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Figure 1: Overview of our proposed synthetic data generation framework. The module is composed of three parts: structural
generator, which fits the graph structure, feature generator which fits the feature distribution contained in the graph, and
finally an aligner, which aligns the generated features with the generated graph structure.

ABSTRACT
Recently there has been increasing interest in developing and de-
ploying deep graph learning algorithms for many graph analysis
tasks such as node and edge classification, link prediction, and
clustering with numerous practical applications such as fraud de-
tection, drug discovery, or recommender systems. Albeit there is
a limited number of publicly available graph-structured datasets,
most of which are tiny compared to production-sized applications
with trillions of edges and billions of nodes or are limited in their
application domain. In this work, we tackle this shortcoming by
proposing a scalable synthetic graph generation tool. This tool
can be used to learn a set of parametric models from proprietary
datasets that can subsequently be released to researchers to study
various graph methods on the synthetic data increasing prototype
development and novel applications. Finally, the performance of
the graph learning algorithms depends not only on the size but
also on the graph datasets structure. We show how our framework
generalizes across a set of datasets, mimicking both structural and
feature distributions and the ability to scale them across varying
dataset sizes. Code can be found on GitHub.1

∗equal contribution
1https://github.com/NVIDIA/DeepLearningExamples/tree/master/
Tools/DGLPyTorch/SyntheticGraphGeneration

1 INTRODUCTION
Graphs are ubiquitous data structures that capture relational and
structural information between individual entities (nodes) via con-
nections (edges) in many domains. For example, in social networks,
a graph-based learning system leverages structural and feature in-
formation to make accurate user recommendations. Similarly, in an
e-commerce platform, a transaction network can be used to detect
fraudulent transactions. Real-world graphs are quite diverse, for a
simple recommendation scenario consisting of user and item nodes,
the user nodes would include information about age, gender, and
income. Whereas the item nodes (e.g. a movie) would be charac-
terized by the genre, length, and list of actors. Additionally, edge
features may contain information about the rating the user gave a
movie. Such attributed graphs are quite common, where the graph
dataset’s structure is enriched with features of the nodes and edges.

Graph Neural Networks (GNNs) have recently benefited from
an increasing interest where a number of applications deal with
data naturally represented as graphs. Motivated by similar devel-
opments in other domains, there has been efforts to extend the
benefit of deep learning to this non-Euclidean domain enabling
more streamlined approaches that leverage the relational data. Vari-
ous methods have been developed to learn from graph data, such as

https://github.com/NVIDIA/DeepLearningExamples/tree/master/Tools/DGLPyTorch/SyntheticGraphGeneration
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Node2Vec [12], graph convolution networks (GCN) [18] and graph
attention networks (GAT) [33] focusing on various tasks including
node classification [18], link prediction [23], graph clustering [14],
where the term geometric deep learning [5] is used to refer to such
methods.

A central problem in geometric deep learning is the need for
real-world datasets. Most of the larger public datasets are similar
and are often derived from academic citation networks [15], which
are small for world-size problems. This lack of diversity limits the
development of graph neural networks (GNN) and their evaluation.
In this work, we propose a framework for synthetic graph gen-
eration which can systematically generate n-partite graphs with
corresponding node or edge features in a scalable manner. Gener-
ating realistic large-size graph datasets, which we define graphs
with billions to trillions of edges that simulate real-world datasets
distributions will enable data sharing. This dataset curation will be
a key component to advancing the field both for developing mod-
els that scale to such large graph sizes and from the perspective
of improving the accuracy of developed GNNs, and new efficient
geometric deep learning methods.

The proposed framework provides a parametric model that is
flexible enough to fit a single graph as well as many graphs. It also
supports generating both associated node and edge features. Our
main contributions is as follows,

(1) We propose a flexible framework for synthetic graph dataset
generation that can generate graph of arbitrary size based on
original (usually smaller) graph characteristics containing
both structure and tabular features.

(2) We show a set of case studies reflecting the generality and
effectiveness of our approach on real-world datasets, simu-
lating real-world graph statistical properties.

The paper is organized as follows: in the next sections we provide
an over view of recent methods, then we define the problem and
proposed method, subsequently the experimental setup to evaluate
the method is presented, and finally a result section showcasing
the usability of such framework on real-world datasets.

2 RELATEDWORK
There has been increasing interest in curating datasets for different
graph prediction tasks; for example, for node classification (CORA,
PUBMED, and CITESEER) are commonly used [18], for link pre-
diction (WN18, FB15k, OAG) [28, 29]. More recently, Open Graph
Benchmark (OGB) datasets have been used for a set of challenging
and realistic datasets to facilitate graph machine learning research
and application development [16]. However, most of these sources
are limited in scope as they are primarily derived from citation net-
works or social networks, limiting the scientific insight into various
problems that derive similar graph data representations. As a result,
synthetic graph generation has been proposed as a facilitator to
this gap for investigating of different models in this domain.

The development of generative models for graphs poses unique
challenges. These generative models are broadly categorized into
two categories: traditional model-based methods and deep learning
based methods. Simple, elegant, and general mathematical models
are instrumental in graph generation. The two simplest random
graph models are to select a graph uniformly at random from the

set of graphs with 𝑣 vertices and 𝑒 edges or generate a graph uni-
formly random from the set of graphs and 𝑣 vertices where each
edge has the same probability of existing, commonly referred as the
Erdos-Renyi models [9]. In biology, these models are accepted as a
basic model to study biological networks where similarity of typolo-
gies and biological regulatory networks are studied or compared
against [24]. Despite its usability and scalability, it violates power
laws commonly found in social networks. A class of procedural
generators tries to find simple mechanisms to generate graphs that
match this property of graphs commonly found in the real-world.
A typical representative here is the Barabasi-Albert Method [2, 3],
which uses a preferential attachment idea by adding nodes and new
nodes prefer to connect to existing nodes. R-MAT is an example of
such a random graph generation model is the Chakrabarti et al. [6].
An alternative well-studied random graph model is the Stochastic
Block Model [1] which generates graphs based on the communities
within the graph and their degree distributions. Procedural syn-
thetic graph generation is a foundation of the Stochastic Kronecker
Graphmethod introduced in [20] which is a generalization of R-Mat
for finding power-law degree distribution with the base different
than two. The above methods are very attractive from a computa-
tional complexity standpoint, as well as modeling real-world graph
properties.

