
DyG2Vec: Representation Learning for Dynamic Graphs with
Self-Supervision

Mohammad Ali Alomrani∗
Huawei Noah’s Ark Lab

Toronto, Canada

Mahdi Biparva∗†
Huawei Noah’s Ark Lab

Toronto, Canada

Yingxue Zhang
Huawei Noah’s Ark Lab

Toronto, Canada

Mark Coates
McGill University
Montreal, Canada

ABSTRACT
Temporal graph neural networks have shown promising results
in learning inductive representations by automatically extracting
temporal patterns. However, previous works often rely on complex
memory modules or inefficient random walk methods to construct
temporal representations. In addition, the existing dynamic graph
encoders are non-trivial to adapt to self-supervised paradigms,
which prevents them from utilizing unlabeled data. To address
these limitations, we present an efficient yet effective attention-
based encoder that leverages temporal edge encodings and window-
based subgraph sampling to generate task-agnostic embeddings.
Moreover, we propose a joint-embedding architecture using non-
contrastive SSL to learn rich temporal embeddings without labels.
Experimental results on 7 benchmark datasets indicate that on aver-
age, our model outperforms SoTA baselines on the future link pre-
diction task by 4.23% for the transductive setting and 3.30% for the
inductive setting while only requiring 5-10x less training/inference
time. Additionally, we empirically validate the SSL pre-training
significance under two probings commonly used in language and
vision modalities. Lastly, different aspects of the proposed frame-
work are investigated through experimental analysis and ablation
studies.

CCS CONCEPTS
• Computing methodologies→Machine learning; Learning la-
tent representations; •Theory of computation→ Semi-supervised
learning.

KEYWORDS
dynamic graphs, graph neural networks, self-supervised learning

∗Both authors contributed equally to the paper.
†Correspondence to mahdi.biparva@huawei.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MLG 2023, August 9, 2023, Long Beach, CA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Mohammad Ali Alomrani, Mahdi Biparva, Yingxue Zhang, andMark Coates.
2018. DyG2Vec: Representation Learning for Dynamic Graphs with Self-
Supervision. In Proceedings of 19TH International Workshop on Mining and
Learning With Graphs (MLG 2023). ACM, New York, NY, USA, 10 pages.
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recently, temporal graph neural nets [12, 20, 26, 37] have emerged
as promising representation learning approaches that are able to
extract temporal patterns from an ever-evolving dynamic graph in
order to make accurate future predictions. However, such models
have several shortcomings. First, they heavily rely on chronologi-
cal training and/or complex memory modules to construct predic-
tions [18, 26, 37, 40]. Consequently, encoding any dynamic graph re-
quires sequentially iterating through all edges, which is intractable
for large graphs due to the high computational overhead. Second,
the encoding modules either use inefficient message-passing pro-
cedures [40] that enforce temporal causality, or expensive random
walk-based algorithms [12, 37] with heuristic feature encoding
strategies that are engineered for edge-level tasks only. Finally, as
opposed to other temporal domains [6, 32], most works on dynamic
graphs have focused on pushing downstream task performance
rather than learning general pre-trained models.

Self-Supervised Representation Learning (SSL) has shown promise
in achieving competitive performance for different data modalities
on multiple predictive tasks [19]. Given a large corpus of unlabelled
data, SSL postulates that unsupervised pre-training is sufficient to
learn robust representations that are predictive for downstream
tasks with minimal fine-tuning. Contrastive SSL methods, despite
their early success, rely heavily on negative samples, extensive
data augmentation, and large batch sizes [8, 13]. Non-contrastive
methods address these shortcomings, incorporating information
theoretic principles through architectural innovations or regular-
ization methods [1]. The success of such SSL methods on sequential
data [6, 24, 32] suggests that one can learn rich temporal node em-
beddings from dynamic graphs without direct supervision. While
there are some recent attempts at using SSL for dynamic graphs
such as DDGCL [30] and DySubC [11], they tend to require high
memory and computation due to negative sampling and focus more
on pushing downstream performance rather than learning rich
general representations.

In this work, we propose DyG2Vec, a novel efficient encoder-
decoder model for continuous-time dynamic graphs that benefits

mailto:mahdi.biparva@huawei.com
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

MLG 2023, August 9, 2023, Long Beach, CA Alomrani et al.

𝑢

𝒕𝒊−𝑾 𝒕𝒊

𝑾

𝑣

?

𝑢

1

2

3

4

5

6

7

𝑡9

𝑡6

𝑡3

ℎ1
𝑙−1

ℎ2
𝑙−1

ℎ3
𝑙−1

(𝑙 − 1)𝑡ℎ

𝓖𝒊−𝑾,𝒊
Time Encoding

𝜙

Temporal Edge
Encoding

Θ

{ℎ𝑗
𝑙−1 | 𝑗 ∈ {1,2,3}}

ℎ𝑢
𝑙−1

𝑞𝑙

𝐾𝑙 , 𝑉𝑙

Full
Attention

𝜎 ℎ𝑢
𝑙

: 𝐂𝐨𝐧𝐜𝐚𝐭𝐞𝐧𝐚𝐭𝐢𝐨𝐧 : 𝐀𝐝𝐝𝐢𝐭𝐢𝐨𝐧 𝜎 : 𝐀𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧
Skip Connection

𝑛 heads

𝑡5

𝑡7

𝑡8

𝑡2

Figure 1: Using DyG2Vec Window Framework to encode the target node 𝑢. Every slice of the dynamic graph G contains edges
that arrived at the same continuous timestamp. The blue interval represents the history graph G𝑖−𝑊,𝑖 that is encoded to make a
prediction on the target edge (𝑢, 𝑣). Note that both 𝑢 and 𝑣 share the same sampled history graph. For simplicity, we omit edge
features𝑚𝑝 from the attention encoder.

from a window-based architecture that acts as a regularizer to
avoid over-fitting. DyG2Vec is an efficient attention-based graph
neural network that performs message-passing across structure and
time to output task-agnostic node embeddings, without the need
for expensive random-walk anonymyzation procedures [12, 37]
or memory modules [26, 28]. We equip DyG2Vec with the ability
to perform non-contrastive SSL, which allows the model to learn
rich representations without labels. Our results on 7 benchmark
datasets indicate that on average, DyG2Vec outperforms the SoTA
baseline CaW [37] on the future link prediction task by 4.23% for
the transductive setting and 3.30% for the inductive setting. In
addition, DyG2Vec addresses the efficiency bottleneck often experi-
enced with other dynamic graph encoding alternatives. It reduces
the training/inference time by 5-10x compared to the state-of-the-
art models, thereby providing superior model performance with a
significantly reduced computational demand. This efficiency gain
significantly enhances the model’s scalability potential for large
graphs.

