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ABSTRACT
An important step in graph-based data analysis and processing is
the construction of similarity graphs. Recent works, such as [7, 23],
have focused on the semi-supervised setting to learn an optimal
similarity function for constructing a task-optimal graph. How-
ever, in many scenarios with billions of data points and trillions of
potential edges, the run-time and computational requirements for
training the similarity model make these approaches impractical. In
this work, we consider data sampling as a means to overcome this
issue. Unlike typical sampling use-cases which only seek diversity,
the similarity-learning for graph construction problem requires
data samples that are both diverse and representative of highly
similar data points. We present an efficient sampling approach by
taking an adaptive partition view of locality sensitive hashing. Theo-
retically, we show that, though the samples obtained are correlated
with sampling probabilities that do not sum to one, the training
loss estimated for learning the graph similarity model using our
approach is unbiased with a smaller variance compared to random
sampling. Experiments on public datasets demonstrate the superior
generalization of similarity models learned via our sampling. In
a real large-scale industrial abuse-detection example, we observe
≈ 10× increase in identifying abusive items while having lower
false positive rate compared to the baseline.
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1 INTRODUCTION
Graphs provide a powerful abstraction for high-dimensional data
with numerous applications in data mining [30], machine learning
[8], and modern signal processing [33]. Given a collection of data
points, a fundamental step in such graph-based methods is the
construction or learning of the similarity graph [37, 38]. Here, each
data point is represented as a node in the graph with weighted
edges (denoting degree of similarity) connecting nodes in the graph.
Despite its significance in real-world applications, especially with
multi-modal data, the choice of similarity is often ad hoc [15, 31, 35].

To solve this problem, recently, Halcrow et al. [23] proposed
Grale, a two-step graph learning procedure that works in a semi-
supervised setting: (1) Training learns a similarity (two-tower deep
neural network) model using the available data labels; and (2) Con-
struction builds an appropriate graph on the entire data set using
the similarity model obtained from previous step. Note that, for
this approach to be of practical use in large-scale settings, the train-
ing and construction process needs to be efficient and not form a
bottleneck in the larger execution pipeline (e.g., graph clustering
[4, 16], embedding [22, 34], or label propagation [28, 40, 44]).

Grale and its extensions [7, 36] propose the use of data structures
from nearest-neighbor search literature, namely locality sensitive
hashing (LSH) [17, 18, 21], to limit the similarity model training
and graph construction to relevant pairs of data points. However, in
cases with billions of data points, one is often left with trillions of
edges for training even after LSH. Consequently, the training step
in Grale involves huge compute requiring several days of training,
which hinders its usability. With increasing data sizes it is evident
that training similaritymodels with only LSH is insufficient. Further,
in situations where one does not have access to compute resources
or time, it is imperative to design algorithms that can provide a
summarized view of data, e.g., by sampling a small subset of the
input data, for efficient learning of the similarity models. To clarify,
we do not claim that LSH cannot scale. Rather, wemake the case that
relying only on LSH for graph learning in practice is not scalable:
LSH generates training edges that are based on all-pairs comparison
within each hash bucket which quickly adds up for large datasets.
Theoretically, if the LSH parameters are chosen optimally, the size
of each hash bucket would be small and this problem in graph
learning will not exist. However, in practice, it is often difficult
to find such an ideal parameter setting, making it necessary to
implement additional techniques to improve scalability.

The use of existing sampling approaches [3, 41, 42] for training
similarity models is hindered by two crucial factors. Firstly, a typical
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Figure 1: Grale Training and Sampling Problem. The left figure presents an example of LSH where each data point is hashed
with a bit indicating the half space corresponding to each line that contain the data point. The data is then gathered in a table
where pointers to data sharing the same code (bucket) are saved. Grale generates training edges between pairs of data point in
a bucket for learning the similarity function for graph construction. In this work, we view the buckets as an adaptive partition
of the input data. Our proposed sampling filters obtained buckets (e.g. buckets with at least 2 labeled examples) and allocates
given sample budget uniformly across the filtered buckets.

sampling approach aims to select samples such that similar points
are not sampled together [1, 2]. However, the samples in the graph
learning setting need to be representative of the data distribution
while also capturing highly similar points (edges) for obtaining
a good graph. Secondly, the memory usage and computation of
previous approaches scale poorly with the size of the sample set. For
example, an experimental setting presented in this paper consists
of a dataset with O(Billion) data points and sample set of size
O(Million)1. In such scenarios, one resorts to randomly partitioning
the dataset and sampling within each partition [19, 25]. Note that
one can use a random sample of the dataset [32] as an efficient
alternative. However, naive random selection and partition can
discard important information and are often inadequate.

In this work, we consider the problem of sampling for semi-
supervised learning of large-scale graphs. In this setting, we are
given a dataset 𝑿 = {𝒙1, 𝒙2, . . . 𝒙𝑁 } and an oracle function that
gives a binary valued edge ground truth for a small fraction of data
point pairs. In practice, one defines the oracle function based on
labels in a subset of the data points. For example, consider a dataset
which has binary labels of spam and non-spam. To construct a graph
that captures spam, an appropriate oracle function would be one
that assigns a value of one to pairs of data points with the same
label of spam, and assigns a value of zero to all other data point
pairs (one spam and one non-spam label, or both non-spam labels).
Thus, the edges capture relationships between data points that are
spam i.e., the graph is a network of spam nodes.

The goal of sampling is to obtain a sample set S that will be
used to train a similarity model for constructing the entire graph.
Additionally, we want the sampling to be (1) representative of the
pairwise similarities in the input data, and (2) efficient, where the
sampling process makes one pass over the data and does not incur
severe computational overhead. It is important to emphasize that

1Weuse O notation to denote the scale of the data problem, i.e., O(Billion) corresponds
to a few tens or hundred billion data points.

the sampling is only for learning the similarity model (Training step
of Grale), and does not affect the subsequent step (Construction)
for obtaining the graph using the learned similarity model on the
entire dataset.

Our work differs from active learning in semi-supervised setting
[20, 27, 43] on two accounts. Firstly, active learning approaches
often assume a graph representation of the dataset exists. On the
contrary, our work is aimed at sampling for the graph construction
or link prediction. Secondly, the scale of our problem is much larger
compared to that considered in typical active learning settings. We
believe our use of LSH buckets to obtain an approximate graph
structure for sampling presents a novel direction for sampling and
can lead to new scalable ideas in related graph approaches. However,
the immediate use of LSH in conjunction with previous sampling
approaches is made fragile or inefficient due to the fact that there
are no edge weights for data pairs in the LSH buckets. We leave
this as an open problem for future research.

1.1 Contribution
We present a simple and efficient sampling framework for graph
learning in the semi-supervised setting. The proposed approach
views LSH as an adaptive, possibly overlapping, partition of input
data points via hash buckets wherein similar points are grouped
together. One then samples a few elements from selected LSH buck-
ets (e.g., buckets with at least two labeled data point). The pairwise
comparisons for training the similarity model are subsequently
obtained using the LSH buckets and the sampled data. Thus, the
approach improves upon the existing LSH-based graph-learning
pipeline with minimal computational overhead. Figure 1 presents
the high-level abstraction of the our sampling approach.

Here, we emphasize that while the majority of advances in LSH-
based approaches focus on nearest-neighbor queries [18], the use of
LSH for graph learning (where query set equals data set) allows for
the development of unique techniques and optimizations specific
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to graphs. Conceptually, Carey et al. [7] pursue a similar direction
as ours, where the number of comparisons for graph learning is
minimized by selecting leaders in each bucket and constructing
two-hop spanners instead of cliques in each LSH bucket.

2 BACKGROUND
2.1 Locality sensitive hashing
Locality sensitive hashing (LSH) [17, 18, 21] is a popular, sub-linear-
time data structure for approximate nearest-neighbor search and
graph construction. Briefly put, LSH consists of a family of hash
functions H that map two points to the same hash bucket or value
when the two points are similar (each ℎ ∈ H is a function mapping
the data points into non-negative integers). A hash collision occurs
when two points have the same hash value, namely, ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 ).
A typical LSH function H has collision probability that is mono-
tonically increasing with the similarity of the data points,

𝑝𝑖 𝑗 = Pr
ℎ∈H

[
ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )

]
∝ 𝜅 (𝒙𝑖 , 𝒙 𝑗 ), (1)

where 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) corresponds to the measured similarity between
points 𝑖 and 𝑗 .

Definition 2.1 ((𝜆1, 𝜆2, 𝛿, 𝜌)-sensitive LSH Family). Given simi-
larity values 𝜆1 < 𝜆2 and a parameter 𝜌 ∈ [0, 1], a family H of
functions is said to be (𝜆1, 𝜆2, 𝛿, 𝜌)-sensitive if for every ℎ inH the
following holds for the dataset 𝑿 of size 𝑁 : if 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) > 𝜆2 then
𝑝𝑖 𝑗 ≥ 𝜌 and if 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) < 𝜆1 then 𝑝𝑖 𝑗 ≤ 𝛿 .