On the other hand, recent deep-graph generators (DGG) that
generate graphs sequentially either by generating node-by-node,
edge-by-edge, or a block of nodes have been proposed. These gen-
erators are commonly autoregressive [22, 25, 36] and are limited in
generating small graphs with 100’s-1000’s nodes. Further, very few
deep graph generators work with single graph inputs, commonly
referred to as one-shot graph generators, which are auto-encoder
based [13, 19]. Additionally, most DGG methods lack the ability to
generate features in addition to the structure, primarily because
of the complexity of modeling such a problem jointly in an end-
to-end fashion. A good overview of DGG can be found in [10].
Additionally, comparing two graphs’ datasets in both structure and
feature modality is challenging. Most methods [7, 10, 21] use plots
to compare graphs in terms of connectivity, transitivity, path stats,
and spectral properties, on the other hand common metrics like
associativity, clustering coefficient, largest connected component
are used to compare graph generation quality which are related to
the graph structure [4, 22, 36]. In addition to these there is a need
to develop methods for comparing large graphs from single input
models that constitute both the structure as well as features, which
our proposed framework supports.

3 PROPOSED METHOD
3.1 Problem Formulation
We are interested in the problem of graph generation that aims
to sample similar graphs as the original graph via a probabilistic
model. Formally, a graph contains both structural information and
features; as such we define the graph as a triple𝐺 (𝑆, 𝐹V , 𝐹E ), where
𝑆 = (V, E) ,V = {𝑣1, 𝑣2, · · · , 𝑣N} is the set ofN nodes (or vertices),
𝐹V ∈ ℜN×𝑑V is the corresponding feature matrix associated with
node features with dimension 𝑑V , E ⊂ V × V is the set of M
edges, where 𝑒𝑖 𝑗 is an edge that connects node 𝑣𝑖 and 𝑣 𝑗 ∈ V , and
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𝐹E ∈ ℜM×𝑑E is the associated edge feature for each edge 𝑒𝑖 𝑗 ∈ E
and 𝑑E is the dimension of each edge feature.

Given an input graph 𝐺 with arbitrary number of nodes, edges,
and feature sets we aim to learn the probabilistic model that gen-
erated this graph 𝑝 (𝐺). New graphs are then sampled from this
generative process �̃� ∼ 𝑝𝑚𝑜𝑑𝑒𝑙 (𝐺). In a general setting a graph
with N nodes can be represented by up to N ! adjacency matrices
𝐴𝜋 , corresponding to arbitrary node ordering, resulting in a high
representation complexity especially for large graphs. Addition-
ally, there are 2N(N−1)/2 such graphs in the undirected case. It is
important for generative models to scale to large-scale (billions or
more edges/nodes) graphs and to accommodate this complexity in
the output space. Additionally, to simultaneously generate node
features 𝐹V and edge features 𝐹E greatly increases this model-
ing complexity. To make the problem tractable we decompose the
generative process into different components

Our proposed generative model consists of three components:
structural generation, feature generation, and alignment of these
components as depicted in Figure 1. As shown, we make the struc-
tural generation and feature generation independent, which are
then brought together using an aligner A(𝑆, 𝐹 ) → �̃� (the aligner
is detailed in section 3.3). In the following sections we will detail
each component within the framework. To simplify the notation
we consider a single graph 𝐺 as input to the generator. From this
graph we extract the corresponding structural information 𝑆 , and
its associated feature sets 𝐹V , 𝐹E . Next we detail the structural
generator 𝑔𝜃 .

3.2 Structure Generation
3.2.1 Motivation. As we are interested in scaling the generation
tool to trillion edge graphs, we leverage model-based graph gen-
erators, where our proposed method can be seen as a generalized
stochastic Kronecker matrix multiplication for structure generation.
The graph structure consists of the corresponding nodes and edges
without node or feature attributes, i.e. 𝑆 = (V, E). The adjacency
matrix 𝐴 corresponding to this graph is an 𝑛 ×𝑚 matrix, where
N = 𝑛 +𝑚, with entries 𝑎(𝑖, 𝑗) = 1 if the edge 𝑒𝑖 𝑗 between node 𝑖
and node 𝑗 exists.

We will first formalize the problem of generating the structure
for a simple graph𝐺 that is non-directed heterogeneous in nodes
and homogeneous in edges. Later we will extend this to general
graph to show that our generator is a generalisation of R-MAT [7].

3.2.2 Problem formulation. The objective is to generate a graph
𝐺 represented by the adjacency matrix 𝐴 that is similar to the
original graph adjacency matrix 𝐴. The 𝐴 adjacency is generated
by sampling 𝐸 edges from a distribution 𝜃 . Here 𝜃 is a discrete
2D probability distribution, where 𝜃𝑖, 𝑗 represents the probability a
directed edge from node 𝑖 to node 𝑗 exists in graph𝐺 . If we choose
to generate the graph of the same size as the input, that is𝐴 is 𝑛×𝑚
and graph 𝐺 has 𝑛 +𝑚 nodes, then 𝐴 ∼ 𝜃 which is generated as
follows

𝜃 = 𝜃
⊗𝑚𝑖𝑛 (𝑚,𝑛)
𝑆

⊗ 𝜃⊗𝑚𝑖𝑛 (0,𝑛−𝑚)
𝐻

⊗ 𝜃⊗𝑚𝑖𝑛 (0,𝑚−𝑛)
𝑉

(1)

where

𝜃𝑆 =

[
𝑎 𝑏

𝑐 𝑑

]
𝜃𝐻 =

[
𝑞 1 − 𝑞

]
𝜃𝑉 =

[
𝑝

1 − 𝑝

]
, (2)

𝑚 = ⌈log2 𝑀⌉, 𝑛 = ⌈log2 𝑁 ⌉, (3)

𝑝 = 𝑎 + 𝑏, 𝑞 = 𝑎 + 𝑐, (4)
⊗ is a Kronecker matrix product, and 𝐴⊗𝑏 = 𝐴 ⊗ 𝐴 ⊗ ... ⊗ 𝐴︸             ︷︷             ︸

𝑏𝑡𝑖𝑚𝑒𝑠

is

the matrix Kronecker power.
Here 𝜃𝐻 and 𝜃𝑉 are marginals of 𝜃𝑆 which depend only on the

shape of matrix 𝐴 and only one of them is effectively used to form
the probability distribution 𝜃 . If matrix 𝐴 is square (𝑛 =𝑚) then

𝜃 = 𝜃⊗𝑁
𝑆

which effectively is an R-MAT algorithm. The proposed approach
differs in comparison to previous methods as 𝐴 might be a non-
square adjacency matrix, additionally𝐴 in general is constructed in
a way that the 𝑖-th row and the 𝑖-th column can represent different
nodes in the graph, giving us the ability to construct graphs that
are heterogeneous in nodes in K-partite graphs.