Our main contributions can be summarized as follows:

• We propose an effective message-passing encoder that leverages
temporal edge encoding to increase its expressive power.

• We eliminate the need for memory modules or expensive causal
random-walk extractionmethods through efficientwindow-based
subgraph encoding, making it easier to extract temporal motifs
involving target nodes.

• Wepropose a non-contrastive joint-embedding pre-trainingmethod
that is capable of learning rich representations while avoiding
the time-consuming negative sampling procedures.

2 RELATEDWORK
We review the most relevant literature on dynamic graph and self-
supervised representation learning.

Representation learning for dynamic graphs: Early works
on representation learning for continuous-time dynamic graphs
typically divide the graph into snapshots that are encoded by a static
GNN and then processed by an RNNmodule [15, 22, 27]. Such meth-
ods fail to learn fine-grained temporal patterns at smaller timescales
within each snapshot. Therefore, several RNN-based methods were
introduced that sequentially update node embeddings as new edges
arrive. JODIE [18] employs two RNN modules to update the source
and destination embeddings of an arriving edge. DyRep [33] adds a
temporal attention layer to take into account multi-hop interactions
when updating node embeddings. TGAT [40] includes an Attention-
based Message-Passing (AMP) architecture to aggregate messages
from a historical neighborhood. TGN [26] alleviates the expensive
neighborhood aggregation of TGAT by using an RNNmemory mod-
ule to encode the history of each node. CaW [37] extracts temporal
patterns through an expensive procedure that samples temporal
random walks and encodes them with an LSTM. This procedure
must be performed for every prediction. PINT [28] is a memory-
based method that leverages injective message-passing and relative
positional encodings to overcome the theoretical weakness of both
memory-based methods (e.g., TGN) and walk-based methods (e.g.,
CaW). Jin et al. [12] adapt CaW to include spatio-temporal bias
and exploitation-exploration trade-off sampling biases, employing
differential equations (ODE) to effectively model the irregularly
sampled temporal interactions of a node. NAT [20] abandons the
commonly used message-passing and walk-based paradigms and
instead adopts dictionary-based learning by caching a fixed number
of interactions for each node. Node representations are then built
by aggregating temporal and structural features within the cache.

Self-supervised representation learning: Multiple works
explore learning visual representations without labels [19]. The
more recent contrastive methods generate random views of im-
ages through data augmentations, and then force representations

DyG2Vec: Representation Learning for Dynamic Graphs with Self-Supervision MLG 2023, August 9, 2023, Long Beach, CA

of positive pairs to be similar while pushing apart representations
of negative pairs [4, 10]. With the goal of attaining hard negative
samples, such methods typically use large batch sizes [4] or mem-
ory banks [5, 10]. Non-contrastive methods such as BYOL [9] and
VICReg [2] eliminate the need for negative samples through var-
ious techniques such as regularization or architecture tricks that
avoid representation collapse [13]. Recently, several SSL methods
have been adapted to pre-train GNNs [38]. Deep Graph Infomax
(DGI) [36] and InfoGCL [39]) rely on mutual information maxi-
mization or information bottle-necking between patch-level and
graph-level summaries. BGRL [29] adapts BYOL to graphs to elimi-
nate the need for negative samples, which are often memory-heavy
in the graph setting. The experiments demonstrate the high degree
of scalability of non-contrastive methods and their effectiveness in
leveraging both labeled and unlabeled data. In this work, we follow
a principled approach for SSL pre-training based on VICReg [1]
compared to other methods such as BGRL that rely on architecture
tricks and heuristics.

Most adaptations of SSL for dynamic graphs have focused on
improving downstream task performance via auxiliary losses rather
than learning general pre-trained models. Previous works [11] ei-
ther use contrastive learning methods, which require high memory
and computation due to negative sampling [29], or incorporate
weak encoders [30], which leads to performance deterioration, par-
ticularly for large-scale graphs. Furthermore, readily adapting prior
SSL methods to temporal domains is non-trivial as dynamic graphs
can involve heavy distribution shifts. For example, new nodes ar-
rive and others depart, and these arrival patterns occur at different
timescales. As a result, there has been limited success in adapting
SSL pre-training to dynamic graphs.

Position of our work: DyG2Vec relies on efficient message-
passing GNNs without requiring the computationally expensive
temporal causality on subgraph sampling [40]. Our architecture does
not use complex memory-based architectures which require designing
memory update schemes and can suffer from obsolete nodememory for
large batch sizes [42]. While random-walk-based works [12, 37] al-
leviate these issues with online feature construction through causal
walks, such methods are orders of magnitude slower and difficult
to parallelize on GPUs [20]. In contrast to prior works, our method
neither maintains a cache or memory for each node nor requires the
full history to make predictions. Instead, it operates on a fixed-size
window of the past relations to generate node embeddings. Fur-
thermore, we fall under the message-passing paradigm which can
leverage GPU parallelism using cutting-edge frameworks [7]. Last,
we propose a joint-embedding architecture that is compatible with
recent SSL methods. In our experiments, we show how this allows
the model to learn temporal patterns even without direct training
on downstream tasks.

3 PROBLEM FORMULATION
A Continuous-Time Dynamic Graph (CTDG) G = (V, E,X) is a
sequence of 𝐸 = |E | interactions, where X = (𝑋𝑉 , 𝑋𝐸) is the set
of input features containing the node features 𝑋𝑉 ∈ R𝑁×𝐷𝑉

and
the edge features 𝑋𝐸 ∈ R𝐸×𝐷𝐸

. E = {𝑒1, 𝑒2, . . . , 𝑒𝐸 } is the set of
interactions. There are 𝑁 = |V| nodes, and 𝐷𝑉 and 𝐷𝐸 are the
dimensions of the node and edge feature vectors, respectively. An

edge 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖 ,𝑚𝑖) is an interaction between any two nodes
𝑢𝑖 , 𝑣𝑖 ∈ V , with 𝑡𝑖 ∈ R being a continuous timestamp, and𝑚𝑖 ∈ 𝑋𝐸

an edge feature vector. For simplicity, we assume that the edges
are undirected and ordered by time (i.e., 𝑡𝑖 ≤ 𝑡𝑖+1). A temporal
sub-graph G𝑖, 𝑗 is defined as a set consisting of all the edges in the
interval [𝑡𝑖 , 𝑡 𝑗], such that E𝑖 𝑗 = {𝑒𝑘 | 𝑡𝑖 ≤ 𝑡𝑘 < 𝑡 𝑗 }. Any two nodes
can interact multiple times throughout the time horizon; therefore,
G is a multi-graph.

Our goal is to learn a model 𝑓 that maps the input graph to a
representation space. The model is a pre-trainable encoder-decoder
architecture, 𝑓 = (𝑔𝜃 , 𝑑𝛾). The encoder 𝑔𝜃 maps a dynamic graph
to node embeddings 𝑯 ∈ R𝑁×𝐷𝐻

; the decoder 𝑑𝛾 performs a task-
specific prediction given the embeddings. The model is parameter-
ized by the encoder/decoder parameters (𝜃,𝛾). More concretely,

𝑯 = 𝑔𝜃 (G) , 𝒁 = 𝑑𝛾 (𝑯 ; 𝑒) , (1)

where 𝒛 ∈ R𝐷𝑌
is the prediction of task-specific labels (e.g., edge

prediction or source node classification labels) of the target (fu-
ture) edge 𝑒 . The node embeddings 𝑯 must capture the temporal
and structural dynamics of each node such that the future can
be accurately predicted from the past, e.g., future edge prediction
given past edges. The main distinction of this design is that, un-
like previous dynamic graph models [26, 37, 40], the encoder must
produce embeddings independent of the downstream task speci-
fications. This special trait can allow the model to be compatible
with the SSL paradigm where an encoder is pre-trained separately
and then fine-tuned together with a task-specific decoder to predict
the labels.

To this end, we present a novel DyG2Vec framework, that can
learn rich node embeddings at any timestamp 𝑡 independent of the
downstream task. DyG2Vec is formulated as a two-stage framework.
In the first stage, we use a non-contrastive SSL method to learn the
model 𝑓 𝑆𝑆𝐿 = (𝑔𝜃 , 𝑑𝜓) over various sampled dynamic sub-graphs
with self-supervision. 𝑑𝜓 is an SSL decoder that is only used in the
SSL pre-training stage. In the second stage, a task-specific decoder
𝑑𝛾 is trained on top of the pre-trained encoder 𝑔𝜃 to compute the
outputs for the downstream tasks, e.g., future edge prediction or
dynamic node classification [37, 40].

We consider two example downstream tasks: future link predic-
tion (FLP), and dynamic node classification (DNC). In each task,
we make a prediction on a set of target (positive) edges Ē. For FLP,
this is augmented by a set of negative edges. Each negative edge
(𝑢 𝑗 , 𝑣 ′𝑗 , 𝑡 𝑗 ,𝑚 𝑗) differs from its corresponding positive edge only in
the destination node, 𝑣 ′

𝑗
≠ 𝑣 𝑗 , which is selected at random from

all nodes. The FLP task is then binary classification for the test
set of 2|Ē | edges. In the DNC task, a dynamic label is associated
with each node that participates in an interaction. We are provided
with {(𝑢 𝑗 , 𝑡 𝑗)}, i.e., the source node and interaction time. The goal
is to predict the source node labels for the test interactions. It is
important to note that each prediction must be made given only access
to the past, i.e., edges before time 𝑡 𝑗 . The performance metrics are
detailed in Appendix A.2.

MLG 2023, August 9, 2023, Long Beach, CA Alomrani et al.

4 METHODOLOGY
We now introduce our novel dynamic graph learning framework
DyG2Vec, which can achieve downstream task-agnostic represen-
tation. We first outline the encoder architecture. We then intro-
duce the window-based downstream training approach. Finally, we
present the SSL pre-training approach with a non-contrastive loss
function for dynamic graphs.

4.1 DyG2Vec Encoding Model
Our encoder combines a self-attention mechanism for message-
passing with a learnable time-encoding module that provides rel-
ative time encoding. We also introduce a novel temporal edge en-
coding that efficiently captures the temporal structural relationship
between nodes. The full architecture is outlined in Figure 1.

Temporal Attention Embedding: Given a dynamic graph G,
the encoder 𝑔𝜃 computes the embedding 𝒉𝐿𝑖 ∈ R𝐷𝐻

of node 𝑖
through a series of 𝐿 multi-head attention (MHA) layers [34] that
aggregate messages from its 𝐿-hop neighborhood [35, 40].

Given a node embedding 𝒉𝑙−1
𝑖 at layer 𝑙−1, we uniformly sample

𝑁 1-hop neighborhood interactions of node 𝑖 ,N(𝑖) = {𝑒𝑝 , . . . , 𝑒𝑘 } ⊆
E. The embedding h𝑙𝑖 at layer 𝑙 is calculated by:

h𝑙𝑖 = W1h𝑙−1
𝑖 + MHA𝑙 (q𝑙 ,K𝑙 ,V𝑙), (2)

q𝑙 = h𝑙−1
𝑖 , (3)

K𝑙 = V𝑙 = [Φ𝑝 (𝑡𝑝), . . . ,Φ𝑘 (𝑡𝑘)] . (4)

Here, W1 is a learnable mapping matrix, MHA𝑙 (·) is a multi-head
dot-product attention layer, and Φ𝑝 (𝑡𝑝) represents the edge feature
vector of edge 𝑒𝑝 = (𝑢𝑝 , 𝑣𝑝 , 𝑡𝑝 ,𝒎𝑝) ∈ N (𝑖) at time 𝑡𝑝 :

Φ𝑝 (𝑡𝑝) = [𝒉𝑙−1
𝑢𝑝

| | 𝒇𝑝 (𝑡𝑝) | | 𝒎𝑝], (5)

𝒇𝑝 (𝑡𝑝) = 𝜙 (𝑡𝑖 − 𝑡𝑝) + Θ𝑝 (𝑡𝑝) , (6)
𝑡𝑖 = max {𝑡𝑙 | 𝑒𝑙 ∈ N (𝑖) } , (7)

where | | denotes concatenation and 𝜙 (𝑡) = [cos𝜔1𝑡, . . . , cos𝜔𝐷𝐻 𝑡]
is a learnable Time2Vec module that helps the model be aware
of the relative timespan between a sampled interaction and the
most recent interaction of node 𝑖 in the input graph. Θ𝑝 (.) is a
temporal edge encoding function, described in more detail below.
In contrast to TGAT’s recursive message passing procedure [40],
the message passing in our encoder is ‘flat’: at every iteration, the
same set of node embeddings is used to propagate messages to
neighbors. That is, we do not restrict messages to flow towards the
source node only but rather treat the sampled temporal graph as
undirected. This allows the encoder to better capture the multi-hop
common neighbors between the target nodes, which are vital to
learning the temporal motifs and predicting future interactions.
Moreover, unlike CaW [37], we do not restrict the neighbor sampling
to go backwards in time (i.e. causal sampling) as we found this to be
too restrictive and degrade the overall performance on downstream
tasks (See Section 6). Lastly, note that the relative time encoding is
with respect to the latest timestamp, 𝑡𝑖 , incident to the source and
not with respect to the target edge timestamp; hence, allowing the
encoding step to be independent of the prediction (decoding) step
and making the generated embeddings task-agnostic.

Temporal Edge Encoding: Dynamic graphs often follow evolu-
tionary patterns that reflect how nodes interact over time [17]. For
example, in social networks, two people who share many friends
are likely to interact in the future. Therefore, we incorporate two
simple yet effective temporal encoding methods that provide induc-
tive biases to capture common structural and temporal evolutionary
behaviour of dynamic graphs. The temporal edge encoding function
is then:

Θ𝑝 (𝑡𝑝) = W2 [𝑧𝑝 (𝑡𝑝) | |𝑐𝑝 (𝑡𝑝)] , (8)
where we incorporate (i) Temporal Degree Centrality 𝑧𝑝 (𝑡𝑝) ∈ R2:
the concatenated current degrees of nodes𝑢𝑝 and 𝑣𝑝 at time 𝑡𝑝 ; and
(ii) Common Neighbors 𝑐𝑝 (𝑡𝑝) ∈ R: the number of common 1-hop
neighbors between nodes 𝑢𝑝 and 𝑣𝑝 at time 𝑡𝑝 .

By using the degree centrality as an edge feature, the model
is able to learn any bias towards more frequent interactions with
high-degree nodes. The number of common neighbors helps capture
temporal motifs, and it is known to often have a strong positive
correlation with the likelihood of a future interaction [41].

4.2 DyG2Vec Downstream Training
In the downstream training stage, the DyG2Vec model 𝑓 = (𝑔𝜃 , 𝑑𝜓)
consists of the encoder 𝑔𝜃 and a task-specific decoder 𝑑𝜓 which is
trained using a similar window-based training strategy. The model
is trained to make predictions depending on the downstream tasks
(e.g., link prediction or node classification). It is important to note
that all tasks considered for dynamic graphs involve predicting a
(future) target edge given access to the past interactions. However,
rather than having access to all past edges, we limit the model to a
fixed window of𝑊 interactions. That is, to predict a target edge
𝑒 = (𝑢 𝑗 , 𝑣 𝑗 , 𝑡 𝑗 ,𝑚 𝑗), we sample an input (history) graph G𝑗−𝑊,𝑗

from the time interval {𝑡 𝑗−𝑊 , 𝑡 𝑗 }, centered at 𝑢 𝑗 and 𝑣 𝑗 , and make
a prediction as follows: 𝑯 = 𝑔𝜃 (G𝑗−𝑊,𝑗) is the matrix of node
embeddings returned by the encoder, and 𝒛 = 𝑑𝜓 (𝑯 ; 𝑒) is the pre-
diction output of the decoder. The model parameters are optimized
by training with a loss function L𝐷 (𝒛, 𝒐), where L𝐷 is defined
depending on the downstream task and 𝒐 contains task-specific
labels (See Section 3). It is important to note that, unlike previous
methods [37, 40], the embeddings of 𝑢 𝑗 and 𝑣 𝑗 are generated through
message passing on the same sampled graph. Consequently, the en-
coder can better recognize similar historical patterns between the
target nodes without the need for costly motif-correlation through
counting that is performed in walk-based methods [12, 37].

The window-based training strategy has several major advan-
tages. First, the window acts as a regularizer by providing a natural
inductive bias towards recent edges, which are often more predic-
tive of the immediate future. Second, it avoids costly time-based
neighborhood sampling [37]. Third, relying on a fixed window-
size for message-passing allows for constant memory and com-
putational complexity, which is well-suited to the practical online
streaming data scenario.

4.3 Self-supervised Pre-training for Dynamic
Graphs

Previous work [21] has shown that temporal motifs develop at
different timescales throughout a dynamic graph. For example,
question-answer patterns on StackOverflow typically take 30 min

DyG2Vec: Representation Learning for Dynamic Graphs with Self-Supervision MLG 2023, August 9, 2023, Long Beach, CA

to develop while messaging patterns on social media platforms can
take less than 20 minutes to form. Inspired by such observations, we
outline a window-based pre-training strategy where the encoder
is trained on a sliding window of the dynamic graph in an effort
to learn the fine-grained temporal patterns throughout the time
horizon.

Given the full input dynamic graph G0,𝐸 , a set of intervals 𝐼 is
generated by dividing the entire time-span {𝑡0, 𝑡𝐸 } into𝑀 = ⌈𝐸/𝑆⌉−
1 intervals with stride 𝑆 and interval length𝑊 (See Appendix A.2
for details). Let 𝐵 ⊂ 𝐼 be a mini-batch (randomly sampled subset) of
intervals. Given 𝐵, the sub-graph sampler𝑚 (G, 𝐵;𝑊) constructs
the mini-batch of input graphs: Ĝ = {G𝑖, 𝑗 | [𝑖, 𝑗) ∈ 𝐵}. In principle,
G𝑖, 𝑗 ∈ Ĝ is an input graph to the SSL pre-training. The parameter𝑊
controls the size of the window while 𝑆 controls the stride between
intervals. In practice, we found that setting 𝑆 = 200 and𝑊 = 32𝐾
gives a reasonable trade-off to learn both the long-range and short-
range patterns within the dynamic graph.

We formulate a joint-embedding architecture [3] for DyG2Vec
in which two views of a mini-batch of sub-graphs are generated
through random transformations. The transformations are ran-
domly sampled from a distribution defined by a distortion pipeline.
The encoder maps the views to node embeddings which are pro-
cessed by the predictor to generate node representations. We mini-
mize an SSL objective (Eq. 9, described below) to optimize the model
parameters end-to-end in the pre-training stage.

Views: The temporal distortion module generates two views
of the input graphs Ĝ′

= 𝑡
′ (Ĝ) and Ĝ′′

= 𝑡
′′ (Ĝ) where the trans-

formations 𝑡
′
and 𝑡

′′
are sampled from a distribution T over a

pre-defined set of candidate graph transformations. In this work,
we use edge dropout and edge feature masking [29] in the transfor-
mation pipeline. See Appendix A.2 for more details.

Embedding: The encoding model 𝑔𝜃 is an Attention-based
Message-Passing (AMP) neural network presented in Sec. 4.1. It
produces node embeddings 𝑯

′
and 𝑯

′′
for the views Ĝ′

and Ĝ′′
of

the input graphs G𝑖, 𝑗 . We elaborate on the details of the encoder in
Sec. 4.1.

Prediction: The decoding head 𝑑𝛾 for our self-supervised learn-
ing design consists of a node-level predictor 𝑝𝜙 that outputs the
final representations 𝒁

′
and 𝒁

′′
, where 𝒁 = 𝑝𝜙 (𝑯).

SSL Objective: In order to learn useful representations, we min-
imize a regularization-based SSL loss function [2]:

L𝑆𝑆𝐿 = 𝜆𝑠 (𝒁
′
,𝒁

′′
) + 𝜇 [𝑣 (𝒁

′
) + 𝑣 (𝒁

′′
)] + 𝜈 [𝑐 (𝒁

′
) + 𝑐 (𝒁

′′
)] . (9)

In this loss function, the weights 𝜆, 𝜇, and 𝜈 control the emphasis
placed on each of three regularization terms. The invariance term
𝑠 encourages representations of the two views to be similar. The
variance term 𝑣 is included to prevent the well-known collapse
problem [13]. The covariance term 𝑐 promotes maximization of the
information content of the representations.

Unlike previous regularization-based SSL approaches [2, 4] in
computer vision, we do not use a projector network because the
embedding dimensions are relatively small in the graph domain.
Following the pre-training stage, we replace the SSL decoder with
a task-specific downstream decoder 𝑑𝜓 that is trained on top of the
frozen pre-trained encoder.

Table 1: Dynamic Graph Datasets. % Repetitive Edges: % of
edges which appear more than once in the dynamic graph.

Dataset # Nodes # Edges # Unique Edges Edge Features Node Labels Bipartite % Repetitive Edges

Reddit 11,000 672,447 78,516 ✓ ✓ ✓ 54%
Wikipedia 9,227 157,474 18,257 ✓ ✓ ✓ 48%
MOOC 7,144 411,749 178,443 ✓ ✓ ✓ 53%
LastFM 1980 1,293,103 154,993 ✓ 68%
UCI 1899 59,835 13838 ✓ 62%
Enron 184 125,235 2215 92%

SocialEvolution 74 2,099,519 2506 97%

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setup
Baselines: We compare DyG2Vec to five state-of-the-art baseline
models: DyRep [33], JODIE [18], TGAT [40], TGN [26], CaW [37],
and NAT [20]. DyRep, JODIE, and TGN sequentially update node
embeddings using an RNN. TGAT applies message passing via at-
tention on a sampled temporal subgraph. CaW samples temporal
random walks and learns temporal motifs by counting node occur-
rences in each walk. NAT builds temporal node representations
using a cache that stores a limited set of historical interactions for
each node.

Downstream Tasks: We evaluate all models on two temporal
tasks: future link prediction (FLP), and dynamic node classification
(DNC). In FLP, the goal is to predict the probability of future edges
occurring given the source, destination, and timestamp. For each
positive edge, we sample a negative edge that the model is trained
to predict as negative. The DNC task involves predicting the label
of the source node of a future interaction. Both tasks are trained
using binary cross entropy loss. For FLP, we evaluate all models
on the transductive and inductive settings. The latter is a more
challenging setting where a model makes a prediction on unseen
nodes. See Appendix A.2 for details.

For the FLP task, we report the Average Precision (AP) metric.
For the DNC task, we report the area under the curve (AUC) metric
due to the prevailing issue of class imbalance in dynamic graphs.

Datasets:We use 7 real-world datasets:Wikipedia, Reddit, MOOC,
and LastFM [18]; SocialEvolution, Enron, and UCI [37]. These
datasets span a wide range in terms of number of nodes and inter-
actions, time range, and repetition ratio. The dataset statistics are
presented in Table 1. We perform the same 70%-15%-15% chronolog-
ical split for all datasets as in [37]. The datasets are split differently
under two settings: Transductive and Inductive. Under the trans-
ductive setting, a dataset is split normally by time, i.e., the model is
trained on the first 70% of links and tested on the rest. In the induc-
tive setting, we strive to test the model’s prediction performance on
edges with unseen nodes. Therefore, following [37], we randomly
assign 10% of the nodes to the validation and test sets and remove
any interactions involving them in the training set. Additionally,
to ensure an inductive setting, we remove any interactions not
involving these nodes from the test set. All our datasets are publicly
available. The code will be publicly available upon publication.

Training Protocols and Hyperparameters: We train and test
DyG2Vec under three different evaluation protocols commonly
adapted in the SSL community [2, 9]. In the supervised setting,
DyG2Vec is initialized with random parameters and trained directly
on the downstream tasks and compared to all supervised baselines.
In the self-supervised setting, the encoder is pre-trained using

MLG 2023, August 9, 2023, Long Beach, CA Alomrani et al.

Table 2: Future link Prediction Performance in AP (Mean ± Std). Bold font and ul font represent first- and second-best
performance respectively.

Setting Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol.

Tr
an
sd
uc
tiv

e JODIE 0.956 ± 0.002 0.979 ± 0.001 0.797 ± 0.01 0.691 ± 0.010 0.785 ± 0.020 0.869 ± 0.010 0.847 ± 0.014
DyRep 0.955 ± 0.004 0.981 ± 1𝑒-4 0.840 ± 0.004 0.683 ± 0.033 0.795 ± 0.042 0.524 ± 0.076 0.885 ± 0.004
TGAT 0.968 ± 0.001 0.986 ± 3𝑒-4 0.793 ± 0.006 0.633 ± 0.002 0.637 ± 0.002 0.835 ± 0.003 0.631 ± 0.001
TGN 0.986 ± 0.001 0.985 ± 0.001 0.911 ± 0.010 0.743 ± 0.030 0.866 ± 0.006 0.843 ± 0.090 0.966 ± 0.001
CaW 0.976 ± 0.007 0.988 ± 2𝑒-4 0.940 ± 0.014 0.903 ± 1𝑒-4 0.970 ± 0.001 0.939 ± 0.008 0.947 ± 1𝑒-4
NAT 0.987 ± 0.001 0.991 ± 0.001 0.874 ± 0.004 0.859 ± 1𝑒-4 0.924 ± 0.001 0.944 ± 0.002 0.944 ± 0.010

DyG2Vec 0.995 ± 0.003 0.996 ± 2e-4 0.980 ± 0.002 0.960 ± 1e-4 0.991 ± 0.001 0.988 ± 0.007 0.987 ± 2e-4

In
du

ct
iv
e

JODIE 0.891 ± 0.014 0.865 ± 0.021 0.707 ± 0.029 0.865 ± 0.03 0.747 ± 0.041 0.753 ± 0.011 0.791 ± 0.031
DyRep 0.890 ± 0.002 0.921 ± 0.003 0.723 ± 0.009 0.869 ± 0.015 0.666 ± 0.059 0.437 ± 0.021 0.904 ± 3𝑒-4
TGAT 0.954 ± 0.001 0.979 ± 0.001 0.805 ± 0.006 0.644 ± 0.002 0.693 ± 0.004 0.820 ± 0.005 0.632 ± 0.005
TGN 0.974 ± 0.001 0.954 ± 0.002 0.855 ± 0.014 0.789 ± 0.050 0.746 ± 0.013 0.791 ± 0.057 0.904 ± 0.023
CaW 0.977 ± 0.006 0.984 ± 2𝑒-4 0.933 ± 0.014 0.890 ± 0.001 0.962 ± 0.001 0.931 ± 0.002 0.950 ± 1𝑒-4
NAT 0.986 ± 0.001 0.986 ± 0.002 0.832 ± 1𝑒-4 0.878 ± 0.003 0.949 ± 0.010 0.926 ± 0.010 0.952 ± 0.006

DyG2Vec 0.992 ± 0.001 0.991 ± 0.002 0.938 ± 0.010 0.979 ± 0.006 0.987 ± 0.004 0.976 ± 0.002 0.978 ± 0.010

our SSL framework, and the performance is measured under two
evaluation protocols: Linear and Semi-supervised Probing. In the
linear evaluation setting, the decoder is trained on top of the frozen
pre-trained encoder and compared to the supervised counterpart.
In the semi-supervised evaluation setting, the decoder is trained on
top of the frozen pre-trained encoder on a random portion of the
dataset (i.e., a fraction of the target edges). The DyG2Vec encoder
performs 𝐿 = 3 layers of message passing. We sample 𝑁 = 64
temporal neighbors at the first hop and 1 neighbor at the second
and third hops. All neighbors are sampled uniformly at random. We
found that uniform sampling within a window works better than
only looking at the latest 𝑁 neighbors of a node [26, 40]. Other
hyperparameters are discussed in Appendix A.2. For the DNC task,
following prior work [26], the decoder is trained on top of the
frozen encoder that is pre-trained on the future link prediction task
unless otherwise explicitly stated.

5.2 Experimental Results
Future Link Prediction: We report the test AP scores for future
link prediction in Table 2. Our model outperforms all sequential
and message-passing baselines on 7/7 of the datasets in the trans-
ductive setting. The gap is particularly large on the UCI and LastFM
datasets, where DyG2Vec outperforms the second-best methods
(NAT and CaW) by over 4% and 6% respectively. Interestingly, while
SocialEvol. is the largest dataset with ∼ 2𝑀 edges, our model is
able to achieve SoTA performance while only using the last 8000
edges to predict any future edge. This further cements the findings
in [40] that capturing recent interactions may be more important
for certain tasks. Our window-based framework offers a good trade-
off between capturing recent interactions and recurrent patterns
which both have a major influence on future interactions. In the
inductive settings, most methods drop in performance due to diffi-
cult nature of predicting over unseen nodes. However, DyG2Vec
still outperforms the best methods significantly (e.g., 8% gap for
LastFM) which demonstrates its ability to learn temporal motifs
rather than overfitting to node identities.

Table 3: Transductive Dynamic Node Classification Perfor-
mance in AUC (Mean ± Std). Avg. Rank reports the mean
rank of a method across all datasets.

Model Wikipedia Reddit MOOC Avg. Rank ↓

TGAT 0.800 ± 0.010 0.664 ± 0.009 0.673 ± 0.006 3.0
JODIE 0.843 ± 0.003 0.566 ± 0.016 0.672 ± 0.002 3.7
Dyrep 0.873 ± 0.002 0.633 ± 0.008 0.661 ± 0.012 3.3
TGN 0.828 ± 0.004 0.655 ± 0.009 0.674 ± 0.007 2.3

DyG2Vec 0.824 ± 0.050 0.649 ± 0.020 0.785 ± 0.005 2.6

Dynamic Node classification: We evaluate DyG2Vec on 3
datasets for node classification where the labels indicate whether
a user will be banned from editing/posting after an interaction.
This task is challenging both due to its dynamic nature (i.e., nodes
can change labels) and the high class imbalance (only 217 of 157K
interactions result in a ban). We measure performance using the
AUC metric to deal with the class imbalance. Table 3 shows that
DyG2Vec outperforms all baselines on the MOOC dataset signifi-
cantly by over 10%. For Wikipedia and Reddit, DyG2Vec is within
2−5% of the best performance. Overall, none of the methods display
the best performance consistently across all 3 datasets. We believe
this is due to the high class imbalance problem which makes it a
better fit for anomaly detection methods [25].

Training/Inference Speed: Relying on a fixed window of his-
tory to produce task-agnostic node embeddings gives DyG2Vec a
significant advantage in speed and memory. Figure 2 shows the per-
formance and runtime per epoch of all methods on the three large
datasets: LastFM, SocialEvolution and MOOC. DyG2Vec is many
orders of magnitude faster than CaW due to the latter’s expensive
random walk sampling procedure. RNN-based methods such as
TGN have a good runtime on LastFM and MOOC; however, they
are significantly slower on SocialEvol. which has a small number of
nodes (74) but a large number of interactions (∼ 2𝑀). This suggests
that memory-based methods are slower for settings where a node’s
memory is updated frequently. Furthermore, while TGAT has a

DyG2Vec: Representation Learning for Dynamic Graphs with Self-Supervision MLG 2023, August 9, 2023, Long Beach, CA

0 500 1000 1500 2000
Inference Time (Seconds)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Te
st

 A
P

Jodie
DyRep

TGN

DyG2Vec

TGAT

CaW
NAT

Speed vs Performance: LastFM

0 1000 2000 3000 4000
Inference Time (Seconds)

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

JodieDyRep

TGNDyG2Vec

TGAT

CaWNAT

Speed vs Performance: SocialEvol.

0 100 200 300 400 500
Inference Time (Seconds)

0.80

0.85

0.90

0.95

Jodie
DyRep

TGN

DyG2Vec

TGAT

CaW

NAT

Speed vs Performance: MOOC

Figure 2: Transductive FLP Performance (Test AP) vs Inference runtime (s) on 3 datasets. Inference time represents the time it
takes to predict the whole test set. The test sets are approximately of size 400K, 600K, and 100K edges respectively.

similar AMP encoder, DyG2Vec improves the efficiency and perfor-
mance significantly. This reveals the significance of the window-
based mechanism and the encoder architecture. Overall, DyG2Vec
presents the best trade-off between speed and performance. A more
detailed complexity analysis is included in Appendix A.1.

Table 4: Linear probing AP results (Mean ± Std) on Transduc-
tive Future Link Prediction.

Setting UCI Enron MOOC LastFM

Random-init 0.865 ± 0.004 0.913 ± 0.007 0.863 ± 0.001 0.817 ± 0.002
Supervised 0.988 ± 0.007 0.991 ± 0.001 0.980 ± 0.002 0.960 ± 1𝑒-4
SSL-init 0.954 ± 0.002 0.966 ± 0.001 0.931 ± 0.001 0.930 ± 2𝑒-4

SSL for Future Link Prediction: Table 4 reports the transduc-
tive AP results for DyG2Vec under 3 different settings. Namely,
we compare a random frozen encoder (Random-init) and an SSL
pre-trained encoder (SSL-init) with the supervised baseline. The
results reveal that our SSL pre-training learns informative node
embeddings that are almost on par with the fully supervised base-
line. This supports the capability of the non-contrastive methods to
learn generic representations across unlabelled large-scale dynamic
graphs, which is in line with the findings for other data modalities
[2]. The Random-init baseline is surprisingly good, as observed
by recent works [29], but is outperformed by the SSL pre-trained
encoder. Additional comparisons with weaker dynamic graph SSL
methods are discussed in Appendix A.1.

Semi-supervised Learning on Dynamic Node Classifica-
tion: The DNC task is challenging due to its highly imbalanced
labels. In Figure 3, we show that SSL is an effective pre-training
strategy for the DNC task, particularly in the low-label data regime
where each model is trained on a portion of the target edges. This
highlights the potential of SSL to effectively use unlabeled data for
representation learning and prevent representations from overfit-
ting to such imbalanced classification tasks.

5.3 Ablation and Sensitivity Analysis
We perform a detailed study on different instances of our framework
with 3 datasets. All ablation results are reported in Figure 4.

Window Size: We observe that a large window size works best
for most datasets. However, we see a minor drop in performance

1% 5% 10% 20% 40% 80% 100%
Percentage of Training Data

0.600

0.625

0.650

0.675

0.700

0.725

0.750

Te
st

 A
UC

Setting
Random-init
SSL-init

Figure 3: Semi-Supervised Learning on Dynamic Node Classi-
fication. For each setting, DyG2Vec was trained on a varying
random portion of the training data.

(∼ 1%) for MOOC due to the inherently different recurring tempo-
ral patterns. As observed by [40], recent and/or recurrent interac-
tions are often the most predictive of future interactions. Therefore,
datasets with long range dependencies favor larger window sizes
to capture the recurrent patterns while some datasets benefit from
an increased bias towards recent interactions. Our window-based
framework coupled with uniform neighbor sampling strikes a bal-
ance between the two. This shows that the fixed window size also
contributes to the performance as it helps limit irrelevant informa-
tion that is not highly predictive of future interactions. Nonetheless,
as we show in Section 6, the attention-based encoder coupled with
the time encoding function is able to learn the innate temporal
dependencies regardless of the window size.

Number of Layers: Increasing the number of embedding layers
improves performance for most datasets benefit from more em-
bedding layers, and this effect is more noticeable for some (e.g.,
MOOC). This suggests that these datasets contain higher order
temporal correlations among the nodes that must be learned using
long-range message passing. Overall, the results show that one
can choose to sacrifice some performance to further improve the
speed of DyG2Vec by decreasing the window size and the number
of layers.

MLG 2023, August 9, 2023, Long Beach, CA Alomrani et al.

512 2k 4K 8K 16K 32K 64K
Window Size

0.94

0.95

0.96

0.97

0.98

0.99

Te
st

 A
P

Dataset
Wikipedia
MOOC
UCI

1 2 3
Number of Layers

0.92

0.94

0.96

0.98

Dataset
Wikipedia
MOOC
UCI

Wikipedia MOOC UCI
Dataset

0.75

0.80

0.85

0.90

0.95

1.00
w/ Temporal Edge Features
w/o Temporal Edge Features

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Relative Timespan

0.014

0.016

0.018

0.020

0.022

Al
ph

a

Wikipedia
MOOC
UCI

Figure 4: Ablation, sensitivity, and attention analysis on 3 datasets for the FLP transductive task. Last figure plots the Average
Attention Weight versus Relative Timespan for DyG2Vec trained with𝑊 = 64𝐾 . The relative timespan is normalized with the
maximum timespan across all interactions. A higher timespan means a farther interaction.

Temporal Edge Features: The results show a substantial de-
crease in performance for MOOC when temporal edge features are
removed (i.e., 1-4% drop). This indicates that such temporal edge
features provide useful multi-hop information about the evolution
of the dynamic graph [41].

6 ANALYSIS
AttentionWeightAnalysis: A particular advantage of an attention-
based architecture is that attention weights allow for easy inter-
pretability of the learned temporal dependencies. In Figure 4 (right-
most plot), we plot the attention weights 𝛼𝑖 𝑗 with respect to the
relative timespan. That is, for each test target edge 𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖),
we plot the attention weights to the one-hop neighbors of both
target nodes, {𝛼𝑢𝑖 𝑣𝑝 |𝑣𝑝 ∈ N (𝑢𝑖)} ∪ {𝛼𝑣𝑖 𝑣𝑘 |𝑣𝑘 ∈ N (𝑣𝑖)}, versus the
relative timespans, {𝑡𝑢𝑖 − 𝑡𝑝 } ∪ {𝑡𝑣𝑖 − 𝑡𝑘 }. Here, 𝑡𝑢𝑖 represents the
maximum timestamp incident to node 𝑢𝑖 . Therefore, the attention
weights indicate how much the model is attending to old and re-
cent interactions. Unsurprisingly, higher importance is given to
the most recent interactions. However, both Wikipedia and UCI
display higher weights for larger timespans compared to MOOC,
indicating that they have long-range dependencies. This explains
why performance monotonically increases for Wikipedia as𝑊 in-
creases while slightly degrades for the MOOC dataset, as seen in
Figure 4.

Neighbor Sampling and Temporal Edge Encoding: In Table
5, we study the effect of neighbor sampling and temporal edge
encoding on the downstream FLP task. Although Fig. 4 shows
the importance of multi-hop sampling for discovering high-order
temporal motifs, we found that DyG2Vec gives more importance
to one-hop neighbors for most datasets. In fact, sampling a single
neighbor for higher hops gives SoTA performance compared to
sampling 20 neighbors per hop (see 1𝑠𝑡 and 5𝑡ℎ rows in Table 5).
This suggests that the 1-hop recent interactions within a window
are the most representative interactions for future prediction tasks.
Moreover, unlike prior random-walk and AMP methods [12, 37, 40],
which argue for causal sampling (i.e. sampling backwards in time)
to discover evolving temporal motifs, we have found this form of
sampling to have little effect on the performance (See 2𝑛𝑑 row).
Lastly, removing edge encodings almost always hurts performance.
In fact, performing causal sampling with 20 neighbors at each hop,
as done in TGAT, and removing temporal edge encodings causes
up to 8% drop in performance (See last row).

Table 5: Effect of neighbor sampling and temporal edge en-
coding on performance. The first row is the default setting
where we sample 64,1,1 neighbors at the first, second and
third hops respectively.

Temporal Edge Encoding Causal Sampling Num Neighbors Wikipedia MOOC UCI

✓ 64,1,1 0.995 0.982 0.988
✓ ✓ 64,1,1 0.993 0.984 0.986

64,1,1 0.990 0.957 0.980
✓ 64,1,1 0.989 0.965 0.976

✓ 20,20,20 0.992 0.949 0.981
✓ ✓ 20,20,20 0.984 0.955 0.971

20,20,20 0.990 0.927 0.958
✓ 20,20,20 0.982 0.906 0.946

Window-based Pre-training: In Table 6, we show the impor-
tance of window-based pre-training to learn the fine-grained tem-
poral motifs of dynamic graphs. The "Full-graph" SSL setting repre-
sents applying the SSL loss on the full dynamic graph at once for
a total of 300 epochs. Note that this is similar to the pre-training
strategy used on static graphs and is difficult to scale for large scale
graphs that do not fit to memory. The window-based strategy out-
performs the full-graph mode for most datasets, particularly for
large graphs (e.g. MOOC and LastFM) where we observe up to a
10% gap.

Table 6: Effect of Window-based pre-training on Linear prob-
ing AP results on Transductive Future Link Prediction.

SSL Setting UCI Enron MOOC LastFM

Window-based 0.956 0.965 0.931 0.930
Full-graph 0.954 0.966 0.912 0.838

7 CONCLUSION
We introduce DyG2Vec, a novel window-based encoder-decoder
model for dynamic graphs. It is an efficient attention-basedmessage-
passing model that utilizes multi-head attention modules to encode
node embeddings across time. Furthermore, we present a joint-
embedding architecture for dynamic graphs in which two views of
temporal sub-graphs are encoded to minimize a non-contrastive
loss function. We evaluate the SSL pre-training of DyG2Vec un-
der both linear and semi-supervised protocols and demonstrate

DyG2Vec: Representation Learning for Dynamic Graphs with Self-Supervision MLG 2023, August 9, 2023, Long Beach, CA

the effectiveness of such pre-training on benchmark datasets. Our
window-based architecture allows for efficient message-passing
and robust prediction abilities. We aim to further explore ways to
improve the capacity of the dynamic graph models to learn long-
range dependencies. Additionally, it seems promising to investigate
other SSL paradigms aligned with temporal graphs.

REFERENCES
[1] Randall Balestriero and Yann LeCun. 2022. Contrastive and non-contrastive

self-supervised learning recover global and local spectral embedding methods.
arXiv preprint arXiv:2205.11508 (2022).

[2] Adrien Bardes, Jean Ponce, and Yann LeCun. 2022. VICReg: Variance-Invariance-
Covariance Regularization for Self-Supervised Learning. In Proc. Int. Conf. on
Learning Representations.

[3] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.
1993. Signature Verification Using a "Siamese" Time Delay Neural Network. In
Proc. Int. Conf. on Neural Information Processing Systems.

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
Simple Framework for Contrastive Learning of Visual Representations. In Proc.
Int. Conf. on Machine Learning.

[5] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. 2020. Improved Baselines
with Momentum Contrastive Learning. arXiv preprint arXiv:2003.04297 (2020).

[6] Emadeldeen Eldele, Mohamed Ragab, Zhenghua Chen, Min Wu, Chee Keong
Kwoh, and et al. 2021. Time-Series Representation Learning via Temporal and
Contextual Contrasting. In Proc. Int. Joint Conf. on Artificial Intelligence.

[7] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with
PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[8] Quentin Garrido, Yubei Chen, Adrien Bardes, Laurent Najman, and Yann Lecun.
2022. On the duality between contrastive and non-contrastive self-supervised
learning. arXiv preprint arXiv:2206.02574 (2022).

[9] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre
Richemond, and et al. 2020. Bootstrap Your Own Latent - A New Approach
to Self-Supervised Learning. In Proc. Advances in Neural Information Processing
Systems.

[10] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2019. Momen-
tum Contrast for Unsupervised Visual Representation Learning. arXiv preprint
arXiv:1911.05722 (2019).

[11] Linpu Jiang, Ke-Jia Chen, and Jingqiang Chen. 2021. Self-Supervised Dynamic
Graph Representation Learning via Temporal Subgraph Contrast. arXiv preprint
arXiv:2112.08733 (2021).

[12] Ming Jin, Yuan-Fang Li, and Shirui Pan. 2022. Neural Temporal Walks: Motif-
Aware Representation Learning on Continuous-Time Dynamic Graphs. In Thirty-
Sixth Conference on Neural Information Processing Systems.

[13] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. 2022. Understanding
Dimensional Collapse in Contrastive Self-supervised Learning. In Proc. Int. Conf
on Learning Representations.

[14] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet
Sahota, Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus
Brubaker. 2019. Time2vec: Learning a vector representation of time. arXiv
preprint arXiv:1907.05321 (2019).

[15] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. Journal of Machine Learning Research (2020).

[16] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[17] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.
2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment (2011).

[18] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting dynamic embed-
ding trajectory in temporal interaction networks. In Proc. Int. Conf. on Knowledge
Discovery & Data Mining.

[19] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie
Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE Transactions
on Knowledge and Data Engineering (2021).

[20] Yuhong Luo and Pan Li. 2022. Neighborhood-aware Scalable Temporal Network
Representation Learning. In The First Learning on Graphs Conference.

[21] Ashwin Paranjape, Austin R. Benson, and Jure Leskovec. 2017. Motifs in Temporal
Networks. In ACM Int. Conf. on Web Search and Data Mining.

[22] Aldo Pareja, GiacomoDomeniconi, Jie Chen, TengfeiMa, Toyotaro Suzumura, and
et al. 2020. EvolveGCN: Evolving Graph Convolutional Networks for Dynamic
Graphs. Proc. of the AAAI Conference on Artificial Intelligence (2020).

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, and
et al. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Proc. Advances in Neural Information Processing Systems.

[24] Mandela Patrick, YukiM. Asano, Polina Kuznetsova, Ruth Fong, João F. Henriques,
Geoffrey Zweig, and Andrea Vedaldi. 2021. Multi-modal Self-Supervision from
Generalized Data Transformations. In Proc. Int. Conf. on Computer Vision.

[25] Stephen Ranshous, Shitian Shen, Danai Koutra, Steve Harenberg, Christos Falout-
sos, and Nagiza F. Samatova. 2015. Anomaly detection in dynamic networks: a
survey. WIREs Computational Statistics 7, 3 (2015), 223–247.

[26] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, andMichael Bronstein. 2020. Temporal GraphNetworks for Deep Learning
on Dynamic Graphs. In ICML Workshop on Graph Representation Learning.

[27] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
Dysat: Deep neural representation learning on dynamic graphs via self-attention
networks. In Proc. Int. Conf. on Web Search and Data Mining.

[28] A. H. Souza, D. Mesquita, S. Kaski, and V. Garg. 2022. Provably expressive
temporal graph networks. In Advances in Neural Information Processing Systems
(NeurIPS).

[29] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L Dyer, Remi Munos, Petar Veličković, and Michal Valko. 2022. Large-Scale
Representation Learning on Graphs via Bootstrapping. In Proc. Int. Conf. on
Learning Representations.

[30] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. 2021. