
FiGURe: Simple and Efficient Unsupervised Node
Representations with Filter Augmentations

Chanakya Ekbote∗
Microsoft Research India

chanakyaekbote@gmail.com

Ajinkya Pankaj Deshpande∗
Microsoft Research India

ajinkya.deshpande56@gmail.com

Arun Iyer
Microsoft Research India
ariy@microsoft.com

Ramakrishna Bairi
Microsoft Research India

rkbairi@gmail.com

Sundararajan Sellamanickam
Microsoft Research India
ssrajan@microsoft.com

ABSTRACT

Unsupervised node representations learnt using contrastive learning-
basedmethods have shown good performance on downstream tasks.
However, these methods rely on augmentations that mimic low-
pass filters, limiting their performance on tasks requiring different
eigen-spectrum parts. This paper presents a simple filter-based aug-
mentation method to capture different parts of the eigen-spectrum.
We show significant improvements using these augmentations. Fur-
ther, we show that sharing the same weights across these different
filter augmentations is possible, reducing the computational load.
In addition, previous works have shown that good performance
on downstream tasks requires high dimensional representations.
Working with high dimensions increases the computations, espe-
cially when multiple augmentations are involved. We mitigate this
problem and recover good performance through lower dimensional
embeddings using simple random Fourier feature projections. Our
method, FiGURe, achieves an average gain of up to 4.4%, compared
to the state-of-the-art unsupervised models, across all datasets in
consideration, both homophilic and heterophilic. Our code can be
found here: https://github.com/microsoft/figure.

Paper Type: Evaluatory papers which revisit validity of domain
assumptions, Work-in-progress papers.

CCS CONCEPTS

• Computing methodologies → Dimensionality reduction

and manifold learning; Neural networks; Kernel methods.

KEYWORDS

graph neural networks, contrastive learning, kernel methods

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD MLG Workshop ’23, August, 2023, Long Beach, California
© 2023 Association for Computing Machinery.

ACM Reference Format:

Chanakya Ekbote, Ajinkya Pankaj Deshpande, Arun Iyer, Ramakrishna
Bairi, and Sundararajan Sellamanickam. 2023. FiGURe: Simple and Effi-
cient Unsupervised Node Representations with Filter Augmentations. In
Proceedings of KDD MLG Workshop ’23. ACM, New York, NY, USA, 14 pages.

1 INTRODUCTION

Contrastive learning is a powerful method for unsupervised graph
representation learning, achieving notable success in various ap-
plications [11, 37]. However, these evaluations typically focus on
tasks exhibiting homophily, where task labels strongly correlate
with the graph’s structure. An existing edge suggests the connected
nodes likely share similar labels in these scenarios. However, these
representations often struggle when dealing with heterophilic tasks,
where edges tend to connect nodes with different labels.

Several papers [3, 6, 13, 23] have tackled the problem of het-
erophily by leveraging information from both low and high fre-
quency components. However, these methods operate in the semi-
supervised setting, and the extension of these ideas in unsupervised
learning still needs to be explored. Inspired by the insights in these
papers, we propose a simple method incorporating these princi-
ples. Our approach introduces filter banks as additional views and
learns separate representations for each filter bank. However, this
approach faces two main challenges: Firstly, storing representa-
tions from each view can become prohibitively expensive for large
graphs; secondly, contrastive learning methods typically demand
high-dimensional representations, which increase both the compu-
tational cost of training and the storage burden.

We employ a shared encoder for all filter banks to tackle the first
challenge. Our results confirm that a shared encoder performs on
par with independent encoders for each filter bank. This strategy
enables us to reconstruct filter-specific representations as needed,
drastically reducing the storage requirement.

For the second challenge, we train our models with low dimen-
sional embeddings. Then, we use random Fourier feature projec-
tion [33] to lift these low-dimensional embeddings into a higher-
dimensional space. Kernel tricks [18] were typically used in clas-
sical machine learning to project low-dimensional representation
to high dimensions where the labels can become linearly sepa-
rable. However, constructing and leveraging the kernels in large
dataset scenarios could be expensive. To avoid this issue, several pa-
pers [16, 21, 30, 33, 34] proposed to approximate the map associated
with the kernel. For our scenario, we use the map associated with
Gaussian kernel [33]. We empirically demonstrate that using such a

https://github.com/microsoft/figure

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

simple approach preserves high performance for downstream tasks,
even in the contrastive learning setting. Consequently, our solution
offers a more efficient approach to unsupervised graph represen-
tation learning in computation and storage, especially concerning
heterophilic tasks. The proposed method exhibits simplicity not
only in the augmentation of filters but also in its ability to learn
and capture information in a low-dimensional space, while still
benefiting from the advantages of large-dimensional embeddings
through Random Fourier Feature projections.

Our contributions in this work are, 1] We propose a simple
scheme of using filter banks for learning representations that can
cater to both heterophily and homophily tasks, 2] We address the
computational and storage burden associated with this simple strat-
egy by sharing the encoder across these various filter views, 3]
By learning a low-dimensional representation and later projecting
it to high dimensions using random Fourier Features, we further
reduce the burden, 4] We study the performance of our approach
on four homophilic and five heterophilic datasets. Our method,
FiGURe, achieves an average gain of up to 4.4%, compared to the
state-of-the-art unsupervised models, across all datasets in consid-
eration, both homophilic and heterophilic. Notably, even without
access to task-specific labels, FiGURe performs competitively with
supervised methods like GCN [20].

2 RELATEDWORK

Several unsupervised representation learning methods have been
proposed in prior literature. Random walk-based methods like
Node2Vec [10] andDeepWalk [31] preserve node proximity but tend
to neglect structural information and node features. Contrastive
methods, such as Deep Graph InfoMax (DGI) [37], maximize the
mutual information (MI) between local and global representations
while minimizing the MI between corrupted representations. Meth-
ods likeMVGRL [11] andGRACE [38] expand on this, by integrating
additional views into theMImaximization objective. However, most
of these methods focus on the low frequency components, over-
looking critical insights from other parts. Semi-supervised methods
like GPRGNN [6], BernNet [13], and PPGNN [23] address this by
exploring the entire eigenspectrum, but these concepts are yet to be
applied in the unsupervised domain. This work proposes the use of
a filter bank to capture information across the full eigenspectrum
while sharing an encoder across filters. Given the high-dimensional
representation demand of contrastive learningmethods, we propose
using Random Fourier Features (RFF) to project lower-dimensional
embeddings into higher-dimensional spaces, reducing computa-
tional load without sacrificing performance. The ensuing sections
define our problem, describe filter banks and random feature maps,
and explain our model and experimental results.

3 PROBLEM SETTING

In the domain of unsupervised representation learning, our focus
lies on graph data, denoted as G = (V, E), where V is the set
of vertices and E the set of edges (E ⊆ V × V). We associate
an adjacency matrix with G, referred to as A : A ∈ {0, 1}𝑛×𝑛 ,
where 𝑛 = |V| corresponds to the number of nodes. Let X ∈ R𝑛×𝑑
be the feature matrix. We use AI to represent A + I with I is the
identity matrix, while DAI signifies the degree matrix of AI. We also

define An as D−1/2
AI

AID
−1/2
AI

. No additional information is provided
during training. The goal is to learn a parameterized encoder, 𝐸𝜃 :
R𝑛×𝑛 × R𝑛×𝑑 ↦→ R𝑛×𝑑

′
, where 𝑑′ ≪ 𝑑 . This encoder produces

a set of node representations 𝐸𝜃 (X,An) = {ℎ1, ℎ2, ..., ℎ𝑛} where
each ℎ𝑖 ∈ R𝑑 ′ represents a rich representation for node 𝑖 . The
subsequent section will provide preliminary details about filter
banks and random feature maps before we discuss the specifics of
the proposed approach.

4 PRELIMINARIES

Our proposed approach hinges on the critical components of filter
banks and random feature maps. In this section, we delve into brief
details about these two facets, setting the stage for a comprehensive
description of our approach.

4.1 Filter Banks

Graph Fourier Transform (GFT) forms the basis of Graph Neural
Networks (GNNs). A GFT is defined using a reference operator R
which admits a spectral decomposition. Traditionally, in the case of
GNNs, this reference operator has been the symmetric normalized
laplacian Ln = I − An or the An as simplified in [20]. A graph filter
is an operator that acts independently on the entire eigenspace of a
diagonalisable and symmetric reference operator R, by modulating
their corresponding eigenvalues. [35, 36]. Thus, a graph filter H is
defined via the graph filter function 𝑔(.) operating on the reference
operator as H = 𝑔(R) = U𝑔(Λ)U𝑇 . Here, Λ = 𝑑𝑖𝑎𝑔([𝜆1, 𝜆2, ..., 𝜆𝑛]),
where 𝜆𝑖 denotes the eigenvalues of the reference operator.

We describe a filter bank as a set of filters, denoted as F =

{F1, F2, ..., F𝐾 }. Both GPRGNN [6] and BernNet [13] employ fil-
ter banks, comprising polynomial filters, and amalgamate the rep-
resentations from each filter bank to enhance the performance
across heterophilic datasets. GPRGNN uses a filter bank defined as
FGPRGNN = {I,An, ...,An

𝐾−1}, while FBernNet = {B0,B1, ...,B𝐾−1}
characterizes the filter bank utilized by BernNet. Here, B𝑖 =
1

2𝐾−1
(𝐾−1
𝑖

)
(2I − Ln)𝐾−𝑖−1 (Ln)𝑖 .

Each filter in these banks highlights different parts of the eigen-
spectrum. By tuning the combination on downstream tasks, it offers
the choice to select and leverage the right spectrum to enhance
performance. Notably, unlike traditional GNNs, which primarily
emphasize low-frequency components, higher frequency compo-
nents have proved useful for heterophily [3, 6, 13, 23]. Consequently,
a vital takeaway is that for comprehensive representations, we

must aggregate information from different parts of the eigen-

spectrum and fine-tune it for specific downstream tasks.

4.2 Random Feature Maps for Kernel

Approximations

Before the emergence of deep learning models, the kernel trick
was instrumental in learning non-linear models. A kernel func-
tion, 𝑘 : R𝑑 × R𝑑 ↦→ R, accepts two input features and returns a
real-valued score. Given a positive-definite kernel, Mercer’s The-
orem [25] assures the existence of a feature map 𝜙 (·), such that
𝑘 (𝑥,𝑦) = ⟨𝜙 (𝑥), 𝜙 (𝑦)⟩. Leveraging the kernel trick, researchers
combined Mercer’s theorem with the representer theorem [18], en-
abling the construction of non-linear models that remain linear in

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

𝑘 . These models created directly using 𝑘 instead of the potentially
complex 𝜙 , outperformed traditional linear models. The implicit
maps linked with these kernels projected the features into a signifi-
cantly high-dimensional space, where targets were presumed to be
linearly separable. However, computational challenges arose when
dealing with large datasets.

Addressing these issues, subsequent works [16, 30, 33, 34] intro-
duced approximations of the map associated with individual kernels
through random projections into higher-dimensional spaces (𝜙 ′ (.)).
This approach ensures that ⟨𝜙 ′ (x), 𝜙 ′ (y)⟩ ≈ 𝑘 (𝑥,𝑦). These random
feature maps are inexpensive to compute and affirm that simple pro-
jections to higher-dimensional spaces can achieve linear separabil-
ity. The critical insight is that computationally efficient random

feature maps exist, capable of projecting lower-dimensional

representations into higher dimensions. These projections

enhance the adaptability of these representations for down-

stream tasks. Random Fourier features (RFF) [33] provide a

prime example of such techniques.

5 PROPOSED APPROACH

The following section delineates the process of unsupervised repre-
sentation learning. Post that, we give details on how the represen-
tations learned from each filter bank is used in downstream tasks
using random feature maps.

5.1 Unsupervised Representation Learning

Our method: Filter-based Graph Unsupervised Representation
Learning (FiGURe) builds on concepts introduced in [14, 37], ex-
tending the maximization of mutual information between node
and global filter representations for each filter in the filter bank
F = {F1, F2, ...F𝐾 }. We construct an encoder for each filter to maxi-
mize the mutual information between the input data and encoder
output. For the 𝑖th filter, we learn an encoder, 𝐸𝜃 : X𝑖 → X′

𝑖
, de-

noted by learnable parameters 𝜃 . In this context, X𝑖 represents a
set of examples, where each example [X̂𝑖 𝑗 , F̂𝑖 𝑗] ∈ X𝑖 consists of a
filter F𝑖 , its corresponding nodes and node features drawn from
an empirical probability distribution P𝑖 , which captures the joint
distribution of features and node representations [X, F𝑖]. X𝑖 de-
fines the set of representations learnt by the encoder on utilizing
feature information as well as topological information from the
samples, sampled from the joint distribution P𝑖 . The goal, aligned
with [14, 24, 37], is to identify 𝜃 that maximizes mutual informa-
tion between [X, F𝑖] and 𝐸𝜃 (X, F𝑖), or I𝑖 ([X, F𝑖], 𝐸𝜃 (X, F𝑖)). While
exact mutual information (MI) computation is unfeasible due to
unavailable exact data and learned representations distributions,
we can estimate the MI using the Jensen-Shannon MI estimator
[7, 27], defined as:

IJSD
𝑖,𝜃,𝜔

([X, F𝑖], 𝐸𝜃 (X, F𝑖)) := EP𝑖 [−sp(𝑇𝜃,𝜔 ([X̂𝑖 𝑗 , F̂𝑖 𝑗], 𝐸𝜃 (X̂𝑖 𝑗 , F̂𝑖 𝑗))]

−EP𝑖×P̃𝑖 [sp(𝑇𝜃,𝜔 ([X̃𝑖 𝑗 , F̃𝑖 𝑗], 𝐸𝜃 (X̂𝑖 𝑗 , F̂𝑖 𝑗))] (1)

Here, 𝑇𝜔 : X𝑖 × X′
𝑖 → R represents a discriminator func-

tion with learnable parameters 𝜔 . Note that [X̃𝑖 𝑗 , ˜F𝑖 𝑗] is an input
sampled from P̃𝑖 , which is a marginal of the joint distribution of
the input data and the learned node representations. The func-
tion sp(.) corresponds to the softplus function [8]. Additionally,

𝑇𝜃,𝜔 = 𝐷𝑤 ◦ (R(𝐸𝜃 (X̂𝑖 𝑗 , F̂𝑖 𝑗)), 𝐸𝜃 (X̂𝑖 𝑗 , F̂𝑖 𝑗)), where R denotes the
readout function responsible for summarizing all node representa-
tions by aggregating and distilling information into a global filter
representation.

𝟐

Filtered Graph

𝒌

𝟐

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

𝒌

𝟐

𝟏

Nodes with
self-edges

x3

x5

x6

x7
x2

x1

x4

x3

x5

x6
x7

x2

x1

x4

Readout

𝒊
𝑭𝟐

𝒈
𝑭𝟐

𝒈
𝑭𝟐

ℎଵ
ிమ

ℎଶ
ிమ

ℎଷ
ிమ

ℎ௡
ிమ

𝟐
ℎଵ

ிమ

ℎଶ
ிమ

ℎଷ
ிమ

ℎ௡
ிమ

𝒌
ℎଵ

ிೖ

ℎଶ
ிೖ

ℎଷ
ிೖ

ℎ௡
ிೖ

𝟏
ℎଵ

ிభ

ℎଶ
ிభ

ℎଷ
ிభ

ℎ௡
ிభ

Filter Banks Shared
Encoding Shared Encoder

Weight Matrix

Mutual Information
Maximization

Node
Embeddings

Node
Embeddings

Graph
Embedding

Filtered Graph

Readout

𝒊
𝑭𝒌

𝒈
𝑭𝒌

𝒈
𝑭𝒌

Node
Embeddings

Graph
Embedding

𝒌
ℎଵ

ிೖ

ℎଶ
ிೖ

ℎଷ
ிೖ

ℎ௡
ிೖ

Figure 1: Unsupervised learning of node embeddings by max-

imizing mutual information between node and graph rep-

resentations over the graphs from the filter bank. Note that

the parameter Θ is shared across all the filters.

In our approach, we first obtain node representations by feed-
ing the filter-specific topology and associated node features into
the encoder: H𝑖 = 𝐸𝜃 (X𝑖 , F𝑖) = {ℎF𝑖

1 , ℎ
F𝑖
2 , ..., ℎ

F𝑖
𝑛 }. To obtain global

representations, we employ a readout function R : R𝑁×𝑑 ′ → R𝑑 ′ ,
which combines and distills information into a global representation
ℎ
𝐹𝑖
𝑔 = R(H𝑖) = R(𝐸𝜃 (X, F𝑖)). Instead of directly maximizing the
mutual information between the local and global representations,
we introduce a learnable discriminator 𝐷𝜔 : R𝑑

′ ×R𝑑 ′ → R, where
𝐷𝜔 (., .) represents the joint probability score between the global
representation and the node-specific patch representation. This
joint probability score should be higher when considering global
and local representations obtained from the same filter, as opposed
to the joint probability score between the global representation
from one filter and the local representation from an arbitrary filter.

To generate negative samples for contrastive learning, we employ
a corruption function C : R𝑁×𝑑 ×R𝑁×𝑁 → R𝑀×𝑑 ×R𝑀×𝑀 , which
yields corrupted samples denoted as [X̃𝑖 𝑗 , F̃𝑖 𝑗] = C(X, F𝑖). The
designed corruption function generates data decorrelated with the
input data.

In order to learn representations across all filters in the filter bank,
we aim to maximise the average estimate of mutual information
(MI) across all filters, considering 𝐾 filters.

IF =
1
𝐾

𝐾∑︁
𝑖=1

I 𝐽 𝑆𝐷
𝑖,𝜃,𝜔

([X, F𝑖], 𝐸𝜃 (X, F𝑖)) (2)

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

Maximising the Jenson-Shannon MI estimator is equivalent to re-
ducing the binary cross entropy loss defined between positive sam-
ples (sampled from the joint) and the negative samples (sampled
from the product of marginals). Therefore, for each filter, we min-
imise the following objective:

LF𝑖 =
1

𝑁 +𝑀

𝑁∑︁
𝑗=1
E(X,F𝑖) [log(𝐷𝜔 (ℎ

F𝑖
𝑗
, ℎ

F𝑖
𝑔))]

+ 1
𝑁 +𝑀

𝑀∑︁
𝑗=1
E(X̃,F̃𝑖) [log(1 − 𝐷𝜔 (ℎ̃

F𝑖
𝑗
, ℎ

F𝑖
𝑔))] (3)

Therefore to learn meaningful representations across all filters
the following objective is minimised:

L =
1
𝐾

𝐾∑︁
𝑖=1

LF𝑖 (4)

However, managing the computational cost of training and stor-
age for large graphs with separate node representations for each
filter presents a significant challenge, exacerbated by the high di-
mensional requirements of contrastive learning methods. We imple-
ment parameter sharing to mitigate the first issue, borrowing the
concept from studies such as [6, 13], thereby sharing the encoder’s
parameters 𝜃 and the discriminator’s parameters 𝜔 across all filters.
Instead of storing dense filter-specific node representations, we
only store the parameters of the shared encoder and the first-hop
neighbourhood information of each node per filter, which has a
lower storage cost. For downstream tasks, we retrieve the embed-
dings by reconstructing filter-specific representations. To ensure
quick and efficient reconstruction, we use a simple one-layer GNN.
This on-demand reconstruction of filter-specific representations
significantly reduces the computational and storage requirements
associated with individual node representations. Fig 1 illustrates
such a simple encoder’s mutual information-based learning process.

Addressing the second issue, we initially train our models to
generate low-dimensional embeddings. These encapsulate latent
classes, as discussed in [2] as a superset of classes pertinent to
downstream tasks. Although the low-dimensional embeddings har-
bour latent class information, they lack linear separability. Hence,
we project these embeddings into a higher-dimensional space using
random Fourier feature (RFF) projections, a strategy inspired by
kernel methods (Section 4.2). Using this approach allows for im-
proved linear separability of the latent classes. Our experimental
findings (Section 6.2) affirm the effectiveness of projecting lower-
dimensional embeddings into higher dimensions, confirming the
retention of latent class information in these embeddings.

5.2 Supervised Representation Learning

After obtaining representations for each filter post the reconstruc-
tion of the node representations, learning an aggregation mech-
anism to combine information from representations that capture
different parts of the eigenspectrum for the given task is necessary.
We adopt learning schemes proposed in [6, 13, 23], where we learn a
weighted combination of filter-specific representations. Therefore,
the combined representations we learn for the downstream task

are as follows (considering 𝐾 filters from the filter bank F):

𝑍 =

𝐾∑︁
𝑖=1

𝛼𝑖𝜙
′ (𝐸𝜃 (X, F𝑖)) (5)

The parameters 𝛼𝑖 ’s are learnable. Additionally, the function
𝜙 (.)′ represents either the RFF projection or an identity transfor-
mation, depending on whether 𝐸𝜃 (X, F𝑖) is low-dimensional or not.
A classifier model (e.g. logistic regression) consumes these embed-
dings, where we train both the 𝛼𝑖 ’s and the weights of the classifier.
Fig 2 illustrates this process. The main distinction between semi-
supervised methods such as [6, 13, 23] and our method is that the
semi-supervised methods learn both the encoder and the combi-
nation coefficients based on labelled data. However, we pre-train
the encoder in our method and subsequently learn a task-specific
combination of filter-specific representations.

6 EXPERIMENTAL RESULTS

Training Details: We define a single-layer graph convolutional
network (GCN) with shared weights (Θ) across all filters in the filter
bank (F) as our encoder. Therefore, the encoder can be expressed
as follows: 𝐸𝜃 (X, F𝑖) = 𝜎 (F𝑖XΘ). It is important to note that F𝑖
represents a normalized filter with self-loops, which ensures that
its eigenvalues are within the range of [0, 2]. The non-linearity
function 𝜎 refers to the parametric rectified linear unit (PReLU)
[12]. As we work with a single graph, we obtain the positive sam-
ples by sampling nodes from the graph. Using these sampled nodes,
we construct a new adjacency list that only includes the edges
between these sampled nodes in filter F𝑖 . On the other hand, the
corruption function C operates on the same sampled nodes. How-
ever, it randomly shuffles the node features instead of perturbing
the adjacency list. Similar to [37], we employ a straightforward
readout function that involves averaging the representations across
all nodes for a specific filter F𝑖 : R(H𝑖) = 𝜎

(
1
𝑁

∑𝑁
𝑗=0 ℎ

F𝑖
𝑗

)
where

𝜎 denotes the sigmoid non-linearity. We utilize a bilinear scoring
function, whose parameters are also shared across all filters:

𝐷𝜔 (ℎF𝑖
𝑗
, ℎ

F𝑖
𝑔) = 𝜎 (ℎF𝑖𝑇

𝑗
Wℎ

F𝑖
𝑔) (6)

We learn the encoder and discriminator parameters by optimis-
ing Eq. 4. While we could use various filter banks, we specifically
employ the filter bank corresponding to GPRGNN (FGPRGNN) for
all our experiments. However, we also conduct an ablation study
(see 6.6) to compare the performance when using FGPRGNN versus
FBernNet. For more detailed training information, please refer to
the supplementary material.

We conducted a series of comprehensive experiments to evaluate
the effectiveness and competitiveness of our proposed model com-
pared to SOTAmodels and methods. These experiments address the
following research questions: [RQ1] How does FiGURe, perform
compared to SOTA unsupervised models? [RQ2] Can we perform
satisfactorily even with lower dimensional representations using
projections such as RFF? [RQ3] Does shared encoder decrease
performance? [RQ4] What is the computational efficiency gained
by using lower dimensional representations compared to graph
contrastive methods that rely on higher dimensional representa-
tions? [RQ5]What is the computational efficiency gained by using
lower dimensional representations compared to node contrastive

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

𝟐
ℎଶ

ிభ

ℎଶ
ிమ

ℎଷ
ிమ

ℎ௡
ிమ

𝒌

ℎଵ
ிೖ

ℎଶ
ிೖ

ℎଷ
ிೖ

ℎ௡
ிೖ

𝟏
ℎଵ

ிభ

ℎଶ
ிభ

ℎଷ
ிభ

ℎ௡
ிభ

𝟐
ᇱ

ℎ′ଵ
ிమ

ℎ′ଶ
ிమ

ℎ′ଷ
ிమ

ℎ′௡
ிమ

𝒌
ᇱ

ℎ′ଵ
ிೖ

ℎ′ଶ
ிೖ

ℎ′ଷ
ிೖ

ℎ′௡
ிೖ

𝟏
ᇱ

ℎ′ଵ
ிభ

ℎ′ଶ
ிభ

ℎ′ଷ
ிభ

ℎ′௡
ிభ

Classifier
𝑧ଵ

𝑧ଶ

𝑧ଷ

𝑧௡

Class-
probabilities

𝟏

𝟐

𝒌

ᇱ 𝑭𝟏
𝑻 𝑭𝟏

Projection

Recreated
Node
Embeddings

Projection to
Higer Dimension
via Random
Fourier Features

Embedding
Fusion

Node
Embeddings

ᇱ 𝑭𝟐

𝑻 𝑭𝟐

Projection

ᇱ 𝑭𝒌

𝑻 𝑭𝒌

Projection

𝟐

Filtered Graph

𝒌

𝟐

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

x3

x5

x6

x7 x2

x1

x4

𝒌

𝟏

Nodes with
self-edges

x3

x5

x6

x7
x2

x1

x4
x3

x5

x6
x7

x2

x1

x4

Filter Banks Encode from
Trained

Filtered Graph

Figure 2: Supervised Learning: Using the trained parameter Θ, we generate the node embeddings by encoding the filtered graphs

that get consumed in the classification task.

methods that rely on higher dimensional representations? [RQ6]
Can alternative filter banks be employed to recover good quality
representations?

Datasets and Setup:We evaluated our model on a diverse set
of real-world datasets, which include both heterophilic and ho-
mophilic networks, to assess its effectiveness. Similar to previous
works, we utilized the node classification task as a proxy to evaluate
the quality of the learned representations. Please refer to the sup-
plementary material for detailed information about the benchmark
datasets.

The heterophilic datasets used in our evaluation include:
chameleon, sqirrel, roman-empire, minesweeper and
arXiv-Year. For chameleon and sqirrel, we adopted the ten
random splits (with 48%, 32%, and 20% of nodes allocated for the
train, validation, and test sets, respectively) from [29]. For roman-
empire and minesweeper, we used the ten random splits provided
in [32]. Additionally, we evaluated our model on four homophilic
datasets: cora, citeseer, and pubmed, OGBN-arXiv, as bor-
rowed from [29]. We report the mean and standard deviation of the
test accuracy across different splits. Please refer to the supplemen-
tary material for detailed statistics of each dataset.

Baselines: In our comparison against baselines, we consid-
ered common unsupervised approaches, such as DeepWalk and
Node2Vec, and state-of-the-art mutual information-based methods,
namely DGI, MVGRL, GRACE, and SUGRL. We also include the
performance numbers of the widely used GCNfor reference. It is
important to note that unless explicitly mentioned, we set the repre-
sentation size to 512 dimensions for all reported results, consistent
with previous work. Please refer to the supplementary material for
detailed comparisons with other supervised methods and the link
to our codebase.

6.1 RQ1: FiGURe versus SOTA Methods

We analyzed the results in Table 1 andmade important observations.
Across homophilic and heterophilic datasets, FiGURe consistently
outperforms several SOTA unsupervised models, except in a few
cases where it achieves comparable performance. Even on the large-
scale datasets arXiv-Year and OGBN-arXiv FiGURe performs

well, demonstrating the scalability of our method. Two baseline
methods MVGRL and GRACE run into memory issues on the larger
datasets and are accordingly reported OOM in the table.

We want to emphasize the rightmost column of the table, which
shows the average percentage gain in performance across all datasets.
This metric compares the improvement that FiGURe provides over
each baseline model for each dataset and averages these improve-
ments. This metric highlights that FiGURe performs consistently
well across diverse datasets. No other baseline model achieves
the same consistent performance across all datasets as FiGURe.
Even the recent state-of-the-art contrastive models GRACE and
SUGRL experience average performance drops of approximately
5% and 10%, respectively. This result indicates that FiGURe learns
representations that exhibit high generalization and task-agnostic
capabilities. Another important observation is the effectiveness
of RFF projections in improving lower dimensional representa-
tions. We compared FiGURe at different dimensions, including
F𝑖GUR𝑒32 and F𝑖GUR𝑒128, corresponding to learning 32 and 128-
dimensional embeddings, respectively, in addition to the baseline
representation size of 512 dimensions. Remarkably, even at lower
dimensions, FiGURe with RFF projections demonstrates competi-
tive performance across datasets, surpassing the 512-dimensional
baselines in several cases. This result highlights the effectiveness
of RFF projections in enhancing the quality of lower dimensional
representations. Using lower-dimensional embeddings reduces the
computation time and makes FiGURe faster than the baselines. It is
noteworthy that the computational efficiency gained by reducing
the dimension size becomes significant with the scale of the dataset.
On arXiv-Year, which is a large graph containing 169,343 nodes,
128 dimensional embeddings give ∼ 1.6x speedup and 32 dimen-
sional embeddings give ∼ 1.7x speedup. A similar observation is
made with OGBN-arXiv. Section 6.2 discusses more insights about
the effectiveness of RFF projections, and Sections 6.4 and 6.5 shed
more light on the computational efficiency gain.

Furthermore, we include the widely used supervisedmodel, GCN,
in Table 2 as a benchmark for comparison. Notably, FiGURe remains
competitive on most datasets, in some cases even outperforming

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

Table 1: Contains node classification accuracy percentages on homophilic and heterophilic datasets. FiGURe32 and FiGURe128
refer to FiGURe trained with 32 and 128 dimensional representations, respectively, and then projected using RFF. The remaining

models are trained at 512 dimensions. Higher numbers indicate better performance. It is worth noting that FiGURe achieves

superior performance or remains competitive with the baseline methods in all cases. The rightmost column Av. Δ𝑔𝑎𝑖𝑛 represents

the average accuracy % gain of FiGURe over the model in that row, averaged across the different datasets. In case one of the

models is ‘OOM’ for a particular dataset, that cell is ignored while calculating the Av. Δ𝑔𝑎𝑖𝑛 . Blue, Red and Green represent the

1st, 2nd and 3rd best performing models, for a particular dataset.

Heterophilic Datasets Homophilic Datasets
sqirrel chameleon roman-empire minesweeper arXiv-Year cora citeseer pubmed OGBN-arXiv Av. Δ𝑔𝑎𝑖𝑛

DeepWalk 38.66 (1.44) 53.42 (1.73) 13.08 (0.59) 79.96 (0.08) 41.05 (0.10) 83.64 (1.85) 63.66 (3.36) 80.85 (0.44) 64.02 13.48
Node2Vec 42.60 (1.15) 54.23 (2.30) 12.12 (0.30) 80.00 (0.00) 39.69 (0.09) 78.19 (1.14) 57.45 (6.44) 73.24 (0.59) 60.20 15.78

DGI 39.61 (1.81) 59.28 (1.23) 47.54 (0.76) 82.51 (0.47) 40.59 (0.09) 84.57 (1.22) 73.96 (1.61) 86.57 (0.52) 65.58 6.61
MVGRL 39.90 (1.39) 54.61 (2.29) 68.50 (0.38) 85.60 (0.35) OOM 86.22 (1.30) 75.02 (1.72) 87.12 (0.35) OOM 4.39
GRACE 53.15 (1.10) 68.25 (1.77) 47.83 (0.53) 80.22 (0.45) OOM 84.79 (1.51) 67.60 (2.01) 87.04 (0.43) OOM 5.54
SUGRL 43.13 (1.36) 58.60 (2.04) 39.40 (0.49) 82.40 (0.58) 36.96 (0.19) 81.21 (2.07) 67.50 (1.62) 86.90 (0.54) 65.80 8.64

FiGURe32 48.89 (1.55) 65.66 (2.52) 64.61 (0.92) 85.28 (0.71) 41.30 (0.21) 82.56 (0.87) 71.25 (2.20) 83.91 (0.69) 66.58 3.65
FiGURe128 48.78 (2.48) 66.03 (2.19) 67.01 (0.56) 85.16 (0.58) 41.94 (0.15) 86.14 (1.13) 73.34 (1.91) 83.56 (0.34) 69.11 2.53
FiGURe 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 42.26 (0.20) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 69.69 0.00

Table 2: Comparison of Node classification accuracy percentages with the widely used supervised model GCN. Despite not

having access to task specific labels, FiGURe learns good quality representations.

sqirrel chameleon roman-empire minesweeper arXiv-Year cora citeseer pubmed OGBN-arXiv
GCN 47.78 (2.13) 61.43 (2.70) 73.69 (0.74) 89.75 (0.52) 46.02 (0.26) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46) 69.37 (0.00)

FiGURe 52.23 (1.19) 68.55 (1.87) 70.99 (0.52) 85.58 (0.49) 42.26 (0.20) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44) 69.69 (0.00)

Table 3: Mean epoch time (in seconds) on the two large

datasets for different embedding sizes. For lower dimensional

embeddings, there is a significant speedup.

. 512 dims 128 dims 32 dims
Arxiv-year 1.24s 0.75s 0.72s
Ogbn-arxiv 0.92s 0.74s 0.72s

GCN. This demonstrates that the specific information that is re-
quired by the downstream task, captured by GCN, can be extracted
using an unsupervised method like FiGURe. For a downstream task,
utilizing embeddings coming from FiGURe, instead of using them
directly, means that a much more computationally efficient model
like Logistic Regression may be used, as opposed to training an
end-to-end graph neural network which is known to be expensive.
There are, however, works such as [5],[9] and [4] that are exploring
how to speedup the end-to-end graph neural network training as
well.

Thus, for a downstream task, FiGURe is a lot more computa-
tionally efficient than an end-to-end supervised model like a graph
neural network, which is known to be computationally expensive.
It is possible for the performance FiGURe to improve even further
using a non-linear model like anMLP. Please refer to supplementary
material for detailed comparisons with other supervised methods.

An interesting point to note is that both OGBN-arXiv and arXiv-
Year use the arXiv citation network as the graph, however differ
with respect to the labels. In OGBN-arXiv, the task is to predict

the subject area and in arXiv-Year the task is to predict the year
of publication. FiGURe manages to provide improvements in both
cases, demonstrating task-agnostic, and therefore multi-task prop-
erties. Owing to the multiple filters utilized by FiGURe, the model
learns a very general representation of the nodes, which allows
diverse tasks to choose the information most beneficial to them
(see Section 5.2) and leads to good performance across the board.

6.2 RQ2: RFF Projections on Lower Dimensional

Representations

In this section, we analyse the performance of unsupervised base-
lines using 32-dimensional embeddings with and without RFF pro-
jections (see Table 4). Despite extensive hyperparameter tuning, we
could not replicate the results reported by SUGRL, so we present
the best results we obtained. Two noteworthy observations emerge
from these tables. Firstly, it is evident that lower dimensional embed-
dings can yield meaningful and linearly separable representations
when combined with simple RFF projections. Utilising RFF projec-
tions enhances performance in almost all cases, highlighting the
value captured by MI-based methods even with lower-dimensional
embeddings. Secondly, FiGURe consistently achieves superior or
comparable performance to the baselines, even in lower dimensions.
Notably, this includes SUGRL, purported to excel in such settings.
However, there is a 2-3% performance gap between GRACE and
our method for the sqirrel and chameleon datasets. While
GRACE handles heterophily well at lower dimensions, its perfor-
mance deteriorates with homophilic graphs, unlike FiGURe which
captures lower frequency information effectively. Additionally, our

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

Table 4: Node classification accuracy percentages with and

without using Random Fourier Feature projections (on 32

dimensions). A higher number means better performance.

The performance is improved by using RFF in almost all

cases, indicating the usefulness of this transformation

rff cora citeseer sqirrel chameleon
DGI × 81.65 (1.90) 65.62 (2.39) 31.60 (2.19) 45.48 (3.02)

✓ 81.49 (1.96) 66.50 (2.44) 38.19 (1.52) 56.01 (2.66)

MVGRL × 81.03 (1.29) 72.38 (1.68) 37.20 (1.22) 49.65 (2.08)
✓ 80.48 (1.71) 72.54 (1.89) 39.53 (1.04) 56.73 (2.52)

SUGRL × 65.35 (2.41) 42.84 (2.57) 31.62 (1.47) 43.20 (1.79)
✓ 70.06 (1.24) 47.03 (3.02) 38.50 (2.19) 51.01 (2.26)

GRACE × 76.84 (1.09) 58.40 (3.05) 38.20 (1.38) 53.25 (1.58)
✓ 79.15 (1.44) 63.66 (2.96) 51.56 (1.39) 67.39 (2.23)

FiGURe × 82.88 (1.42) 70.32 (1.98) 39.38 (1.35) 53.27 (2.40)
✓ 82.56 (0.87) 71.25 (2.20) 48.89 (1.55) 65.66 (2.52)

method exhibits computational efficiency advantages for specific
datasets in lower dimensions. Please refer to the supplementary
material for more details. Overall, these findings highlight the po-
tential of RFF projections in extracting useful information from
lower dimensional embeddings and reaffirm the competitiveness
of FiGURe over the baselines.

6.3 RQ3: Sharing Weights Across Filter Specific

Encoders

Table 5: A comparison of the performance on the down-

stream node classification task using independently trained

encoders and weight sharing across encoders is shown. The

reported metric is accuracy. In both cases, the embeddings

are combined using the method described in 5.2

cora citeseer sqirrel chameleon
Independent 86.92 (1.10) % 75.03 (1.75) % 50.52 (1.51) % 66.86 (1.85) %

Shared 87.00 (1.24) % 74.77 (2.00) % 52.23 (1.19) % 68.55 (1.87) %

Our method proposes to reduce the computational load by shar-
ing the encoder weights across all filters. It stands to reasonwhether
sharing these weights causes any degradation in performance. We
present the results with shared and independent encoders across
the filters in Table 5 to verify this.

We hypothesize that weight sharing among encoders results in
embedding different filter representations in a shared subspace,
thereby enhancing their suitability for learning a combined rep-
resentation. This ultimately leads to improved features for down-
stream tasks and, in some cases, results in performance improve-
ments. The experimental results demonstrate that there is no sig-
nificant decrease in performance when using shared weights and,
in fact, in some cases, performance is enhanced. This validates the
claim that shared encoders can effectively reduce computational
load without sacrificing performance.

6.4 RQ4: Computational Efficiency - Graph

Contrastive

Table 6: Mean epoch time (in milliseconds) averaged across

20 trials with different hyperparameters. A lower number

means the method is faster. Even though our method is

slower at 512 dimensions, using 128 and 32 dimensional em-

beddings significantly reduces the mean epoch time. Using

RFF as described in 6.2 we are able to prevent the perfor-

mance drops experienced by DGI and MVGRL.

DGI MVGRL FiGURe FiGURe128 FiGURe32
cora 38.53 (0.77) 75.29 (0.56) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)

citeseer 52.98 (1.15) 102.41 (0.99) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
sqirrel 87.06 (2.07) 168.24 (2.08) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

chameleon 33.08 (0.49) 64.71 (1.05) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

There are two broad types of unsupervised methods for graph
datasets: Graph Contrastive (GC) methods and Node Contrastive
(NC) methods. GC methods, including MVGRL, DGI and FiGURe be-
long to the category of unsupervised methods that perform con-
trastive learning with representations of the entire graph. On the
other hand, NC methods, such as SUGRL and GRACE, fall into a
different class where they contrast against other node representa-
tions without the need for graph representations. In this section, we
focus on comparing the computational efficiency of FiGURe with
other GC methods, while in the next section, we compare its com-
putational efficiency with NC methods. Hence, to assess the com-
putational efficiency of the different GC methods, we analyzed the
computation time and summarized the results in Table 6. The key
metric used in this analysis is the mean epoch time: the average
time taken to complete one epoch of training. We compared our
method with other GC based methods such as DGI and MVGRL.
Due to the increase in the number of augmentation views, there is
an expected increase in computation time from DGI to MVGRL to
FiGURe. However, as demonstrated in 6.2, using RFF projections
allows us to achieve competitive performance even at lower dimen-
sions. Therefore, we also included comparisons with our method at
128 and 32 dimensions in the table.

It is evident from the results that our method, both at 128 and
32 dimensions, exhibits faster computation times compared to
both DGI and MVGRL, which rely on higher-dimensional repre-
sentations to achieve good performance. This result indicates that
FiGURe is computationally efficient due to its ability to work with
lower-dimensional representations. During training, our method,
F𝑖GUR𝑒32, is ∼ 3x faster than DGI and ∼ 6x times faster than
MVGRL. Despite the faster computation, F𝑖GUR𝑒32 also exhibits
an average performance improvement of around 2% across the
datasets over all methods considered in our experiments. There-
fore, among all GC methods, FiGURe with RFF not only achieves
better performance but also demonstrates higher computational
efficiency.

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

Table 7: Mean epoch time (in milliseconds) averaged across

20 trials with different hyperparameters. A lower number

means the method is faster. Even though our method is

slower at 512 dimensions, using 128 and 32 dimensional em-

beddings significantly reduces the mean epoch time. Using

RFF as described in 6.2 we are able to prevent the perfor-

mance drops experienced by SUGRL and GRACE.

SUGRL GRACE FiGURe FiGURe128 FiGURe32
cora 15.92 (4.10) 51.19 (6.8) 114.38 (0.51) 20.10 (0.46) 11.54 (0.34)

citeseer 24.37 (4.92) 77.16 (7.2) 156.24 (0.56) 30.30 (0.60) 17.16 (0.51)
sqirrel 33.63 (6.94) 355.2 (67.34) 257.65 (0.76) 47.72 (1.40) 23.52 (1.14)

chameleon 16.91 (5.90) 85.05 (14.1) 98.36 (0.64) 18.56 (0.39) 11.63 (0.48)

6.5 RQ5: Computational Efficiency - Node

Contrastive

In this section, we compare the computational efficiency of FiGURewith
other NC methods. It is worth noting that NC methods do not re-
quire the computation of the graph representation, which leads
to higher computational efficiency for these methods. Hence, as
upon initial inspection of Table 7, it appears that SUGRL (at 512
dimensions) exhibits the highest computational efficiency, even
outperforming F𝑖GUR𝑒128. However, despite its computational ef-
ficiency, the significant drop in performance across datasets (as
discussed in Section 6.1) renders it less favorable for considera-
tion. In fact, F𝑖GUR𝑒32 offers computational cost savings compared
to SUGRL, while also achieving significantly better downstream
classification accuracy. Turning to GRACE, it demonstrates greater
computational efficiency than FiGURe (at 512 dimensions) for low
to medium-sized graphs. However, as the graph size increases, due
to random node feature level masking and edge level masking, the
computational requirements of GRACE substantially increase (as
evidenced by the results on sqirrel). Therefore, for larger graphs
with more than approximately 5000 nodes, FiGURe proves to be
more computationally efficient than GRACE (even at 512 dimen-
sions). Furthermore, considering the performance improvements
exhibited by FiGURe, it is evident that FiGURe (combined with
RFF projections) emerges as the preferred method for unsupervised
contrastive learning in graph data.

An interesting research direction would involve incorporating
NC methods with filters, which would allow us to benefit from the
performance improvements provided by filters while also achieving
better computational efficiency. However, exploring this direction
is beyond the scope of this paper, and we consider it as a potential
avenue for future work.

6.6 RQ6: Experiments on Other Filter Banks

To showcase the versatility of our proposed framework, we con-
ducted an experiment using Bernstein filters, as detailed in Table 8.
The results indicate that using FGPRGNN leads to better performance
than Bernstein filters. We believe that the reason this is happen-
ing is due to the latent characteristics of the dataset. [13, 23] have
shown that datasets like chameleon and sqirrel need frequency
response functions that give more prominence to the tail-end spec-
trum. FGPRGNN are more amenable to these needs, as demonstrated
in [23]. However, datasets requiring frequency response similar

Table 8: Accuracy percentage results using other filter banks

for FiGURe. F3
BernNet

refers to the FBernNet filter bank (Sec-

tion 4.1) with 𝐾 set to 3 and F11
BernNet

refers to 𝐾 set to 11.

cora citeseer sqirrel chameleon
F3BernNet 85.13 (1.26) 73.38 (1.81) 37.07 (1.29) 53.95 (2.78)
F11BernNet 86.62 (1.59) 73.97 (1.43) 43.48 (3.80) 62.13 (3.66)
FGPRGNN 87.00 (1.24) 74.77 (2.00) 52.23 (1.19) 68.55 (1.87)

to comb filters may be better approximated by FBernNet as their
basis gives uniform prominence on the entire spectrum. Please refer
to the supplementary material, which shows the basis frequency
responses of these two filter banks, with more clarification. There-
fore, although FGPRGNN gives better performance for these datasets,
there could be datasets where FBernNet could do better. Hence, we
proposed a general framework that can work with any filter bank.

7 CONCLUSION AND FUTUREWORK

Our work demonstrates the benefits of enhancing contrastive learn-
ing methods with filter views and learning filter-specific represen-
tations to cater to diverse tasks from homophily to heterophily.
We have effectively alleviated computational and storage burdens
by sharing the encoder across these filters and focusing on low-
dimensional embeddings that utilize high-dimensional projections,
a technique inspired by random feature maps developed for kernel
approximations. Future directions include extending the analysis
in [2] to graph contrastive learning and explicitly exploring the lin-
ear separability in low dimensions. This analysis could solidify the
connection with the proposed random feature maps approach. An-
other future direction worth exploring is the combination of filters
with Node Contrastive (NC) methods. By incorporating filters into
NC methods, we can potentially leverage the performance benefits
of filters while achieving improved computational efficiency. This
integration of filters and NC methods could lead to more effective
and scalable unsupervised learning approaches for graph data.

REFERENCES

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In International conference on knowledge discovery & data mining (KDD).
2623–2631.

[2] Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail Khodak, Orestis Plevrakis,
and Nikunj Saunshi. 2019. A Theoretical Analysis of Contrastive Unsupervised
Representation Learning. In International Conference onMachine Learning (ICML).

[3] Deyu Bo, X. Wang, Chuan Shi, and Hua-Wei Shen. 2021. Beyond Low-frequency
Information in Graph Convolutional Networks. In Association for the Advance-
ment of Artificial Intelligence (AAAI).

[4] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin
Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.
Scaling Graph Neural Networks with Approximate PageRank. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (Virtual Event, CA, USA) (KDD ’20). Association for Computing
Machinery, New York, NY, USA, 2464–2473. https://doi.org/10.1145/3394486.
3403296

[5] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. FastGCN: Fast Learning with Graph
Convolutional Networks via Importance Sampling. In International Conference
on Learning Representations. https://openreview.net/forum?id=rytstxWAW

[6] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Universal
Generalized PageRank Graph Neural Network. In International Conference on
Learning Representations (ICLR).

[7] Monroe D. Donsker and S. R. S. Varadhan. 1975. Asymptotic evaluation of certain
Markov process expectations for large time. In Communications on Pure and

https://doi.org/10.1145/3394486.3403296
https://doi.org/10.1145/3394486.3403296
https://openreview.net/forum?id=rytstxWAW

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

Applied Mathematics.
[8] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia.

2000. Incorporating Second-Order Functional Knowledge for Better Option
Pricing. In Neural Information Processing Systems (NeurIPS). 7 pages.

[9] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael
Bronstein, and Federico Monti. 2020. SIGN: Scalable Inception Graph Neural
Networks. In ICML Workshop on Graph Representation Learning and Beyond.
https://arxiv.org/abs/2004.11198

[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for
Networks. In International Conference on Knowledge Discovery and Data Mining
(KDD).

[11] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive Multi-View
Representation Learning on Graphs. In International Conference on Machine
Learning (ICML).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification.
In 2015 IEEE International Conference on Computer Vision (ICCV). https://doi.org/
10.1109/ICCV.2015.123

[13] Mingguo He, Zhewei Wei, Zengfeng Huang, and Hongteng Xu. 2022. BernNet:
Learning Arbitrary Graph Spectral Filters via Bernstein Approximation. In Neural
Information Processing Systems (NeurIPS).

[14] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. 2019. Learning deep represen-
tations by mutual information estimation and maximization. In International
Conference on Learning Representations (ICLR). https://openreview.net/forum?
id=Bklr3j0cKX

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. In Neural Information Processing Systems (NeurIPS).

[16] Purushottam Kar and Harish Karnick. 2012. Random Feature Maps for Dot
Product Kernels. In International Conference on Artificial Intelligence and Statistics
(AISTATS). https://proceedings.mlr.press/v22/kar12.html

[17] Dongkwan Kim and Alice Oh. 2021. How to Find Your Friendly Neighborhood:
Graph Attention Design with Self-Supervision. In International Conference on
Learning Representations (ICLR).

[18] George Kimeldorf and Grace Wahba. 1971. Some results on Tchebycheffian
spline functions. J. Math. Anal. Appl. (1971). https://doi.org/10.1016/0022-
247X(71)90184-3

[19] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In International Conference on Learning Representations (ICLR).

[20] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[21] Zhu Li, Jean-Francois Ton, Dino Oglic, and Dino Sejdinovic. 2021. Towards
a Unified Analysis of Random Fourier Features. Journal of Machine Learning
Research (JMLR) (2021).

[22] Derek Lim, Felix Matthew Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta,
Omkar Prasad Bhalerao, and Ser-Nam Lim. 2021. Large Scale Learning on Non-
Homophilous Graphs: New Benchmarks and Strong Simple Methods. In Neural
Information Processing Systems (NeurIPS). https://openreview.net/forum?id=
DfGu8WwT0d

[23] Vijay Lingam, Chanakya Ekbote, Manan Sharma, Rahul Ragesh, Arun Iyer, and
Sundararajan Sellamanickam. 2022. A Piece-wise Polynomial Filtering Approach
for Graph Neural Networks. In European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML PKDD).

[24] R. Linsker. 1988. Self-organization in a perceptual network. Computer (1988).
[25] James Mercer. 1909. Functions of positive and negative type, and their connection

with the theory of integral equations. Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or Physical
Character (1909).

[26] Yujie Mo, Liang Peng, Jie Xu, Xiaoshuang Shi, and Xiaofeng Zhu. 2022. Simple
Unsupervised Graph Representation Learning. InAssociation for the Advancement
of Artificial Intelligence (AAAI).

[27] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. 2016. f-GAN: Train-
ing Generative Neural Samplers using Variational Divergence Minimization. In
Neural Information Processing Systems (NeurIPS).

[28] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. In Neural
Information Processing Systems (NeurIPS).

[29] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang.
2020. Geom-GCN: Geometric Graph Convolutional Networks. In International
Conference on Learning Representations (ICLR).

[30] Jeffrey Pennington, Felix Xinnan X Yu, and Sanjiv Kumar. 2015. Spherical
Random Features for Polynomial Kernels. In Neural Information Processing
Systems (NeurIPS). https://proceedings.neurips.cc/paper_files/paper/2015/file/
f7f580e11d00a75814d2ded41fe8e8fe-Paper.pdf

[31] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk. In International
Conference on Knowledge Discovery and Data Mining (KDD). https://doi.org/10.
1145/2623330.2623732

[32] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila
Prokhorenkova. 2023. A critical look at the evaluation of GNNs under het-
erophily: Are we really making progress?. In International Conference on Learning
Representations (ICLR). https://openreview.net/forum?id=tJbbQfw-5wv

[33] Ali Rahimi and Benjamin Recht. 2007. Random Features for Large-Scale Kernel
Machines. In Neural Information Processing Systems (NeurIPS).

[34] Ali Rahimi and Benjamin Recht. 2008. Weighted Sums of Random Kitchen Sinks:
Replacing minimization with randomization in learning. In Neural Information
Processing Systems (NeurIPS). https://proceedings.neurips.cc/paper_files/paper/
2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf

[35] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine (2013).

[36] Nicolas Tremblay, Paulo Gonçalves, and Pierre Borgnat. 2017. Design of graph
filters and filterbanks. Cooperative and Graph Signal Processing (2017).

[37] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In International Conference on
Learning Representations (ICLR). https://openreview.net/forum?id=rklz9iAcKQ

[38] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. 2020.
Deep Graph Contrastive Representation Learning. In ICML Workshop on Graph
Representation Learning and Beyond. http://arxiv.org/abs/2006.04131

https://arxiv.org/abs/2004.11198
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://openreview.net/forum?id=Bklr3j0cKX
https://openreview.net/forum?id=Bklr3j0cKX
https://proceedings.mlr.press/v22/kar12.html
https://doi.org/10.1016/0022-247X(71)90184-3
https://doi.org/10.1016/0022-247X(71)90184-3
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=DfGu8WwT0d
https://proceedings.neurips.cc/paper_files/paper/2015/file/f7f580e11d00a75814d2ded41fe8e8fe-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f7f580e11d00a75814d2ded41fe8e8fe-Paper.pdf
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1145/2623330.2623732
https://openreview.net/forum?id=tJbbQfw-5wv
https://proceedings.neurips.cc/paper_files/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/0efe32849d230d7f53049ddc4a4b0c60-Paper.pdf
https://openreview.net/forum?id=rklz9iAcKQ
http://arxiv.org/abs/2006.04131

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

A SUPPLEMENTARY MATERIAL

Contents

Abstract 1
1 Introduction 1
2 Related Work 2
3 Problem Setting 2
4 Preliminaries 2
4.1 Filter Banks 2
4.2 Random Feature Maps for Kernel Approximations 2
5 Proposed Approach 3
5.1 Unsupervised Representation Learning 3
5.2 Supervised Representation Learning 4
6 Experimental Results 4
6.1 RQ1: FiGURe versus SOTA Methods 5
6.2 RQ2: RFF Projections on Lower Dimensional

Representations 6
6.3 RQ3: Sharing Weights Across Filter Specific

Encoders 7
6.4 RQ4: Computational Efficiency - Graph

Contrastive 7
6.5 RQ5: Computational Efficiency - Node

Contrastive 8
6.6 RQ6: Experiments on Other Filter Banks 8
7 Conclusion and Future Work 8
References 8
A Supplementary Material 10
Contents 10
A.1 Reproducibility 10
A.2 Datasets 10
A.3 Training Details 10
A.4 Comparison with other Supervised Methods 12
A.5 RFF Projections 12
A.6 Choice of Filter Banks 13
A.7 Visualising RFF Behavior and Community

Structure 13

A.1 Reproducibility

We strive to ensure the reproducibility of our research findings. To
facilitate this, we provide the details of our experimental setup, in-
cluding dataset sources, preprocessing steps, hyperparameters, and
model configurations. We also make our code and the datasets used,
publicly available at this link, enabling researchers to reproduce
our results and build upon our work. We would like to empha-
size that our code is built on top of the existing MVGRL codebase.
For the datasets used in our evaluation, we provide references to
their original sources and any specific data splits that we employed.
This allows others to obtain the same datasets and perform their
own analyses using consistent data. Additionally, we specify the
versions of libraries and frameworks used in our experiments, in
Section A.3, and in the Reqirements file and the Readme file, in
the codebase, enabling others to set up a compatible environment.
We document any specific seed values or randomization procedures
that may affect the results. By providing these details and resources,
we aim to promote transparency and reproducibility in scientific

research. We encourage fellow researchers to reach out to us if they
have any questions or need further clarification on our methods or
results.

A.2 Datasets

Homophilic Datasets:We evaluated our model (as well as base-
lines) on three homophilic datasets: cora, citeseer, and pubmed as
borrowed from [17]. All three are citation networks, where each
node represents a research paper and the links represent citations.
Pubmed consists of medical research papers. The task is to predict
the category of the research paper. We follow the same dataset
setup mentioned in [29] to create 10 random splits for each of these
datasets.

Heterophilic Datasets: In our evaluation, we included four
heterophilic datasets: chameleon, sqirrel, roman-empire, and
minesweeper. For chameleon and sqirrel, each node represents
a Wikipedia web pages and edges capture mutual links between
pages.We utilized the ten random splits provided in [29], where 48%,
32%, and 20% of the nodes were allocated for the train, validation,
and test sets, respectively. In roman-empire each node corresponds
to a word in the Roman Empire Wikipedia article. Two words are
connected with an edge if either these words follow each other
in the text, or they are connected in the dependency tree of the
sentence. The syntactic role of the word/node defines its class label.
The minesweeper graph is a regular 100x100 grid where each node
is connected to eight neighboring nodes, and the features are on-
hot encoded representations of the number of neighboring mines.
The task is to predict which nodes are mines. For both roman-
empire and minesweeper, we used the ten random splits provided
in [32].

Large Datasets: We also evaluate our method on two large
datasets OGBN-arXiv (from [15]) and arXiv-Year (from [22]).
Both these datasets are from the arxiv citation network. In OGBN-
arXiv, the task is to predict the category of the research paper, and
in arXiv-Year the task is to predict the year of publishing. We use
the publicly available splits for OGBN-arXiv [17] and follow the
same dataset setup mentioned in [22] to generate 5 random splits
for arXiv-Year. Note that OGBN-arXiv is a homophilic dataset
while arXiv-Year is a heterophilic datasets.

The detailed dataset statistics can be found in Table 9.

A.3 Training Details

We conducted all experiments on a machine equipped with an
Intel(R) Xeon(R) CPU E5-2690 v4@ 2.60GHz processor, 440GBRAM,
and a Tesla-P100 GPUwith 16GB of memory. The experiments were
executed using Python 3.9.12 and PyTorch 1.13.0 [28]. To optimize
the hyperparameter search, we employed Optuna [1]. We utilized
the Adam optimizer [19] for the optimization process.

A.3.1 Unsupervised Training. We conducted hyperparameter tun-
ing for all unsupervised methods using 20 Optuna trials. The hy-
perparameter ranges and settings for each method are as follows:

DeepWalk: We set the learning rate to 0.01, number of epochs
to 20 and the varied the random walk length over {8, 9, 10, 11, 12}.
Additionally, we varied the context window size over {3, 4, 5} and
the negative size (number of negative samples per positive sample)
over {4, 5, 6}.

https://drive.google.com/drive/folders/1Jtpe4NVBJZKki99Apogkb-hdFnodczcz?usp=share_link

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

Table 9: Dataset Statistics. The table provides information on the following dataset characteristics: number of nodes, number of

edges, feature dimension, number of classes, as well as the count of nodes used for training, validation, and testing.

Heterophilic Datasets Homophilic Datasets
Properties sqirrel chameleon roman-empire minesweeper arXiv-Year OGBN-arXiv citeseer pubmed cora
#Nodes 5201 2277 22662 10000 169343 169343 3327 19717 2708
#Edges 222134 38328 32927 39402 1166243 1335586 12431 108365 13264

#Features 2089 500 300 7 128 128 3703 500 1433
#Classes 5 5 18 2 5 40 6 3 7
#Train 2496 1092 11331 5000 84671 90941 1596 9463 1192
#Val 1664 729 5665 2500 42335 29799 1065 6310 796
#Test 1041 456 5666 2500 42337 48603 666 3944 497

Node2Vec: For Node2Vec, we set the learning rate to 0.01 and
number of epochs to 100. We varied the number of walks over
{5, 10, 15} and the walk length over {40, 50, 60}. The 𝑝 (return pa-
rameter) value was chosen from {0.1, 0.25, 0.5, 1} and 𝑞 (in-out pa-
rameter) value was chosen from {3, 4, 5}.

DGI: DGI [37] proposes a self-supervised learning framework
for graph representation learning by maximizing the mutual in-
formation between local and global structural context of nodes,
enabling unsupervised feature extraction in graph neural networks.
We relied on the authors’ code1 and the prescribed hyperparameter
ranges specific to the DGI model, for our experiments.

MVGRL: MVGRL [11] proposes a method for learning unsuper-
vised node representations by leveraging two views of the graph
data, the graph diffusion view and adjacency graph view. We relied
on the authors’ code2 and the prescribed hyperparameter ranges
specific to the MVGRL model, for our experiments.

GRACE: GRACE [38] proposes a technique where two different
perspectives of the graph are created through corruption, and the
learning process involves maximizing the consistency between the
node representations obtained from these two views. We relied
on the authors’ code3 and the prescribed hyperparameter ranges
specific to the GRACE model, for our experiments.

SUGRL: SUGRL [26] proposes a technique for learning unsuper-
vised representations which capture node proximity, while also util-
ising node feature information. We relied on the authors’ code4 and
the prescribed hyperparameter ranges specific to the SUGRL model,
for our experiments.

FiGURe: We followed the setting of the MVGRL model, set-
ting the batch size to 2 and number of GCN layers to 1. We fur-
ther tuned the learning rate over {0.00001, 0.0001, 0.001, 0.01, 0.1}
and the sample size (number of nodes selected per batch) over
{1500, 1750, 2000, 2250}, except for the large graphs, for which we
set the sample size to 5000.

In each case, we selected the hyperparameters that resulted in
the lowest unsupervised training loss.

A.3.2 Supervised Training. For all unsupervised methods, includ-
ing the baselines and our method, we perform post-training super-
vised evaluation using logistic regression with 60 Optuna trials. We
set the maximum number of epochs to 10000 and select the epoch
1https://github.com/PetarV-/DGI.git
2https://github.com/kavehhassani/mvgrl.git
3https://github.com/CRIPAC-DIG/GRACE.git
4https://github.com/YujieMo/SUGRL.git

and hyperparameters that yield the best validation accuracy. The
learning rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015,
0.01, 0.015, 0.1, 0.5, 1, 2}, and the weight decay is varied over {10−5,
10−4, 10−3, 10−2, 10−1, 0, 0.5, 1, 3}.

FiGURe: Along with the hyperparameters described above, fol-
lowing the approach described in [13], we also tune the combination
coefficients (𝛼𝑖 ’s) with a separate learning rate. This separate learn-
ing rate is swept over the range {0.00001, 0.0001, 0.001, 0.0015, 0.01,
0.015, 0.1, 0.5, 1, 2}. In addition, we have a coefficient for masking
the incoming embeddings from each filter, which is varied between
0 and 1. Furthermore, these coefficients are passed through an ac-
tivation layer, and we have two options: ‘none’ and ‘exp’. When
‘none’ is selected, the coefficients are used directly, while ‘exp’ indi-
cates that they are passed through an exponential function before
being used.

FiGURewith RFF: For the experiments involving Random Fourier
Features (RFF), we use the same hyperparameter ranges as men-
tioned above. However, we also tune the gamma parameter which
is specific to RFF projections. The gamma parameter is tuned within
the range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}.

A.3.3 Negative Sampling for the Identity Filter. In our implemen-
tation of FGPRGNN or FBernNet, we follow a specific procedure for
handling the filters during training and evaluation. For all filters
except the identity filter (I), we employ the negative sampling ap-
proach described in Section 6. However, the identity filter is treated
differently. During training, we exclude the identity filter and only
include it during evaluation.

During negative sampling, the generation of the negative anchor
involves shuffling the node features, followed by premultiplying
the shuffled node feature matrix with the filter matrix and com-
puting the mean. On the other hand, for the positive anchor, the
same procedure is applied without shuffling the node features. This
approach encourages the model to learn meaningful patterns and
relationships in the data when the filter matrix is not the identity
matrix.

The decision to exclude the identity filter during training is
based on the observation that it presents a special case where the
positive and negative anchors become the same. As a result, the
model would optimize and minimize the same quantity, potentially
leading to trivial solutions. To prevent this, we exclude the identity
filter during training.

https://github.com/PetarV-/DGI.git
https://github.com/kavehhassani/mvgrl.git
https://github.com/CRIPAC-DIG/GRACE.git
https://github.com/YujieMo/SUGRL.git

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

By excluding the identity filter during training, we ensure that
the model focuses on the other filters in FGPRGNN or FBernNet to
capture and leverage the diverse information present in the graph.
Including the identity filter only during evaluation allows us to
evaluate its contribution to the final performance of the model. This
approach helps prevent the model from learning trivial solutions
and ensures that it learns meaningful representations by leveraging
the other filters.

A.4 Comparison with other Supervised Methods

Table 10 presents a comparison with common supervised baselines.
Specifically, we choose 3 models for comparison, representing hr
three different kinds of supervised methods, standard aggregation
models (GCN), spectral filter-based models (GPRGNN) and smart-
aggregation models (H2GCN). There are two key observations from
this table. Firstly, FiGURe is competitive with the supervised base-
lines, lagging behind only by a few percentage points in some cases.
This suggests that much of the information that is required by the
downstream tasks, captured by the supervised models, can be made
available through unsupervised methods like FiGURe which uses
filter banks. It is important to note that in FiGURe we only utilize
logistic regression while evaluating on the downstream task. This
is much more efficient that training a graph neural network end to
end. Additionally it is possible that further gains may be obtained
by utilizing a non-linear model like an MLP.

Furthermore, as indicated by 10, we can gain further computa-
tional efficiency by utilizing lower dimensional representations like
32 and 128 (with RFF), and still not compromise significantly on
the performance.

Overall FiGURe manages to remain competitive despite not hav-
ing access to task-specific labels and is computationally efficient as
well.

A.5 RFF Projections

As shown in Section 6.2 and in Section 6.4, RFF projections are a
computationally efficient way to achieve training by preserving
the latent class behavior present in lower dimensional embeddings,
by projecting them into a higher dimensional linearly separable
space. The natural question that comes up is how do we compute
these RFF projections? We provide an algorithm to compute the
RFF projections in this section, in algorithm 1. Note that this follows
[33].

Algorithm 1 Random Fourier Feature Computation

Require: Input data 𝑋 ∈ R𝑁×𝑑 , target dimension 𝐷 , kernel band-
width 𝛾

Ensure: Random Fourier Features 𝑍 ∈ R𝑁×𝐷

1: Initialize random weight matrix𝑊 ∈ R𝑑×𝐷 with Gaussian
distribution

2: Initialize random bias vector 𝑏 ∈ R𝐷 uniformly from [0, 2𝜋]
3: Compute scaled input 𝑋 ′ = 𝛾𝑋𝑊 + 𝑏
4: Compute random Fourier features 𝑍 =

√︃
2
𝐷
cos(𝑋 ′)

5: return 𝑍

Figure 3: Five Bernstein Ba-

sis

Figure 4: Five Standard Ba-

sis

Figure 5: Seven Bernstein

Basis

Figure 6: Seven Standard

Basis

Figure 7: Nine Bernstein Ba-

sis

Figure 8: Nine Standard Ba-

sis

Figure 9: Eleven Bernstein

Basis

Figure 10: Eleven Standard

Basis

Figure 11: The figures contain the Bernstein basis as well as

standard basis for different degrees. The x-axis of the figures

represents the eigenvalues of the Laplacianmatrix, while the

y-axis represents the magnitude of the polynomials. It is im-

portant to note that while plotting the standard polynomials,

they are computed with respect to the Laplacian matrix (Ln)
rather than the adjacency matrix. As a result, the eigenval-

ues lie between [0, 2]. On the other hand, the Bernstein poly-

nomials are typically defined for the normalised Laplacian

matrix, and therefore there is no change in the eigenvalue

range (the eigenvalues of the normalised Laplacian matrix

typically range from 0 to 2). By using the Laplacian matrix

as the basis for plotting the polynomials, we can observe

the behavior and magnitude of the polynomials at different

eigenvalues, providing insights into their spectral properties

and frequency response characteristics.

FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations KDD MLG Workshop ’23, August, 2023, Long Beach, California

Table 10: Contains node classification accuracy percentages on heterophilic and homophilic datasets. GCN, GPRGNN and

H2GCN are supervised methods. F𝑖GUR𝑒32 and F𝑖GUR𝑒128 refer to F𝑖GUR𝑒 trained with 32 and 128 dimensional representations,

respectively, and then projected using RFF. The remaining models are trained at 512 dimensions. Higher numbers indicate

better performance.

Heterophilic Datasets Homophilic Datasets
sqirrel chameleon roman-empire minesweeper arXiv-Year OGBN-arXiv cora citeseer pubmed

GCN 47.78 (2.13) 62.83 (1.52) 73.69 (0.74) 89.75 (0.52) 46.02 (0.26) 69.37 (0.00) 87.36 (0.91) 76.47 (1.34) 88.41 (0.46)
GPRGNN 46.31 (2.46) 62.59 (2.04) 64.85 (0.27) 86.24 (0.61) 45.07 (0.21) 68.44 (0.00) 87.77 (1.31) 76.84 (1.69) 89.08 (0.39)
H2GCN 37.90 (2.02) 58.40 (2.77) 60.11 (0.52) 89.71 (0.31) 49.09 (0.10) OOM 87.81 (1.35) 77.07 (1.64) 89.59 (0.33)
F𝑖GUR𝑒32 48.89 (1.55) 65.66 (2.52) 67.67 (0.77) 85.28 (0.71) 41.30 (0.21) 66.58 (0.00) 82.56 (0.87) 71.25 (2.20) 84.18 (0.53)
F𝑖GUR𝑒128 48.78 (2.48) 66.03 (2.19) 68.10 (1.09) 85.16 (0.58) 41.94 (0.15) 69.11 (0.00) 86.14 (1.13) 73.34 (1.91) 85.41 (0.52)
F𝑖GUR𝑒 52.23 (1.19) 68.55 (1.87) 70.99(0.52) 85.58 (0.49) 42.26 (0.20) 69.69 (0.00) 87.00 (1.24) 74.77 (2.00) 88.60 (0.44)

A.6 Choice of Filter Banks

In Section 4.1, we explore the flexibility of FiGURe to accommodate
various filter banks. When making a choice, it is crucial to examine
the intrinsic properties of the filters contained within different
filter banks. We pick two filter banks FBernNet and FGPRGNN and
provide an overview of the filters contained in the filter banks. We
use these two filter banks as examples to illustrate what should one
be looking for, while choosing a filter bank.

Bernstein Polynomials: Figure 11 illustrates that as the num-
ber of Bernstein Basis increases, the focus on different parts of
the eigenspectrum also undergoes changes. With an increase in
polynomial order, two notable effects can be observed. Firstly, the
number of filters increases, enabling each filter to focus on more
fine-grained eigenvalues. This expanded set of polynomial filters
allows for a more detailed examination of the eigenspectrum. Sec-
ondly, if we examine the first and last Bernstein polynomials, we
observe an outward shift in their shape. This shift results in the
enhancement of a specific fine-grained part at the ends of the spec-
trum. These observations demonstrate that Bernstein polynomials
offer the capability to selectively target and enhance specific regions
of interest within the eigenspectrum

Standard Basis: Figure 11 reveals two key observations. Firstly,
at a polynomial order of 2, the standard basis exhibit focus at the
ends of the spectrum, in contrast to the behavior of Bernstein poly-
nomials, which tend to concentrate more on the middle of the
eigenspectrum. This discrepancy highlights the distinct charac-
teristics and emphasis of different polynomial bases in capturing
different parts of the eigenspectrum. Secondly, as the number of
polynomials increases (in contrast to Bernstein polynomials), the
lower order polynomials remain relatively unchanged. Instead, ad-
ditional polynomials are introduced, offering a more fine-grained
focus at the ends of the spectrum. This expansion of polynomials
allows for a more detailed exploration of specific regions of interest
within the the ends of eigenspectrum.

In the context of filter banks, previous studies [6, 23] have demon-
strated that certain datasets, such as sqirrel and chameleon, ben-
efit from frequency response functions that enhance the tail ends
of the eigenspectrum. This observation suggests that the standard
basis, which naturally focuses on the ends of the spectrum, may
outperform Bernstein basis functions at lower orders. However, as
the order of the Bernstein basis increases, as discussed in 4.1, there

is a notable improvement in performance. This can be attributed to
the increased focus of Bernstein basis functions on specific regions,
particularly the ends of the spectrum. As a result, higher-order
Bernstein filters exhibit enhanced capability in capturing important
information in those regions. It is worth noting that the choice
between FGPRGNN and FBernNet depends on the specific require-
ments of the downstream task. If the task necessitates a stronger
focus on the middle of the spectrum or requires a band-pass or
comb-like frequency response, FBernNet is likely to outperform
FGPRGNN. Thus, the selection of the appropriate filter bank should
be based on the desired emphasis on different parts of the eigenspec-
trum. Regarding the performance comparison between FBernNet
and FGPRGNN, it is plausible that as we increase the order of the
Bernstein basis, the performance could potentially match that of
FGPRGNN. However, further investigation and experimentation are
required to determine the specific conditions and orders at which
this convergence in performance occurs.

A.7 Visualising RFF Behavior and Community

Structure

As shown in prior sections, FiGURe improves on both computa-
tional efficiency as well as performance by utilising RFF projections.
In this section, we aim to gain insights into the behavior of RFF pro-
jections and comprehend their underlying operations through a
series of simple visualizations.

t-SNE Plots: Figure 15 offers insights into the structure of the
embeddings for the cora dataset across different dimensions. Re-
markably, even at lower dimensions (e.g., 32 dimensions), clear
class structures are discernible, indicating that the embeddings
capture meaningful information related to the class labels. Fur-
thermore, when employing RFF to project the embeddings into
higher dimensions, these distinct class structures are still preserved.
This suggests that the role of RFF is not to introduce new infor-
mation, but rather to enhance the suitability of lower-dimensional
embeddings for linear classifiers while maintaining the underlying
class-related information. Notably, even at 512 dimensions, the class
structures remain distinguishable. However, it is worth noting that
the class-specific embeddings appear to be more tightly clustered
and less dispersed compared to the 32-dimensional embeddings or
the projected 32-dimensional embeddings. This suggests that learn-
ing a 512-dimensional embedding differs inherently from learning

KDD MLG Workshop ’23, August, 2023, Long Beach, California Ekbote and Deshpande, et al.

Figure 16: 32 Dims Figure 17: RFF Figure 18: 512 Dims

Figure 19: The figures display the normalized correlation

plots for the sqirrel dataset. These plots illustrate the nor-

malized correlation values between embeddings generated

by the F3 filter. In the case of FiGURe, this filter corresponds

to the square of the adjacency matrix (A2
). The normalized

correlation provides a measure of similarity or agreement

between the embeddings obtained using the F3 filter for dif-
ferent embedding dimensions. These plots can help analyze

the consistency or variation of embeddings across differ-

ent dimensions and datasets. Note that Fig 16 illustrates the

correlation plot of the 32 dimensional embeddings. Fig 17

illustrates the correlation plot of the 32 dimensional embed-

dings projected to 512 dimensions via RFF. Fig 18 illustrates

the correlation plot of the 512 dimensional embeddings.

a 32-dimensional embedding and subsequently projecting it into
higher dimensions.

Figure 12: 32 Dims Figure 13: RFF Figure 14: 512 Dims

Figure 15: Thefigures present t-SNEplots for the coradataset.

These plots showcase the embeddings generated by the F3
filter, which corresponds to A2

in the case of FiGURe. The

t-SNE plots are generated at different embedding dimensions,

providing insights into the distribution and clustering of the

embeddings for each dataset. Note that Fig 12 illustrates the t-

SNE plot of the 32 dimensional embeddings. Fig 13 illustrates

the t-SNE plot of the 32 dimensional embeddings projected

to 512 dimensions via RFF. Fig 14 illustrates the t-SNE plot

of the 512 dimensional embeddings.

Correlation Plots: Figure 19 offers insights into the correla-
tion patterns within the embeddings generated from the sqir-
rel dataset across different dimensions. In lower dimensions, the
embeddings exhibit high correlation with each other, which can be
attributed to the presence of a mixture of topics or latent classes
within the dataset. However, when the embeddings are projected
to higher dimensions using RFF, the correlation is reduced, and
a block diagonal matrix emerges. This block diagonal structure
indicates the presence of distinct classes or communities within
the dataset. Even at 512 dimensions, a more refined block diagonal
structure can be observed compared to the correlation matrix of
the 32-dimensional embeddings. Furthermore, it is noteworthy that
the correlation of the projected embeddings can be regarded as a
sparser version of the correlation observed in the 512-dimensional
embeddings.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Preliminaries
	4.1 Filter Banks
	4.2 Random Feature Maps for Kernel Approximations

	5 Proposed Approach
	5.1 Unsupervised Representation Learning
	5.2 Supervised Representation Learning

	6 Experimental Results
	6.1 RQ1: FiGURe versus SOTA Methods
	6.2 RQ2: RFF Projections on Lower Dimensional Representations
	6.3 RQ3: Sharing Weights Across Filter Specific Encoders
	6.4 RQ4: Computational Efficiency - Graph Contrastive
	6.5 RQ5: Computational Efficiency - Node Contrastive
	6.6 RQ6: Experiments on Other Filter Banks

	7 Conclusion and Future Work
	References
	A Supplementary Material
	Contents
	A.1 Reproducibility
	A.2 Datasets
	A.3 Training Details
	A.4 Comparison with other Supervised Methods
	A.5 RFF Projections
	A.6 Choice of Filter Banks
	A.7 Visualising RFF Behavior and Community Structure