The precise form of 𝛿, 𝜌 is defined by the choice of the LSH family
used to build the hash tables. Given a family H , one can amplify
the sensitivity 𝜌 using a combination of AND and OR constructions
[26, 30] as follows. An AND family of hash functions is obtained
by concatenating the hash value of 𝑟 functions drawn from H .
The obtained functions are (𝜆1, 𝜆2, 𝛿𝑟 , 𝜌𝑟 )-sensitive, i.e., two points
with collision probability originally 𝑝𝑖 𝑗 will belong to the same
bucket with probability 𝑝𝑟

𝑖 𝑗
. Note that the hash table obtained with

this construction partitions each data point uniquely into different
hash buckets. In contrast, an OR construction turns a (𝜆1, 𝜆2, 𝛿, 𝜌)-
sensitive hash family into a (𝜆1, 𝜆2, 1 − (1 − 𝛿)𝑏 , 1 − (1 − 𝜌)𝑏 ).
Here, each data point is hashed into 𝑏 hash tables and two points
are considered neighbors if they belong to the same bucket in at
least one of the 𝑏 hash tables. This construction can be viewed as
partitioning the input space into overlapping hash buckets with
each data point assigned to 𝑏 buckets.

In this work, we consider the LSH construction in [10, 23, 30]
involving an AND-OR cascade, i.e., each data point is associated to 𝑏
hash buckets with each hash value obtained using a concatenation
of 𝑟 hash functions. This construction reduces (1) the number of
false positives because only valid neighbors are likely to match in
all 𝑟 hashes and (2) the number of false negatives by increasing the
number of potential buckets (𝑏) that could hold a valid neighbor.
The resulting LSH is (𝜆1, 𝜆2, 1 − (1 − 𝛿𝑟 )𝑏 , 1 − (1 − 𝜌𝑟 )𝑏 )-sensitive.

In our problem of graph learning, we will use a simplified Defini-
tion 2.1, namely, (𝜆, 𝜆, 0, 1 − (1 − 𝜌𝑟 )𝑏 ) where we assume the false
positive rate is tuned to be negligible, i.e.,𝜅 (𝒙𝑖 , 𝒙 𝑗 ) < 𝜆 then 𝑝𝑖 𝑗 ≈ 0.
This definition is suitable for our setting where we are interested
in the graph edges with similarity greater than a threshold 𝜆.

2.2 Locality sensitive sampling
LSH has traditionally been used to find similar data points or items
based on a given query. However, it has more recently been used
as a fast and adaptive sampling method in several applications.
Charikar and Siminelakis [9] first utilized this view of LSH for
hash-based kernel-density estimation; Spring and Shrivastava [39]
leverage this idea for adaptive sparsification of neural networks;
Chen et al. [10] accelerate stochastic gradient descent by selecting
examples with LSH sampler; Coleman et al. [13] make use of LSH
for estimating the probability of observing a genomic sequence
streams and select diverse samples.

The LSH sampling algorithm that is used in LSH-based methods
involves two steps: (1) Pre-processing, where items are inserted into
hash tables using an LSH function, and (2) Query based sampling,
where a subset of similar items are retrieved from the hash bucket
corresponding to the given query for estimation. The probability
of an item being returned as a candidate from a bucket in a (𝑏, 𝑟 )-
parameterized LSH function is equal to its collision probability
1− (1− 𝑝𝑟 )𝑏 . It is important to note that the sampling probabilities
of the items do not sum up to one, i.e. non-normalized, and the
sample set is likely to be correlated.

3 LSH SAMPLING FOR GRAPH LEARNING
In this section, we theoretically analyze the learning of a similarity
model for graph construction using edges generated via locality
sensitive hashing as detailed in Figure 1. We then present the im-
pact of sampling in the training loss used for learning the model
where the samples are obtained using random and LSH sampling.
Our results show that both sampling procedures lead to unbiased
estimators of the training loss but the variance associated with the
LSH sampling is smaller than that obtained using random sampling.

3.1 Graph Learning with LSH
Given are 𝑁 data points 𝑿 = {𝒙1, 𝒙2, . . . , 𝒙𝑁 }. An oracle similarity
function provides for any two points 𝒙𝑖 , 𝒙 𝑗 the ground-truth value
𝑦𝑖 𝑗 ∈ {0, 1} for the edge between them. The problem of graph
learning is concerned with finding a function 𝑓 (𝒙𝑖 , 𝒙 𝑗 ) that best
predicts 𝑦𝑖 𝑗 . In a typical learning problem, the oracle similarity
is accessible for only some unordered pairs, e.g., in cases where
a small subset of data is labeled, one can consider the similarity
functions 𝑦𝑖 𝑗 = 1 if the two points 𝑖, 𝑗 share the same label and 0
otherwise.

The loss function associated with training is defined as

𝐿(𝑓 ,𝑿 ) = 1
𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1

[
𝑦𝑖 𝑗 log 𝑓 (𝒙𝑖 , 𝒙 𝑗 ) +

(1 − 𝑦𝑖 𝑗 ) log(1 − 𝑓 (𝒙𝑖 , 𝒙 𝑗 ))
]

=
1
𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝐿𝑖 𝑗 (2)

where 𝐿𝑖 𝑗 is the loss corresponding to the input pair 𝒙𝑖 , 𝒙 𝑗 .

Assumption 1:

𝐿𝑖 𝑗 = 0 ∀𝒙𝑖 , 𝒙 𝑗 | 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) ≤ 𝜆, (3)
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where 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) corresponds to the measured similarity between
the two points. In other words, we are only interested in learning a
graph for those points with similarity at least 𝜆, i.e.,

𝐿(𝑓 ,𝑿 ) = 1
𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1
I(𝜅 (𝒙𝑖 , 𝒙 𝑗 ) > 𝜆) 𝐿𝑖 𝑗 , (4)

where I : {𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒} → {0, 1} is the indicator function. Instead
of explicitly calculating the similarity 𝜅 (𝒙𝑖 , 𝒙 𝑗 ) for all pairs, we
will rely on (𝑏, 𝑟 )-parameterized cascade of LSH function to find
relevant pairs for obtaining the training loss, namely,

𝐿H (𝑓 ,𝑿 ) = 1
𝑁

𝑁∑
𝑖=1

𝑁∑
𝑗=1
I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )) 𝐿𝑖 𝑗 , (5)

whereℎ is the 𝑟 -concatenated hash function (AND), H the hash table
obtained with 𝑏 randomly drawn 𝑟 -concatenated hash functions
(OR) from the LSH familyH . It is important to note that the loss
in equation (5) is dependent on the random hash table H. We will
assume that the hash table H for a given dataset is given and fixed.

Assumption 2: The number of LSH buckets (|𝐻 |) formed is smaller
than 𝑏 (number of duplicates obtained via OR construction) × 𝑀
(size of sample set), namely,

|𝐻 | < 𝑏𝑀. (6)

This assumption relates the sample budget with the number of
buckets formed, i.e., we assume that all LSH buckets are represented
in the sampling. In our analysis, this allows us to ignore the case
where one needs to select amongst the buckets formed for sampling.

Let us rewrite the loss function as

𝐿H (𝑓 ,𝑿 ) =
𝑁∑
𝑖=1

©« 1
𝑁

𝑁∑
𝑗=1
I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )) 𝐿𝑖 𝑗

ª®¬ (7)

=

𝑁∑
𝑖=1

Z𝑖

where Z𝑖 corresponds to the loss estimate at each data point.

3.2 Graph Learning with LSH Sampling
Assume that we sample a subset of the data points (each drawn in-
dependently) to use with training. Let S denote the random variable
associated with the sample set. Thus, the loss function for training
the network can be rewritten as

𝐿H,S (𝑓 ,𝑿 ) =
𝑁∑
𝑖=1
I(𝒙𝑖 ∈ 𝑆) Z𝑖𝑆 (8)

where Z𝑖S is the loss estimate at 𝒙𝑖 using the sampled set 𝑆 .
Let us first consider the impact of sampling on each Z𝑖

𝑆
:

Z𝑖S =
1
𝑀

𝑁∑
𝑗=1
I(𝒙 𝑗 ∈ S)I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )) 𝐿𝑖 𝑗 .

For the random sampling case, the summation follows a generalized
binomial distribution [12] with 𝑁 trials and with the probability of
success 𝑝𝑖 = 𝑀

𝑁
where𝑀 is the sampling budget. Using the Central

Limit Theorem, the estimate Z𝑖S can be approximated as normal
distribution with mean and variance as

E[Z𝑖S] = Z𝑖 , (9)

Var[Z𝑖S] =
1
𝑀2

𝑀

𝑁

(
1 − 𝑀

𝑁

) 𝑁∑
𝑗=1
I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )) 𝐿2𝑖 𝑗

=
1
𝑀2

𝑀

𝑁

(
1 − 𝑀

𝑁

) 𝑁∑
𝑗=1

𝑝𝑖 𝑗 𝐿
2
𝑖 𝑗 , (10)

where 𝑝𝑖 𝑗 is the LSH collision probability of the sample 𝒙 𝑗 with
respect to data point 𝒙𝑖 .

Now, for the case of our proposed sampling where each con-
stituent’s success follows different probabilities 𝑝𝑖 𝑗 , the summation
will follow a Poisson Binomial distribution [11, 14] where each
constituent will be sampled according to its collision probability.
Thus, the estimate Z𝑖S can be approximated as normal with

E[Z𝑖S] =
1
𝑀

𝑁∑
𝑗=1
E[I(𝒙 𝑗 ∈ S)]I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 )) 𝐿𝑖 𝑗

= Z𝑖 because I(ℎ(𝒙𝑖 ) = ℎ(𝒙 𝑗 ) |𝒙 𝑗 ∈ 𝑆) = 1, (11)

Var[Z𝑖S] =
1
𝑀2

𝑁∑
𝑗=1

𝑝𝑖 𝑗 (1 − 𝑝𝑖 𝑗 ) 𝐿2𝑖 𝑗

≤ (1 − 𝜌𝑟 )𝑏

𝑀2

𝑁∑
𝑗=1

𝑝𝑖 𝑗 𝐿
2
𝑖 𝑗 , (12)

where wemake use of the sensitivity of the LSH function considered
for our problem (see Section 2.1). Thus, the variance in the loss
estimate is smaller than the random sampling case, equation (10),
when

(1 − 𝜌𝑟 )𝑏 < 𝑝𝑖 (1 − 𝑝𝑖 )

⇐⇒ 𝜌 >

(
1 − [𝑝𝑖 (1 − 𝑝𝑖 )]

1
𝑏

) 1
𝑟
, (13)

where 𝑝𝑖 = 𝑀
𝑁

is the random sampling probability of drawing a
data point used for estimating the training loss at data point 𝑖 .

Remark 3.1. Here is an example to illustrate the above. Consider
𝑏 = 20, 𝑟 = 5, i.e., we create 20 LSH tables each made up of 5-
dimensional hash codes. For a similarity threshold of 𝜆 = 0.7 and
sensitivity parameter 𝜌 = 𝜆, we have 1−(1−𝜌𝑟 )𝑏 = 1−0.025 = 0.975.
Thus, the proposed sampling leads to reduction in variance for
sample sizes as small as𝑀 = 0.025 × 𝑁 .

Remark 3.2. The above sample complexity at each data point 𝑖 can
be further improved by considering the ratio of 𝑀, 𝑁 to be only
those samples that have 𝐿𝑖 𝑗 nonzero. With slight abuse of notation,
this corresponds to

𝑝𝑖 =
nnz(𝑀)
nnz(𝑁 ) , (14)

where nnz(𝑀) indicates the number of sampled data with non-zero
𝐿𝑖 𝑗 and nnz(𝑁 ) equivalently represents that of the input.

Now, we will consider the impact of sampling on the variance of
the entire training loss defined in equation (8).
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Each Z𝑖S can be approximately modeled as a Gaussian random
variable, but they are not independent or identical. This is because
a data point in 𝑆 can contribute to multiple Z𝑖

𝑆
. Consequently, the

moments are data-dependent and can have different number of non-
zero values contributing to the estimated loss in the case of random
sampling. The proposed sampling approach fixes the number of
samples at each estimate 𝑖 by dividing budget equally across each
bucket, i.e., 𝑀

|𝐻 | , ensuring samples with stronger similarity are
sampled. This allocation makes the loss estimates at each 𝑖 identical,
assuming the average of the data-dependent terms (𝐿𝑖 𝑗 ) are similar.

Consider the variance associated with the sum of𝑀 correlated
Gaussian random variables Z𝑖

𝑆
.

Var

[
𝑀∑
𝑖=1

Z𝑖S

]
=

𝑀∑
𝑖=1

Var[Z𝑖S] +
𝑀∑

𝑖, 𝑗=1,𝑖≠𝑗
Cov[Z𝑖SZ

𝑗

S] . (15)

As shown the first term on the right is smaller for the proposed
sampling approach compared to that of random sampling when
equation (13) holds.

For the term involving covariance, note that the covariance be-
tween Z𝑖

𝑆
,Z𝑗

𝑆
is positive when 𝒙𝑖 and 𝒙 𝑗 are similar, i.e., larger

𝜅 (𝒙𝑖 , 𝒙 𝑗 ), and equivalently negative when the points are not simi-
lar. Thus, for the case of proposed LSH-based sampling, the sum
corresponding to the covariance contains largely negative terms.
This is because in proposed LSH-based sampling, if 𝒙𝑖 is sampled
then 𝒙 𝑗 has less chance of being sampled and vice versa. On the
other hand, with random sampling the number of similar data
points that are sampled can be arbitrarily high. In other words, we
can expect the overall variance of the LSH-based sampling to be
much lower than the random sampling approach.

3.3 Proposed: LSH Filtering + Sampling
We now describe our proposed sampling approach for training the
similarity model to be used for learning a graph. Given a LSH func-
tion constructed for identifying relevant candidate pairs in a dataset,
our sampling approach begins by bucketing or sketching points in
the dataset using 𝑏 randomly drawn LSH functions. We cap the
size of each bucket, randomly subdividing any sketch bucket that is
larger. This additional step helps avoid blow-up in candidate pairs
generated andmitigate the impact of noisy hashing. For each bucket
obtained, our approach then calculates bucket-level statistics to ob-
tain a smaller relevant set of buckets for sampling. The filtering
helps overcome practical difficulties associated with Assumption 2
(equation (6)) in our theoretical analysis. The algorithm then pro-
ceeds by sampling a random data point within each filtered bucket,
repeating the procedure if the data point was already sampled. The
obtained sample set is then used with the sketching to generate
candidate edges for training the similarity model. The training and
graph inference then follow the same setup as in Grale [23]. By
reusing the same LSH buckets used for the training edge generation
in Grale, our sampling approach avoids additional computation or
memory overhead. Thus, the sampling can be integrated into ex-
isting pipeline and derive any LSH improvements made for graph
learning, such as the SortingLSH introduced in [7].

Algorithm 1: Grale with proposed sampling
1 Function Sample(𝐻,𝑿 ,𝒚, condition,𝑀):
2 Filtered Buckets 𝐻𝑓 = {}
3 for key ℎ, value 𝑣 in 𝐻 do
4 if condition(ℎ, 𝑣) then
5 Append ℎ, 𝑣 pair to 𝐻𝑓

6 end
7 Sample set 𝑆 = [ ]
8 while Size of 𝑆 < 𝑀 do
9 for key ℎ, value 𝑣 in 𝐻𝑓 do
10 if 𝑣 empty then
11 continue
12 𝑠 = Random sample a point from 𝑣

13 Remove 𝑠 from 𝑣

14 \\Repeat sampling if 𝑠 already in 𝑆

15 Append 𝑠 to 𝑆
16 end
17 end
18 return 𝑆
19 Function Sketching(𝑿):
20 Buckets 𝐻 = {}
21 H(𝑟 ) = 𝑟 -hash LSH family fromH \\AND construction
22 H(𝑟, 𝑏) = 𝑏 random ℎ from H(𝑟 ) \\OR construction
23 for 𝒙𝑖 in 𝑿 do
24 for ℎ in H(𝑟, 𝑏) do
25 if ℎ(𝒙𝑖 ) not in 𝐻 then
26 𝐻 [ℎ(𝒙𝑖 )] = []
27 Append 𝑖 to bucket 𝐻 [ℎ(𝒙𝑖 )]
28 end
29 end
30 Subdivide buckets in 𝐻 of size larger than 𝐾
31 return 𝐻
32 Function Grale(𝑿 ,𝒚, condition,𝑀):
33 Buckets 𝐻 = Sketching(𝑿)

34 𝑆 = Sample(𝐻,𝑿 ,𝒚, condition,𝑀)

35 for bucket in 𝐻 do
36 for 𝑖, 𝑗 ∈ 𝑆 ∩ bucket do
37 Emit training edge (𝒙𝑖 , 𝒙 𝑗 ), I(𝑦𝑖 = 𝑦 𝑗 )
38 end
39 end
40 Train similarity model using obtained edges
41 return Grale similarity model

3.4 System design and implementation
The proposed sampling approach is implemented as part of the
Grale [23] graph building system, which is based on Adaptive Mas-
sive Parallel Computation model [5] of distributed framework. Each
computation in this framework is automatically distributed across
thousands of worker machines.

The sampling integrated graph learning system involves the
following steps: (1) generating LSH tables H using LSH functions
fromH ; (2) obtaining allocated number of samples from each hash
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bucket as outlined in section 3 and Algorithm 1. The edge pairs
(sampled data sharing a bucket) are then passed as input to Grale
similarity training model; and (3) scoring all edge pairs of the entire
dataset using the trained similarity model.

The LSH tables save only a reference to each data point instead
of the entire feature set. This allows for efficient memory usage,
as each data point is replicated 𝑏 times to improve LSH sensitivity.
The edge pairs for training and inference are generated via lookups
in a distributed hash table. Here, the entire dataset is cached across
multiple machines, requiring O(𝑁 ) RAM, resulting in fast feature
lookups without any costly disk I/O. This setup—used in [23] to
handle large datasets (billions of points, large feature vectors)—
allows for the proposed sampling to be materialized efficiently with
the filtering and sampling performed in an online fashion as and
when each bucket is processed.

To handle hash buckets with a large number of data points, [23]
imposed a limit on LSH bucket sizes. Large buckets are randomly di-
vided into smaller sub-buckets prior to edge pair generation, which
reduces the number of edges eligible for comparison and balances
worst-case running time with edge recall. For sampling, this step
leads to drawing more data points from the original hash bucket
and is equivalent to allocating more budget to dense partitions,
provided all sub-buckets are selected for sampling.

4 EXPERIMENTS
We evaluate the performance of the graph obtained using simi-
larity models trained with random and proposed data-sampling
approaches on two public datasets as well as a large-scale abuse-
detection setting. In all experiments, the sample budget is set to 5%
of the input data.

4.1 Public datasets
We run experiments on two public datasets, MNIST [29] and Ama-
zon2M [6] (also known as OGBN-Products [24]). TheMNIST dataset
contains 60k images corresponding to 10 digits, each of which
is vectorized and normalized into 784-dimensional float vectors.
Amazon2M contains 2, 449, 029 data points, each of which has a
100-dimensional float vector and a set of strings that indicates co-
purchase relationships. In addition, each data points is given a class
label corresponding to 47-top level categories. The data points are
equally distributed among the target labels in MNIST while have a
highly imbalanced distribution in Amazon2M.

For the graph learning problem, we simulate a semi-supervised
setting by limiting ourselves to 10% of the class labels in the dataset
as input with oracle similarity function that assigns 1 if the nodes
belong to the same class and 0 otherwise. The sketching parameters
used to obtain the hash buckets is selected as in [7, 23] where
we use cosine-similarity hashing functions (SimHash) for feature
vectors and use Jaccard similarity hashing (MinHash) between sets
of strings with weights. The sketching dimension 𝑟 is set to 12 for
both datasets and the number of sketches 𝑏 is set to 10. Each sketch
bucket is limited to size 100 by randomly splitting larger sketches
into smaller sub-buckets.

We evaluate the graphs obtained using our approach and base-
lines in terms of edge weights obtained at different weight thresh-
olds and hierarchical average-linkage clustering [4]. We measure

Figure 2: Conductance scores on clustering obtained with
graphs learned on MNIST (Left) and Amazon2M (Right).
Results are reported for the best performing edge weight
model for each dataset and for 10-rounds of clustering.

clustering quality using conductance. The conductance of a graph
G where each node has a binary class or cluster label is given by

C(𝑆, 𝑆𝑐 ) = 1 −
∑

𝑖∈𝑆,𝑗 ∈𝑆𝑐

𝑤𝑖 𝑗

min𝑤 (𝑆),𝑤 (𝑆𝑐 ) , (16)

where𝑤𝑖 𝑗 is the weight of the edge between nodes 𝑖, 𝑗 and𝑤 (𝑆) =∑
𝑖∈𝑆,𝑗 ∈G 𝑤𝑖 𝑗 is the sum of all edges incident on 𝑆 (similarly 𝑆𝑐 ).

Conductance score is in range [0, 1] with higher conductance cor-
responding to better quality clusters.

We present our results in Figure 2. We observe that the proposed
LSH bucket based sampling consistently outperform the random
and complete baselines in terms of conductance evaluated at each
round of hierarchical clustering. Note that the similarity model
trained with the entire dataset has sub-optimal generalization as
the number of positive edges (edges with oracle similarity 1) is
far fewer than the number of negative edges (edges with oracle
similarity 0). In contrast, our sampling approach naturally balances
this imbalance in input for training the similarity model – the
sampled data from each LSH buckets provide training edges that
are representative and distributed across data space.

4.2 Case Study: Abuse detection
In this section we present a study on large scale abuse detection,
a typical industry setting for Grale [23]. This scenario unlike the
public datasets, involves features from multiple sources and modal-
ities rather than a single dense feature space. We employ an OR
style construction to combine the LSH outputs from each modality
to obtain the sketch buckets for the graph learning. Note that in
such setting our approach importance samples training points and
corresponding edges that share buckets across multiple modalities.
This is desirable as the similarity model learned using the edges
obtained after sampling lead to better generalization, i.e. recall and
precision of resulting graph edges, as seen in our results.

The input dataset to the abuse detection graph learning problem
consists of O(Billion) points with labels available for a fraction of
the dataset (< 10%). Each labeled data point belongs to the class of
abusive items (due to policy violations) or the class of safe items
(active, non-abusive, or verified). For the purpose of identifying
unlabeled items that are abusive, we consider the learning objective
in equation (2) and define the oracle similarity function as

𝑦𝑖 𝑗 =

{
1 𝒙𝑖 and 𝒙 𝑗 are abusive
0 otherwise

.
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Edges Random Proposed

Total 1 2
Abusive-Abusive 1 2
Safe-Safe 1 0.03

Table 1: Graph comparison on labeled items obtained using
random and proposed sampling methods. We observe twice
the number of edges, O(Billion), with the graph obtained us-
ing proposed sampling having better generalization i.e., the
edges between abusive items, O(Billion), increased while
edges between safe items, O(Thousand), decreased.

For our study, we consider a sample budget of 5% of the input
dataset, as in the public dataset evaluation, equally split across abu-
sive, safe, and unlabeled items for training the similarity function.
Our approach is compared with the random sampling baseline pre-
viously used for abuse detection. We do not perform full dataset
training as this requires massive compute resources and weeks of
training. The graphs obtained using the trained similarity model is
evaluated2 in terms of (1) Precision and recall on edge connectivity
on entire labeled set, and (2) Precision and recall in abuse detection
using clustering [4] on obtained graphs. The clusters obtained are
filtered for quality (cluster size, % abusive nodes in the clusters)
before being used for flagging unlabeled items for abuse. Note that
one typically does not have the true label for the unlabeled nodes.
Thus, to evaluate the obtained clusters and methods we rely on
abusive labels that were assigned to the items in the future and the
false positive rate using the known safe items that were flagged in
the cluster. In Table 2, we report the recall (known abusive nodes
identified in cluster), expansion (nodes in the cluster that are not
labeled abusive), future recall (expansion nodes that were flagged
abusive in the following weeks), and known false positive rate (ex-
pansion nodes that have safe labels). Our sampling based model
leads to better abuse detection where about 2.74× more abusive
nodes are detected (recall) with about 2.4× higher future recall and
0.7× known false positive rate compared to the random baseline.

Sampling Recall Expansion Future Recall FP Rate

Random 1 1 1 1
Proposed 2.74 9.69 2.42 0.68

Table 2: Clustering performance comparison for abuse de-
tection using random and proposed sampling approaches
for training the similarity model. Note that recall, expan-
sion, and future recall are in several O(Million) (Higher is
better). The false positive (FP) rate captures the number of
safe items in the identified clusters relative to the number
of flagged items and is in the O(1𝑒−4) (Lower is better).

2We report relative improvements with respect to the random baseline in our compar-
ison to avoid revealing any sensitive information related to the data.

5 CONCLUSION AND FUTUREWORK
As data sizes continue to grow, the need for reliably handling and
scaling learning algorithms for large-scale datasets is imminent. In
this paper, we tackle the problem of similarity learning for graph
construction using data sampling. Our proposed approach, an effi-
cient and distributed sampling strategy, leverages locality sensitive
hashing as an adaptive partition of the input dataset to guide the
sampling procedure and obtain both diverse and highly similar
points. Our method significantly reduces the run time and mem-
ory requirements of the training procedure while leading to high
quality graphs and downstream clustering outputs. As an example,
in a large scale abuse detection dataset with billions of items, we
demonstrate a 10-fold increase in identifying abusive patterns with
a lower false positive rate than a random sampling baseline.

Moreover, the novel view of LSH buckets as data structures that
can guide data sampling in graph learning presents interesting
opportunities to revisit previous sampling approaches for scalabil-
ity. As an extension of our proposed sampling, we plan to study
a two-level LSH sampling where we consider the overlap of the
buckets to better distribute the sampling budget. This extension is
equivalent to a graph-set cover for identifying canonical samples in
high-dimensional inputs, in particular those obtained from multiple
modalities. This approach also mitigates the impact of the number
of buckets formed with LSH on sampling, as in equation (6).

The high-level idea with the two-Level LSH sampling is as below.

• (First-level) We hash the features into LSH buckets, combin-
ing multiple weak similarity models using appropriate LSH
functions for each piecemeal feature. This step is the same as
that used in the sampling studied in this work (algorithm 1).

• (Second-level) We then construct a new feature-vector for
each item in the dataset as the set of LSH-buckets that each
piecemeal feature are hashed in the first-level. We then hash
(MinHash) this set feature vector to determine data that have
high Jaccard-Similarity for distributing the sample budget.

The second-level captures a LSH representation of items sharing
similarity over first-level buckets which can help allocating more
precise sample budgets in our proposed algorithm. We believe this
approach can help overcome LSH outputs with very large hash
buckets and maximizing the efficiency of our sampling procedure.
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