For K-partite graph the obtained adjacency matrix is a block
matrix with connectivity between the nodes in the corresponding
partite. In this framework in order to represent K-partite graphs
with𝐴where matrix coordinates imply node ids then, it is sufficient
to consider 𝐴𝑃 for each partite 𝑃 and create 𝐴 out of 𝐴𝑃 for each
partite.

3.2.3 Fitting the generator. The purpose of the structure generator
is to generate a graph 𝐺 that is similar in graph characteristics to
original graph 𝐺 . These characteristics will depend on the parame-
ters of 𝜃𝑆 . We use the notion of (normalized) degree distributions
of the graphs𝐺 , and 𝐺 as a similarity measure therefore in order
to find parameters of 𝜃𝑆 we need to minimize the following error

𝐽 (𝜃𝑆 ) ∝
𝑘𝑖𝑛𝑚𝑎𝑥∑︁
𝑘𝑖𝑛=0

(𝑐𝑖𝑛
𝑘

− ˆ𝑐𝑖𝑛
𝑘
)2 +

𝑘𝑜𝑢𝑡𝑚𝑎𝑥∑︁
𝑘𝑜𝑢𝑡=0

(𝑐𝑜𝑢𝑡
𝑘

− ˆ𝑐𝑜𝑢𝑡
𝑘

)2, (5)

where 𝑘 is the node degree, 𝑐𝑖𝑛
𝑘

is the number of nodes in graph𝐺
having in-degree 𝑘 , 𝑐𝑜𝑢𝑡

𝑘
is the number of nodes in graph 𝐺 having

out-degree 𝑘 , ˆ𝑐𝑖𝑛
𝑘

is the estimated number of nodes in graph 𝐺
having in-degree k, and ˆ𝑐𝑜𝑢𝑡

𝑘
is the estimated number of nodes in

graph 𝐺 having out-degree k.
Note that this does not imply that 𝐴 and 𝐴 are similar in a sense

𝐴 −𝐴 ≈ 0, which would require appropriate node permutation in
𝐺 . Simple degree distributions comparison allows us to effectively
compare graphs only when the number of nodes is equivalent,
though our goal is to generate a graph𝐺 that is arbitrarily larger in
number of nodes than 𝐺 . Therefore, we require a 𝜃𝑆 for the graph
of the same size and then generate

ˆ𝑐𝑖𝑛
𝑘

and ˆ𝑐𝑜𝑢𝑡
𝑘

depend on 𝜃𝑆 as follows

ˆ𝑐𝑜𝑢𝑡
𝑘

=

(
𝐸

𝑘

) 𝑚∑︁
𝑖=0

(
𝑚

𝑖

)
[𝑝𝑚−𝑖 (1 − 𝑝)𝑖 ]𝑘 [1 − (𝑝𝑚−𝑖 (1 − 𝑝)𝑖 )]𝐸−𝑘 (6)
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and

ˆ𝑐𝑖𝑛
𝑘

=

(
𝐸

𝑘

) 𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
[𝑞𝑛−𝑖 (1 − 𝑞)𝑖 ]𝑘 [1 − (𝑞𝑛−𝑖 (1 − 𝑞)𝑖 )]𝐸−𝑘 , (7)

where ˆ𝑐𝑖𝑛
𝑘

and ˆ𝑐𝑜𝑢𝑡
𝑘

depend only on 𝑝 and 𝑞. Solving (5) for 𝑝 =

𝑎+𝑏 and 𝑞 = 𝑎+𝑐 leads to underdetermined system (𝑎+𝑏+𝑑 +𝑐 = 1)
as we have 3 equations and 4 variables. [7] proposes to use 𝑎

𝑏
= 𝑎

𝑐 =
3
1 , since this can be seen in many real world scenarios. We have
encountered graph datasets that did not follow this ratio. Instead of
this ratio we propose to estimate 𝑎

𝑏
and 𝑎

𝑐 from adjacency matrix
𝐴 of the original graph 𝐺 by Maximum Likelihood Estimation of
these parameters as this yields better results.

3.2.4 Chunked generation. The R-MAT algorithm operates by re-
cursively subdividing the adjacency matrix 𝐴. The 𝑖-th subdivision
corresponds to the single matrix 𝜃𝑖 ∈ ℜ2×2 and may be interpreted
as choosing a bit for the source and destination node of the sam-
pled edge. For the case of generating large graphs, producing a
graph 𝐺 by sampling 𝐸 edges from the distribution 𝜃 may not fit
into the available memory. In order to parallelize generation and
decrease memory consumption, 𝜃 is represented as 𝜃𝑝𝑟𝑒 𝑓 ⊗ 𝜃𝑔𝑒𝑛 ,
where 𝜃𝑝𝑟𝑒 𝑓 is used to generate a unique chunk prefix to avoid
id-overlap and both terms have the form 𝜃

⊗𝑛𝑥
𝑆

as in eqn. 1. As each
edge is sampled independently, we can replace sampling prefixes
from 𝜃𝑝𝑟𝑒 𝑓 by the expected value of the edges for the given prefix
𝐸𝑝𝑟𝑒 𝑓 = 𝐸 ·E[𝜃𝑝𝑟𝑒 𝑓 ]. To this end, to produce the 𝑖-th chunk we sam-
ple 𝐸𝑖

𝑝𝑟𝑒 𝑓
edges from 𝜃𝑔𝑒𝑛 and prepend the 𝑖-th prefix to them. The

prefixes guarantee us that there will be no edge overlap between
chunks and the final graph is simply constructed by concatenating
them to obtain the graph 𝐺 .

3.3 Feature Generation
Nextwe consider the feature sets associatedwith the graphDfeatures =
𝐹V/E , where each row 𝑥𝑖 ∈ ℜ𝑑V/E is an observation sampled from
a data-generating distribution 𝑃Dfeatures (𝑥). We treat this dataset
as a tabular dataset. Each row corresponds to the corresponding
edge features, source node features, and destination nodes features.
The objective is to learn a generative model 𝐺features over this data
generating process. To this end, we consider the multi-modal set-
ting where 𝑥𝑖 is a concatenation of discrete D = [𝐷1, · · · , 𝐷 |D |]
and continuous features C = [𝐶1, · · · ,𝐶 |C |]. Without loss of gen-
erality our generator follows a GAN architecture, though any high-
capacity method that can model the underlying distribution can
be used. To this end, our input layer consists of a feature tokenizer
where the corresponding embedding for each feature is computed
as follows:

𝐸 𝑗 = 𝑏 𝑗 + 𝑓𝑗 (𝑥 𝑗 ) ∈ ℜ𝑑 𝑗 𝑓𝑗 : X→ ℜ𝑑 𝑗

where 𝑏 𝑗 is a bias term for the 𝑗-th feature and 𝑓𝑗 is the correspond-
ing feature tokenization function. Our model applies mode-specific
normalization to continuous columns which 1) fits a variational
mixture of Gaussian to continuous columns of C 2) converts the
continuous elements of 𝑐 into a one-hot vector denoting the specific
Gaussian that best matches the element and its scalar normalized
value within the selected Gaussian as done in [35]. For discrete
columns we introduce embedding layers𝑊𝐷𝑖

∈ ℜ |𝐷𝑖 |×𝑑𝐷𝑖 , where

|𝐷𝑖 | is the number of possible unique discrete values and 𝑑𝐷𝑖
is the

dimension of the embedding. The input layer operation could be
summarized as follows

𝐸𝑐𝑜𝑛𝑡𝑗 = 𝑓 𝑐𝑜𝑛𝑡𝑗 (𝐶 𝑗 ) ∈ ℜ𝑑𝐶𝑗

𝐸𝑐𝑎𝑡𝑗 = 𝑏𝑐𝑎𝑡𝑗 + 𝑒 (𝐷 𝑗 )𝑇𝑊 𝑐𝑎𝑡
𝑗 ∈ ℜ𝑑𝐷𝑗

𝑋 = concat[𝐸𝑐𝑜𝑛𝑡1 , · · · , 𝐸𝑐𝑜𝑛𝑡𝐶C
, 𝐸𝑐𝑎𝑡1 , · · · , 𝐸𝑐𝑎𝑡𝐷D

] ∈ ℜ𝑑�̄� ,

where 𝑓 𝑐𝑜𝑛𝑡
𝑗

is a single layer fully-connected network, 𝑒 (·) con-
verts the input into a one hot vector and the tokenized input𝑋 has a
dimension 𝑑𝑋 =

∑C
𝑗
𝑑𝐶 𝑗

+∑D
𝑗
𝑑𝐷 𝑗

. In GAN training there are two
separate models the generator G and discriminator𝐷 that estimates
the probability of whether the sample came from the fake or real
distribution. The generator G : ℜ𝑑𝑖𝑚 (𝑧) → ℜ𝑑𝑖𝑚 (𝑥) takes the in-
put 𝑧 ∼ 𝑝 (𝑧) ∈ ℜ𝑑𝑧 and recovers samples in the original data space
𝑥 . The discriminator then distinguishes between 𝐷 (𝑥, 𝑥) → [0, 1].
Both networks are high capacity deep neural networks that follow
a stack of 𝑓 (𝑥) = 𝜃 (ResNetBlock(· · · (ResNetBlock(FC(x)))))
where ResNetBlock(𝑥) = 𝑥+Dropout(ReLU(FC(BatchNorm(x)))),
FC is a fully-connected network which takes the 𝑑𝑖𝑚(𝑥) size of its
input. G and 𝐷 are both trained together using the GAN objective

min
G

max
𝐷

𝑙 (G, 𝐷) = min
G

max
𝐷
E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [𝑙𝑜𝑔(𝐷 (𝑥)]

+E𝑧∼𝑝 (𝑧) [𝑙𝑜𝑔(1 − 𝐷 (G(𝑧)))] .

The trained feature generator is then used to sample from the
learned feature distribution 𝑥 ∼ 𝑃D𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠

.

3.4 Graph & Feature Aligner
Once the structural and feature generators are trained the final
graph is created via an aligner. The aligner is a function that maps
the generated set of features onto the generated graph structure
A(𝑆, 𝐹 ) → 𝐺 (V, E, 𝐹V , 𝐹E ). A trivial aligner, could randomly as-
sign features to the corresponding nodes and edges of the generated
graph. Instead, we propose to train a function 𝑅 that matches the
generated structure with the generated features, preserving some
properties of the input graph𝐺 . For example, for a recommender
system use case, we may have an advertisement that is clicked by
the majority of population and we want to preserve its features
properties.

Given the real graph 𝐺𝑟𝑒𝑎𝑙 we extract a set of features from
the corresponding structural information 𝐹𝑆 : 𝑉 → ℜ𝑑𝑆 . These
features correspond purely with the graph structure, such as node
degree, node centrality, clustering coefficient, and page rank. Subse-
quently, a predictor 𝑅 is trained to capture the correlation between
the real graph structural features and the corresponding real feature
set. For an edge 𝑒 (𝑠𝑟𝑐,𝑑𝑠𝑡 ) the predictor 𝑅 : ℜ𝑑𝑆 × ℜ𝑑𝑆 → ℜ𝑑E

maps it on to the feature 𝑥 = 𝑅(𝐹𝑆 (𝑣𝑠𝑟𝑐 ), 𝐹𝑆 (𝑣𝑑𝑠𝑡 )), where 𝑠𝑟𝑐 is
the source node index, and 𝑑𝑠𝑡 is the destination node index. We
propose to choose XGBoost [8] as our predictor 𝑅, for each feature
𝑥 𝑗 . The proposed aligner can be summarized as follows
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𝑅(𝐹𝑆 (E𝑠𝑟𝑐 ), 𝐹𝑆 (E𝑑𝑠𝑡 )) = stack[XGBoost1, · · · , XGBoost𝑘 ] ∈ ℜ𝑑E

Rank = max
𝑖∈𝑀

(sim(𝑅(𝐹𝑆 (E𝑠𝑟𝑐 ), 𝐹𝑆 (E𝑑𝑠𝑡 )), 𝑋𝑖 ),

where E𝑠𝑟𝑐 and E𝑑𝑠𝑡 are the set of source and destination vertices,
respectively.

The series of XGBoost models are trained to infer the features
from structural information, in the case of 𝑒𝑠𝑟𝑐,𝑑𝑠𝑡 both features
of node 𝐹𝑆 (𝑣𝑠𝑟𝑐 ) and 𝐹𝑆 (𝑣𝑑𝑠𝑡 ) are used as input to the model. A
similarity score between the predicted vector and corresponding
generated feature is used to rank the features that are assigned to
the edges of the graph. For continuous values the mean squared-
error is used

−
∑︁

𝑗 ∈{C}
(𝑅(𝐹𝑆 (𝑣𝑠𝑟𝑐 ), 𝐹𝑆 (𝑣𝑑𝑠𝑡 )) ( 𝑗) − 𝑥

( 𝑗)
𝑖

)2

and similarly for categorical columns the cosine similarity∑
𝑗 ∈D (𝑅(𝐹𝑆 (𝑣𝑠𝑟𝑐 ), 𝐹𝑆 (𝑣𝑑𝑠𝑡 )) ( 𝑗)𝑋

𝑗
𝑖√︃∑

𝑗𝑖𝑛D (𝑅(𝐹𝑆 (𝑣𝑠𝑟𝑐 ), 𝐹𝑆 (𝑣𝑑𝑠𝑡 )) ( 𝑗)
√︃∑

𝑗 ∈D𝑥 ( 𝑗 )

.

Once the generated set of features are ranked, they are overlaid on
the original graph structure where the node and edge information
is appended to the corresponding set of features.

4 EXPERIMENTS
In this section, we introduce a set of experiments to show case the
effectiveness of the proposed framework for generating real-world
graphs. We describe a set of metrics to evaluate data quality across
structural, feature, and both.

4.1 Methods
Our method involves fitting a single large graph and learning a
parametric model that can be used to generate graphs on the same
scale or larger. We compare with the following baselines:

• Random: We generate graph structures using Erdos-Renyi
model, along with a random feature generator with ranges
fitted to the original feature dimension. This model is inte-
grated into our proposed framework.

• GraphWorld [26]: Is a recent method for generating ar-
bitrary graphs using the degree corrected stochastic block
model (SBM).Note:we improve this method and add a fitting
step that fits the model onto the underlying dataset.

4.2 Dataset details
The real-world datasets used in the experiments encompassing
different graph sizes with varying number of features which are
summarized in Table 1. The steps used to construct the graph is
detailed in Table 9 in the appendix.

4.3 Metrics & Evaluation
We use a set of metrics to assess the quality of the generated graph.
These sets of metrics across different components of the generated
graph are detailed below

Table 1: Dataset sizes used through out experiments.

ID Dataset # nodes # edges # features

1 Tabformer 106482 978288 5

2 IEEE-Fraud 17289 52008 48

3 Paysim 9075669 6362620 8

4 credit 1666 476414 283

Table 2: Comparison across different datasets and baseline
models. ↑ denotes higher is better and ↓ denotes lower is
better.

Metric
Dataset Method Degree Dist. ↑ Feature Corr. ↑ Degree-Feat Dist-Dist ↓

Tabformer
random 0.8099 0.3931 0.8213
graphworld 0.2836 0.3609 0.8248
ours 0.9833 0.4141 0.8101

IEEE-Fraud
random 0.9620 0.2120 0.4335
graphworld 0.0010 0.4179 0.8272
ours 0.9865 0.5724 0.2359

credit
random 0.0434 0.8370 0.6520
graphworld 0.3556 0.8352 0.7584
ours 0.5178 0.8558 0.5516

paysim
random 0.6711 0.4833 0.5155
graphworld 0.6547 0.4115 0.3453
ours 0.9602 0.7500 0.2630

• Degree Dist.: in networks the degree of a node is the number
of connections it has with other nodes, and its the degree-
distribution of the network is the distribution of these de-
grees over the whole network. For example, a graph has a
power-law if the number of nodes 𝑁𝑑 with degree 𝑑 is given
by 𝑁𝑑 ∝ 𝑑−𝛼 where 𝛼 is the power law exponent.

• Hop-plot: The diameter of a graph is 𝐷 if every pair of nodes
can be connected by a path of length at most 𝐷 edges. As
this metric is susceptible to outliers often a alternative met-
ric called effective diameter is used, which is the minimum
number of links in which a fraction of all pairs of nodes
can be reached each other. A hop-plot extends the notion of
diameter by plotting reachable pairs 𝑑 (ℎ) within ℎ hops.

• Feature Corr.: We consider correlation between columns
of the features in the dataset. For correlation between con-
tinuous columns we use the standard Pearson correlation.
Between continuous and categorical columns we consider
the correlation ratio [11], and between categorical columns
we consider using the Theil’s U [32] as a metric, which mea-
sures the conditional entropy between two variables.

• Degree-Feat Dist-Dist: We consider the joint degree dis-
tribution and feature distribution as a measure of graph
feature+structural similarity. This metric computes the JS-
divergence between the joint distribution over the generated
graph and real graph.

4.4 Results
In Table 2we summarize the comparison of the proposed framework
across different datasets presented in Table 1. From the table we
can see that the synthetic data quality generated using our method

https://github.com/IBM/TabFormer
https://www.kaggle.com/c/ieee-fraud-detection
https://www.kaggle.com/datasets/ealaxi/paysim1
https://www.kaggle.com/datasets/kartik2112/fraud-detection
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outperforms the two baseline models. It is worth noting that we
modified GraphWorld [26] to fit the underlying data. Addition-
ally, this method can be integrated within the proposed framework
where the structural generator is a SBM model, the feature genera-
tors are multi-variate Gaussian’s and the aligner is a random aligner.
We do not provide comparison with methods such as [22, 36] as 1)
these method require multiple graphs and we are providing com-
parisons for single graph generation and 2) these methods do not
scale beyond 1000s of nodes as previously mentioned.

Figure 2: Comparison of degree distribution (top) and hop
plot (bottom) across our proposed method (properly gener-
ated) and other baselines.

Figure 3: Cumulative distribution comparison on feature
column C11 of IEEE-Fraud dataset.

We also qualitatively assess the quality of the generators com-
pared to the baselines. from Figures 2, 3, we show visualization
comparing across the original graph distribution, ours and baseline

models, demonstrating the effectiveness of each component in the
generation step. For example, in Figure 2 we see that the fitted
generator best resembles the long tail degree distribution of the
original dataset (typically observed in social networks), whereas
graphworld and randomly generated fail to capture this scaling
property. Similarily, the cumulative distribution generated using a
proposed fitted GAN architecture best resembles the original feature
distribution. Finally to qualitatively evaluate the aligned features
with the graph structure, a plot depicting the degree-distribution
versus feature-distribution is used to compare across the methods
(Figure 5 in Appendix), where visually the heatmaps of the syn-
thetic data should match the original graphs heatmap. This is the
case for our proposed method.

Table 3: Random graph generation timings

nodes 100e6
edges 100e9 250e9 500e9 750e9 1e12
time 22 min 46 min 103min 130 min 179 min

Table 4: Synthetic MAG240m [34] generation timings

scale total nodes total edges time
1x 244e6 1.7e9 ∼12 min
2x 488e6 14e9 ∼23 min
4x 997e6 110e9 ∼113 min
8x 1953e6 885e9 ∼838 min

4.5 Big Graph Generation
We validated our approach to generating large graphs by producing
big random graphs using Erdos-Renyi model and mimicking the
structure of the biggest publicly available graph MAG240m [34].
For the experiments with the Erdos-Renyi model presented in Table
3, we freezed the number of nodes and increased the number of
edges up to a trillion. In contrast to a simple random homogeneous
graph, we scaled the heterogeneous MAG240m from the real world
and summarized the results in Table 4. We scaled the number of
nodes linearly and the number of edges cubically. All measurements
were done on the same machine with 8 NVIDIA V100 16GB GPUs.

4.6 Downstream Tasks
Common downstream tasks in graphs datasets are node classifica-
tion and edge classification. The proposed framework can generate
both node-level and edge-level features, hence it supports these
various tasks using the proposed generator. To this end, we train
our synthetic data generator on both node classification and edge
classification datasets, subsequently we generate a graph of the
same size for pre-training. Finally, we fine-tune on the original real
dataset. The results are presented in Table 5, where no-pretraining
refers to the case where we simply train on the downstream dataset.

For node-classification task we use the Cora [30] as toy example
which is a citation network dataset, with node labels as topics and
features as multi-hot vectors; and for edge-classification task the
ieee-fraud dataset, which contains edge features as well as labels
denoting whether a particular transaction is fraudulent. For all
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Table 5: Comparison of Pre-training followed by fine-tuning
for node classification and edge classification tasks.

Dataset Generator Model Accuracy ↑

Cora random GCN 0.7470
GAT 0.7595

ours GCN 0.7677
GAT 0.7720

no-pretraining GCN 0.76275
GAT 0.7650

ieee-fraud random GCN 0.9788
GAT 0.9793

ours GCN 0.9831
GAT 0.9840

no-pretraining GCN 0.9823
GAT 0.9830

datasets, we train the models for a maximum of 200 epochs (fine-
tuning epochs + pre-training epochs) and use Adam [17] with a
starting learning rate of 0.01, with early stopping after ten epochs
of no improvement on a held-out validation set as defined by the
original datasets. The networks are 2-layer GCN [18], GAT[33]
models with hidden dimension set to 128.0. From this table, training
on a randomly generated graph hinders downstream performance,
whereas pre-training using a graph with similar characteristics as
the original graph results in slight improvements.

4.7 Synthetic Graph Ablation Study
We experiment on a synthetic graph with pre-determined prop-
erties for structure & the feature set to determine when aligning
graph structure with features is essential and cases where GNNs
are helpful in the first place. Namely, a set of synthetic graphs
are generated that contain high (or low) homophily and high (or
low) signal-to-noise ratio (SNR) of this structure for the features
of the graph. In total, four datasets are generated that are used for
this experiment. By constructing such a graph, the downstream
model would be able to discriminate using solely graph structure,
feature, or both depending on the setting of the dataset low/high
for either part. The synthetically generated graphs contain 1000
nodes with an edge density of 0.06 ( 24000 edges). We consider a
high homophily/SNR and low homophily/SNR value as 0.85/1.5 and
0.15/0.5, respectively. Note that a ℎ for homophily indicates that
inter clusters are ℎ times more likely to be connected than intra-
clusters. Similarly, a signal-to-noise ratio of 𝑆𝑁𝑅 indicates how
correlated the feature sets are compared to the downstream label,
where the intra-clusters have the same label. In this experiment, the
downstream task is set to be node classification. We train a GNN
model that leverages both the structure and features, specifically
a GAT model, with the same configuration as in section 4.6. On
the other hand, an XGBoost model is trained only on the graph
features.

From the results in Figure. 4, we can observe the following: 1)
there is an asymmetry in the informativeness of the graph connec-
tivity and graph features for downstream prediction task, and that
a noisy graph structure could hinder performance (e.g. comparing
GAT and XGboost on the original dataset, we can see XGBoost
out performs GAT if the structure is noisy). 2) fitting is required
for the graph structure/features/and their alignment if both graph

Figure 4: Comparison of training a GAT model on both
structure/feature versus training a XGBoost model solely
on features for different dataset settings corresponding to
high/low homophily (𝐻 ↑ /↓) and high/low signal to noise
ratio (𝑆𝑁𝑅 ↑ /↓). (Top) Depicts the performance on the origi-
nal synthetic dataset, and fitted corresponding to fitting our
proposed generator. (Bottom) shows the results by replacing
the components of the generator with random counterparts.

structure and feature is informative. Otherwise for cases where the
graph may not follow particular connectivity pattern or structure
it is not necessary to fit the graph and a randomly generated graph
will do just as well.

4.8 Ablation Study
We conduct an ablation study by varying the components in our
proposed framework. Specifically, we substitute the feature genera-
tor with one of {GAN, Kernel Density Estimator (KDE), Random},
the structural generator with one of {Ours, TrillionG [27], Random}
and the aligner with either {XGBoost, Random} across our proposed
components and evaluate the synthetic data quality. The results
are presented in 6. This showcases the benefit of providing a fitting
mechanism for each component.

4.9 GNN Performance Analysis
In this section, we run additional experiments analyzing GNN’s
throughput using our generated and randomly generated datasets.
We time the throughput of the GNNnetwork by sampling subgraphs
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Table 6: Ablation study on IEEE Dataset

Metric
Struct. Generator Feature Generator Aligner Degree Dist. ↑ Feature Corr. ↑ Degree-Feat Dist-Dist ↓

Ours GAN xgboost 0.989123 (±0.0014) 0.566755 (±0.0121) 0.319410
random 0.989123 (±0.0014) 0.566755 (±0.0121) 0.330570

KDE xgboost 0.989123 (±0.0014) 0.810647 (±0.0277) 0.198234
random 0.989123 (±0.0014) 0.810647 (±0.0277) 0.512846

Random xgboost 0.989123 (±0.0014) 0.220692 (±0.0090) 0.355433
random 0.989123 (±0.0014) 0.220692 (±0.0090) 0.364814

TrillionG [27] GAN xgboost 0.848164 (±0.0012) 0.566755 (±0.0121) 0.316364
random 0.848164 (±0.0012) 0.566755 (±0.0121) 0.423613

KDE xgboost 0.848164 (±0.0012) 0.810647 (±0.0277) 0.261013
random 0.848164 (±0.0012) 0.810647 (±0.0277) 0.360605

Random xgboost 0.848164 (±0.0012) 0.220692 (±0.0090) 0.434184
random 0.848164 (±0.0012) 0.220692 (±0.0090) 0.484187

Random [9] GAN xgboost 0.962508 (±0.0011) 0.566755 (±0.0121) 0.420893
random 0.962508 (±0.0011) 0.566755 (±0.0121) 0.480556

KDE xgboost 0.962508 (±0.0011) 0.810647 (±0.0277) 0.38334
random 0.962508 (±0.0011) 0.810647 (±0.0277) 0.400145

Random xgboost 0.962508 (±0.0011) 0.220692 (±0.009081) 0.434184
random 0.962508 (±0.0011) 0.220692 (±0.0090) 0.613355

Table 7: Comparison of throughput for GCN [18] across
different datasets. ↑ denotes higher is better and ↓ denotes
lower is better.

Metric
Dataset Method Rel. Timing ↑ Timing

Tabformer
original 1.0 107.5836
random 0.8611 ±0.8611 93.3228
ours 0.9376 ±0.0094 100.1258

ieee-fraud
original 1.0 1.9833
random 0.7922 ±0.1484 2.06162
ours 0.8039 ±0.1450 2.04135

credit
original 1.0 28.6372
random 0.9668 ±0.0003 26.9836
ours 0.9822±0.0083 28.1271

paysim
original 1.0 153.4566
random 0.9302 ±0.0025 143.1298
ours 0.9581 ±0.0020 159.1917

on the original graph using a Multi-Layer Neighborhood Sampler 2
and measuring the time of every epoch. The results are summarized
in Table. 7. As can be seen from the results, generally, for datasets
where there’s a higher discrepancy in the metrics reported in Table
2 there is a larger gap in the timing between random vs original and
ours. The relative timing (Rel. Timing) is calculated by subtracting
the epoch times on the original dataset from the generated and
normalizing, i.e. (Rel. Timing = 1.0 − |𝑡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑−𝑡𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 |

𝑡𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

5 CONCLUSION
The objective of this paper was to create a method of generating
graph datasets that consist of (1) structure describing how nodes
are connected to other nodes (2) along with tabular node and edge
2dgl.dataloading.neighbor.MultiLayerNeighborSampler

Table 8: Comparison of throughput for GAT[33] across dif-
ferent datasets. ↑ denotes higher is better and ↓ denotes lower
is better.

Metric
Dataset Method Rel. Timing ↑ Timing

Tabformer
original 1.0 191.6026
random 0.6903 ±.0004 132.2720
ours 0.8710 ±0.0038 166.8899

ieee-fraud
original 1.0 3.9867
random 0.6975 ±0.0795 3.41476
ours 0.8003 ±0.0940 3.5655

credit
original 1.0 70.2702
random 0.9370 ±0.0011 65.8476
ours 0.9609±0.0034 67.8039

paysim
original 1.0 235.1643
random 0.9248 ±0.0016 217.4626
ours 0.9657 ±0.0046 243.2182

features contained in the graph. Using our method, these two com-
ponents (structural and tabular) are aligned in the sense that the
degree distributions of nodes match the probability distributions
of features connected with nodes.We have shown the generality
of such a framework that can more accurately replicate and scale
with respect to different graph sizes and structure. We hightlight
that generating large-scale graph datasets that consist of structure
and tabular portion serves many real-world use cases starting such
as data anonymization, as a tool to benchmark GNN models by
profiling them on arbitrary-sized graph datasets, as well as poten-
tially using synthetic datasets increasing the accuracy of GNN by
using such data to pre-training the GNN model and fine-tune it on
the original dataset. Future directions can include modifying the
framework to these different ends.

https://docs.dgl.ai/en/0.6.x/api/python/dgl.dataloading.html#dgl.dataloading.neighbor.MultiLayerNeighborSampler
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A ADDING NOISE TO STRUCTURE
GENERATOR

Graph 𝐺 generated by (1) will produce oscillations on the degree
distribution as described in [31]. To address oscillations we pro-
pose to add a noise component on each𝑚𝑎𝑥 (𝑚,𝑛) step of (1). This
changes (1) to

𝜃 = 𝜃𝑆,0 ⊗ ... ⊗ 𝜃𝑆,𝑚𝑖𝑛 (𝑛,𝑚)︸                       ︷︷                       ︸
𝑚𝑖𝑛 (𝑚,𝑛)𝑡𝑖𝑚𝑒𝑠

⊗ 𝜃𝐻,0 ⊗ ... ⊗ 𝜃𝐻,𝑚𝑖𝑛 (0,𝑛−𝑚)︸                            ︷︷                            ︸
𝑚𝑖𝑛 (0,𝑛−𝑚)𝑡𝑖𝑚𝑒𝑠

⊗

𝜃𝑉 ,0 ⊗ ... ⊗ 𝜃𝑉 ,𝑚𝑖𝑛 (0,𝑚−𝑛)︸                           ︷︷                           ︸
𝑚𝑖𝑛 (0,𝑚−𝑛)𝑡𝑖𝑚𝑒𝑠

,

where 𝜃𝑆,𝑖 , 𝜃𝐻,𝑖 , 𝜃𝑉 ,𝑖 are noisy versions of 𝜃𝑆 , 𝜃𝐻 , 𝜃𝑉 from (1),
respectively. If noise is not added then (??) and (1) are equivalent.
𝜃𝑆,𝑖 (and analogically 𝜃𝐻,𝑖 , 𝜃𝑉 ,𝑖 ) are modifications of 𝜃𝑆 (and 𝜃𝐻 ,
𝜃𝑉 , respectively)

𝜃𝑆,𝑖 = 𝜃𝑆 + 𝑁𝑖 (𝜃𝑆 ), (8)
analogically for 𝜃𝐻,𝑖 , 𝜃𝑉 ,𝑖 . Mean value of noise added to cascade

(1) has to be zero, but careful mathematical analysis shows that also
elements of noise matrix 𝑁𝑖 added to matrix 𝜃𝑆 (and respectively
𝜃𝐻 , 𝜃𝑉 ) have to be zero.

Noise added by 𝑁𝑖 depends on 𝜃𝑆 and in practice can be con-
trolled by a single parameter sampled from uniform distribution.
An exemplary noise for symmetric 𝜃𝑆 can be

𝑁𝑖 =

[−2𝑛𝑓 ∗𝑎
𝑎+𝑑 𝑛𝑓

𝑛𝑓
2𝑛𝑓 ∗𝑎
𝑎+𝑑

]
𝑛𝑓 ∼ 𝑈 [𝑚𝑖𝑛(𝑎 + 𝑑

2
, 𝑏, 𝑐)], (9)

Where𝑈 [𝑥,𝑦] denotes the uniform distribution .... Overall, adding
noise on each step of generator requires only𝑚𝑎𝑥 (𝑛,𝑚) parame-
ters.

B ADDITIONAL EXPERIMENTS
B.1 Degree-Distribution - Feature-Distribution
The final graph can be compared visually by plotting the degree
distribution vs feature distribution across the feature sets. In Figure
5 we provide a comparison across the original dataset, our properly
generated and the baseline methods. Darker regions in this figure
correspond to lack of feature values for a particular binned degree.
Note as the graph is bipartite in this example, the x-axis is the
source degree and y axis is the feature distribution.

B.2 Comparing degree distribution
Our structure generator fits its parameters to degree distribution
of original graph according to (5). Estimating the quality of that
fitting can be done visually by comparing plots like in Figure 2. Still,
in most cases, it isn’t easy to assess whether the improvement of
the fitting procedure makes a degree distribution of the synthetic
graph closer to the original. This holds especially for comparing
a different size synthetic graph in terms of 𝑁 ,𝑀 and 𝐸 than the
original graph. We propose a single scalar metric that captures
the alignment of degree distribution for two graphs. This metric is
calculated as follows:

Figure 5: Histograms comparing degree distribution and fea-
ture distribution for IEEE-Fraud dataset. a) original graph,
b) ours generated, c) randomly generated, d) GraphWorld
generated with the added fitting.

𝐷𝐶𝐶 =
1
𝐾

∑︁
𝑘∈𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒 (0,1)

𝑐𝑛𝑜𝑟𝑚
𝑘

− ˆ𝑐𝑛𝑜𝑟𝑚
𝑘

𝑐𝑛𝑜𝑟𝑚
𝑘

(10)

where 𝐾 is the number of distinct degree 𝑘 sampled logarithmi-
cally from [0, 1] 𝑐𝑛𝑜𝑟𝑚

𝑘
, ˆ𝑐𝑛𝑜𝑟𝑚

𝑘
are normalised degree distributions

i.e. degree is normalised by maximum degree in the graph and
number of nodes is normalised by maximum 𝑐𝑘 and 𝑐𝑘 respectively.

Normalization of the degree distribution is needed as 𝐺 and 𝐺
may have different sizes both in terms of number of nodes and
edges. For𝐺 and 𝐺 of the same number of edges 𝐸 the 𝐷𝐶𝐶 in (10)
simplifies to

𝐷𝐶𝐶 =
1
𝐾

∑︁
𝑘∈𝑙𝑜𝑔𝑠𝑝𝑎𝑐𝑒 (0,𝑘𝑚𝑎𝑥 )

𝑐𝑘 − 𝑐𝑘
𝑐𝑘

. (11)

For generating larger graphs, we need to ensure that graph den-
sity is preserved i.e.:

𝐸

𝑁 ∗𝑀 =
𝐸

�̂� ∗ �̂�
, (12)

where 𝐸, �̂� , 𝑎𝑛𝑑�̂� are number of edges and nodes in partites of
𝐺 .

For example, for homogeneous graph when increasing the num-
ber of nodes twice, one needs to increase the number of edges four
times to preserve the constant density.

Our method consistently outperforms ER model not only for
the same graph size but across all scaling factors, see Figure 6.
It also provides very high values of CDD for large graphs which
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in fact means that when generating large synthetic graphs, the
degree distribution curve shape preserves its power-law shape. This
statement holds for generating smaller graphs that is equivalent to
subsampling larger graph in a stratified way where nodes’ degree
proportion are preserved - this can be primary seen in Tabformer
dataset where partites are imbalanced in size (217 user nodes and
211 merchant nodes).

(a)

(b)

Figure 6: CDD coefficient calculated according to 10 for dif-
ferent datasets (a) Tabformer, (b) ieee-fraud. Two generating
models are compared: our method marked as ’propper’ and
random which is ER [9]. X-axis of each graph is an expo-
nential scaling factor by which the number of nodes in each
partite is multiplied e.g. 0 means graph of the same size, +3
means graph for which �̂� = 23𝑁 ,�̂� = 23𝑀 and 𝐸 = 26𝐸, -3
means graph for which �̂� = 2−3𝑁 ,�̂� = 2−3𝑀 and 𝐸 = 2−6𝐸 etc

C DATASET DETAILS
Constructing graphs from a tabular dataset requires capturing sam-
ple relations. Unlike graph datasets that have the structure and

Table 9: Details on how to construct graph from tabular
features. Node column corresponds to the set of features used
to construct node types, and the condition column details the
condition that must be satisfied for an edge to exist between
the nodes.

Dataset Nodes Condition

Tabformer concat(User, Card)
Merchant ID same row

IEEE-Fraud concat(7 features)3
concat(2 features)4 same row

Paysim nameOrig
nameDest same row

Credit concat(first, last)
merchant same row

features given directly, sample relations are not immediately given
in tabular settings. As a result, these need to be extracted from the
data. In practice, tabular datasets are from very diverse domains
ranging from fraud detection to recommender systems and elec-
tronic health records; these relationships require to be inferred from
the features with domain knowledge. The feature columns used
for extracting the corresponding relationship and edges from the
tabular dataset are summarized in Table. 9.

D EXPERIMENT DETAILS
We provide details on hyperparameters used in our experiments.
Our structural generator has a fitting portion that fits the underlying
dataset without requiring the user to specify the parameters. The
XGBoost5 aligner learning rate is set to a default value of 0.1, max
depth of 5, and the number of estimators is set to 100, with an
alpha value of 10., We set the hidden dimensions to be equal to the
input dimension. For all experiments for training to our proposed
method, we use Adam [17] optimizer with an initial learning rate
of 1𝑒 − 3 decayed every ten epochs by a factor of 0.1 and trained for
a maximum of 20 epochs with early stopping. Note that we train
on the complete input data and do not split the dataset into train,
validation, and test splits as we aim to generate a single graph while
our input is also a single graph. For most datasets, it suffices to train
the feature generator for about 5 epochs. Note that for datasets that
contain categorical columns, the embedding size for these columns
is set to𝑚𝑖𝑛(600, 𝑟𝑜𝑢𝑛𝑑 (1.6 ∗ |𝐷 |0.56) where |𝐷 | is the number of
unique values for the categorical column. Our code is available on
Github 6

5https://rapids.ai/xgboost.html
6https://github.com/<anon>/<anon>

https://rapids.ai/xgboost.html
https://github.com/<anon>/<anon>
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