using linear transformations. Let
e = v; — vj be an oriented edge. Then, the coboundary map on e
is defined as

(8%)e = Fo—e(xi) — 7Tv—)e(xj)~
An example of how to construct the coboundary map and sheaf
Laplacian matrices is available in Example 2.

3.3 Influential node detection

Sheaf Laplacian allows us to model information diffusion when
deception is present. As the next step of this research, we need to
detect the influential nodes in the network with deception. Most
of the influence maximization methods use graph adjacency infor-
mation as input. In other words, they use graph topology to detect
influential users. On the other hand, it is not possible to reverse en-
gineer sheaf Laplacian and generate a regular graph that keeps the
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sheaf data structure. Hence, we need to develop an influence maxi-
mization model that can take sheaf Laplacian as an input directly.
In the literature, there is an influential node detection method that
uses the graph Laplacian as the input, namely Laplacian centrality
[24]. However, we still need to prove that Laplacian centrality can
be extended to sheaf Laplacian as well. In this section, we first
define what Laplacian centrality is and prove it is well-defined and
can be used when we input sheaf Laplacian.

Laplacian centrality is based on the Laplacian energy of the
network. The Laplacian energy is defined as follows.

DEFINITION 3. Let G be a weighted network on n vertices and L
be the graph Laplacian of G with the eigenvalues A1, ..., An. Then, the
Laplacian Energy of G is given by

n
EL(G) = ZA?.
i=1

Next, the Laplacian centrality of a node is measured as the drop
of Laplacian energy in the network when that node and its adjacent
edges are removed.

DEFINITION 4. Let G be a weighted graph and G; be the network
obtained by deleting the vertexv; and its adjacent edges from G. Then,
the Laplacian centrality Cr (vj, G) of v; is given by

EL(G) - EL(Gy)

Cr(0i,G) = .G

We give an example of the Laplacian centrality on a randomly
generated scale-free graph in Figure 4. Next, we prove that we can
redefine this centrality to the sheaf Laplacian as well.

THEOREM 5. Let G = (V,E) be a graph and F be a sheaf defined
on G. Then, for a vertexv; € V, the Laplacian centrality based on the
sheaf Laplacian, Cp,(v;, G) is well-defined.

Proor. Let L and L& be the graph Laplacian and the sheaf Lapla-
cian of G, respectively. There are two basic differences between
these two matrices. First, the off-diagonal entries of L are all non-
positive where L& may have positive off-diagonal entry. Second,
the sum of the off-diagonal entry in a row in L equals to the nega-
tive of the diagonal entry on that row, but this is not necessarily
true for L& Here, we prove that these two properties of L# do not
have an effect on defining the Laplacian energy.

In Theorem 1 of [24], they show that

EL(G) = zn: &2y wh
i=1

1<j
where d; and w;; are on and off diagonal of L, respectively. As we
see in this definition, we take the square of the off-diagonal entries,
i.e., sign of these entries has no importance. This addresses the
first difference. Moreover, in the proof of Theorem 1, they do not
use the fact that d; = — Z;'l,j;ti wij, i.e., this difference is again no
importance. This addresses the second difference. As a result, we
can redefine Laplacian centrality to the sheaf Laplacian. O

This theorem proves that we can use Laplacian centrality via
sheaf Laplacian to detect the influential nodes when deception is
present in social networks.
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Figure 4: A randomly generated scale-free graph. Node colors
represent Laplacian centrality scores. The darker color shows
a larger score.

3.4 Polarization detection

The sheaf Laplacian allows us to model information diffusion when
there are users that do not change their opinions in response to
communication with their neighbors. We can further use this model
to study the effect of deception on polarization. Our methodology
here is as follows. We first select the most influential user based on
Laplacian centrality as the seed node and set its opinion to 1 and the
rest of the users’ opinion to 0. Then, we assign the deception type
of this most influential user as honest, prosocial, and antisocial liars,
and in each case, we model diffusion using sheaf Laplacian where it
allows to keep the seed node’s opinion as 1 and let others’ opinion
change. When diffusion reaches a steady state level, we check the
distribution of all opinions and measure polarization within the
network. Below, we explain the details of the information diffusion
model when there are “stubborn” users that do not change their
opinions in the network and how we measure the polarization after
we model the diffusion process.

3.4.1 Stubbornness and Sheaf Laplacian. To consider stubborn
users in diffusion, the authors in [14] slightly change Equation
1. Let U € V be a subset of vertices in G that corresponds to the
stubborn users. Then, we have

dx| {a(L;cx)z, ifogU @

dtl, o ifv eU.

This new heat equation can model diffusion so that the vertices
in U do not change their opinion, whereas other vertices follow
the regular diffusion model. Since stubborn vertices do not change
opinion, we need to solve this equation for other vertices Y = V' \ U.

In the same paper, the solution to this equation is given as

y(t) = e b g o gy vt (1 — et lr YY1 Loy Ul

where L[+, -] denotes the block submatrix restricted to the indi-
cated vertex set, L¢[Y,Y] T is the Moore-Penrose pseudoinverse

matrix of L#[Y, Y], y(l)| is the orthogonal projection of the initial

opinion vector yo to imL#[Y, Y] (the proof of this solution is avail-
able in [14]). Thanks to this solution, we can model diffusion after
setting the seed vertex opinion to 1 and the rest of the users’ opin-
ion to 0. Here, while the seed vertex’s opinion does not change, the
other vertices’ opinion follows the solution in Equation 4.
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3.4.2  Measuring Polarization. After obtaining the opinion distri-
bution over vertices, we measure polarization in the network with
two different methods. As the first method, we check the standard
deviation of the opinion distribution. As the second method, we use
the GE polarization index. This index is based on the generalized
Euclidean distance, which estimates how much effort it would take
to travel from one opinion to another in the network [15]. In other
words, it estimates the distance between two vectors on a network,
e.g., representing people’s opinions. To define this index, we first
split the opinion distribution vector x into two vectors: x* and x .
x* contains all positive opinions and zero otherwise; x~ contains
the absolute value of all negative opinions and zero otherwise. Then,
the GE index §G  is defined as

8 = ) (x" = x ) LI (x* — x°) %)

where L|_is the Moore-Penrose pseudoinverse matrix of L. This
index is considering how extreme the opinions of the people are,
how much they organize into echo chambers, and how these echo
chambers organize in the network.

4 EXPERIMENTS

In this section, we first introduce the datasets and evaluation set-
tings in our experiments. We then present the results for the Lapla-
cian with different honesty parameter values (7) and determine the
most effective relation type (honest, prosocial liar, and antisocial
liar) on synthetic and real-world networks. We further show how
deception affects polarization.

4.1 Experimental Setup

4.1.1 Datasets. We consider nine real-world undirected social net-
works [20, 25], which have been widely adopted in the studies of
influential node detection. The general statistics of the datasets
used for experiments are reported in Table 1.

Table 1: Basic properties of the real-world datasets we use
are provided here. (k) is the average degree, and k4 is the
maximum degree.

‘ Dataset l Vertices l Edges l (k) l [ [

Train 64 243 7.59 29
Highschool 70 366 10.46 23
Lesmis 77 254 6.60 36
Copper 112 425 7.59 49
Jazz 198 2742 27.69 100
Oz 217 1839 16.94 56
Congress 219 764 6.97 50
Innovation 244 925 7.58 29
Netscience 379 914 4.00 34

4.1.2  Settings. In this section, we will explain our experimental
settings and designs for influence maximization and polarization
problems.

Influence maximization: For each user i in a network, we ran-
domly select an opinion about a topic, x;, within the interval [-1, 1].
As the next step, we randomly divide the vertices into three equal
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Laplacian (n=100, p=0.1)

Laplacian (n=100, p=0.2)
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Figure 5: The average centrality scores (y-axis) with respect to the different honesty parameters 7 (x-axis) for Laplacian centrality
on three different Erdos-Renyi random graphs. Here, n is the number of vertices in the random graph and p is the probability

of edge creation.

parts and label each part as honest, prosocial liar, and antisocial
liar. Then, we analyze centrality scores of each label. There is a
possible issue here that when we randomly divide the network into
three parts, influential nodes when the deception is not present
may accumulate in one of the parts. To avoid this, we first rank
vertices from the most influential to the least and divide them into
10 equal parts, i.e., the first part includes the top 10% influential
interactions and the last part includes the bottom 10% influential
vertices. We then randomly divide each part into three and label
them as honest, prosocial liar and antisocial liar.

After assigning opinions and relation types (honest, prosocial liar,
and antisocial liar) to each user, we define the linear transformation
and the coboundary map and use the boundary map to generate the
sheaf Laplacian. The sheaf Laplacian also depends on the honesty
parameter 7 € [0, 1]. To see the effect of the different honesty levels,
we partition the interval [0, 1] into 40 equal parts and input each
value in the sheaf Laplacian. The experiment is run 100 times for
each dataset, and the average of the 100 trials is taken to obtain
more reliable results.

As the final evaluation step, to get the influentiality score Sk of a
relation type R, we obtain the centrality scores in each simulation,
take the average of the scores for each relation type, and normalize
it with the number of vertices in the network. Mathematically, the
influentiality score is obtained by

1 N |VR|

= — Cij
Vel & 5

where |Vg| is the number of vertices of a given relation type, N is
the number of runs, and ¢; j is the centrality score of the jth vertex
in VR in the ith run. Hence, the larger Sg means a more influential
relation in Laplacian centrality.

SR

Polarization: We create the sheaf Laplacian as explained in the
previous section. To study polarization, we first find the most influ-
ential user in the network based on Laplacian centrality. We set this
user’s opinion to 1 and the rest to 0. Our goal here is to keep the
influential user’s opinion fixed at 1 and observe how other users’
opinions are changing, and explore whether polarization occurs. To
make this happen, we use the diffusion model with stubbornness
explained in Section 3.4.1. After getting the opinion distribution, we
use the polarization measures explained in Section 3.4.2 to check
the polarization. Again, this experiment is run 100 times for each
dataset, and the average polarization measures of the 100 trials is
taken to obtain more reliable results.

4.2 Results

4.2.1 Influence Maximization. In this section, we present our re-
sults on synthetic networks that we create using Erdos-Renyi ran-
dom graphs and nine real-world networks that we present in Table
1. We start discussing the results for synthetic networks.

Erdos-Renyi random graphs take two parameters: the number
of nodes (n) and the probability for edge creation p. To address
different cases, we study three random graphs: (1) n = 100,p = 0.1,
(2) n = 100,p = 0.2 and (3) n = 200, p = 0.05. If we take the first
random graph as the test case, the second random graph has more
density (i.e., the average degree) with keeping the size (n) the same
and the third random graph is larger with keeping the density the
same. Our goal here is to see how influentiality changes based
on the density and the size of a network. Then, we evaluate the
performance of each relation type (honest, prosocial liar, antisocial
liar) on each network by following the outline in Section 4.1. The
results are available in Figure 5.

As we see in Figure 5, liars, regardless of being prosocial and an-
tisocial, have bigger centrality scores than honest users on average
for all random graphs. As we explain in the previous section, the
bigger Laplacian centrality score implies being more influential, so
liars are more influential than honest users. Furthermore, density
and size do not change this conclusion.

Secondly, we present the simulation results on real social net-
works in Figure 6. As we clearly see in the figure, liars, regardless
of being prosocial and antisocial, again have bigger Laplacian cen-
trality scores than honest users on average for all datasets. The
difference gets smaller with a higher honesty level 7 for each dataset.
Furthermore, the total centrality score gets bigger for all deception
types as the honesty parameter 7 gets closer to 1.

Besides the figures, we also present the total centrality score for
each real social network in Table 2. As we see in the table, based
on the Laplacian centrality, prosocial and antisocial liars are the
most influential interchangeably, and on average, prosocial liars
are slightly more influential than antisocial liars.

4.2.2  Polarization. In this part, we present our results on a syn-
thetic network and nine real-world networks presented in Table
1. The reason we choose a scale-free graph here is that scale-free
graphs have a few highly connected nodes, called “hubs," which are
connected to many other nodes with fewer connections. These hub
nodes can cause polarization deeper than other nodes, so, observing
polarization becomes easier.
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Figure 6: The average centrality scores (y-axis) with respect to the different honesty parameters 7 (x-axis) for Laplacian centrality
on real social networks. The bigger Laplacian centrality scores imply being more influential.

Table 2: The total centrality scores based on Laplacian cen-
trality in Figure 6. The darker cells correspond to the more
influential relation type.

Honest Prosocial Antisocial
Train 24.33 72.81 72.41
Highschool 19.56 70.88 70.35
Lesmis 22.91 72.11 72.22
Copper 15.82 69.86 68.19
Jazz 9.64 65.86 66.86
Oz 8.21 66.41 64.82
Congress 10.72 65.24 67.98
Innovation 7.53 66.05 65.77
Netscience 6.11 64.33 64.45
Average 13.87 68.17 68.12

We first synthetically create a scale-free graph. The resulting
graph is available in Figure 7. Next, we find the most influential user
in the graph which is the darker-colored node at the center of the
cluster on the left. We set this user’s opinion to 1 and the rest to 0.
Then, we set this user as honest, prosocial, and antisocial liar and the
rest of the network as all honest, and check the opinion distribution
in the graph for different time values t = {10_2, 1071, 1, 10, 100}.
We should also note here that whenever a user’s opinion gets bigger
than 1 (or smaller than -1), we set his opinion to 1 (or -1). The results
are available in Figure 7.

As we see in the figure, when the influential user is honest, the
rest of the users’ opinions get closer to 1 as time passes. Hence, there
is a consensus in the opinion dynamics without any polarization.
This case actually represents the classical opinion dynamics when
everyone in the network is an honest user.

Secondly, when the influential user is a prosocial or antisocial
liar, we observe a clear polarization in the network. Opinions are
getting accumulated at 1 and -1, which means we observe a set
of users that totally agree and another set of users that totally
disagree with the seed user. Furthermore, we also observe that for
the antisocial lying case, other users’ opinions are leaning more
toward -1 than the prosocial lying case. This is correlated with the
nature of deception types since prosocial lies are intended to help
other users, whereas antisocial lies are intended to hurt.

In more detail, the network has four clusters, the biggest one
has the seed node at the center, and there are three other relatively
smaller clusters on the right. As we see in the honest case, all the
nodes and clusters reach a consensus when time ¢ = 10. For the
prosocial liar case, the bigger cluster mostly agrees with the seed
node and while one of the clusters (the smallest one) totally agrees
with the seed node, the other ones totally disagree, and as a result,
we see a clear polarization. On the other hand, for the antisocial
liar case, we observe the opposite situation with the prosocial liar
case in opinion distribution but again observe a clear polarization.

Moreover, we repeat a similar experiment on nine real-world
networks. This time we choose t = 1000 to reach the steady state
level in diffusion. Then, we calculate the standard deviation and the
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Figure 7: Diffusion for various time scales (a) t = 1072, (b) t = 10!, (c) t = 1 and (d) ¢ = 10 on different deception types honest
(top row), prosocial liar (middle row) and antisocial liar (bottom tow) when initially the seed node has opinion 1 and the rest of
the network have opinion 0. The opinion distribution for each time scale is available in Figure ??.

Table 3: Standard deviation and GE polarization index for the datasets. The darker cells correspond to more polarization within

networks.
Standard Deviation GE Polarization Index
Honest Prosocial Antisocial | Honest Prosocial Antisocial
Train 0 0.259 0.261 0 1.572 1.571
Highschool 0 0.193 0.197 0 0.848 0.866
Lesmis 0 0.443 0.441 0 4.866 4.865
Copper 0 0.258 0.257 0 1.655 1.655
Jazz 0 0.138 0.136 0 0.805 0.803
Oz 0 0.104 0.110 0 0.402 0.415
Congress 0 0.273 0.274 0 4.243 4.241
Innovation 0 0.248 0.253 0 0.733 0.738
Netscience 0.0005 0.153 0.153 0.068 12.471 12.462
[ Average [ 0.00005  0.2307 0.2313 [ 0.008 3.170 3.159

GE polarization index for each dataset, run the experiment 100 times
and get the average polarization scores. As a side note, Innovation
network is not connected, hence, while calculating polarization
measures, we just use the connected component that includes the
seed node. The results are available in Table 3.

As we see in the table, there is a total consensus for the first seven
networks when the influential user is honest based on both stan-
dard deviation and the GE polarization index. Also, there is a clear
polarization when the influential user is a prosocial or antisocial
liar as we observe in the synthetic graph.

5 CONCLUSION

In this paper, we study the effect of deception on the influence
maximization and polarization problems on social networks. We
develop a method to model deception in social networks, employ
the sheaf Laplacian to model the opinion dynamics when deception
is present, redefine Laplacian centrality for the sheaf Laplacian to
detect influential nodes, and model polarization via sheaf Lapla-
cian. Our results show that liars are more influential than honest
people in social networks. We also show that liars make networks
more polarized. As future tasks, we plan to apply our method to
understand the construction and circulation of truth in social media
when deception is present.
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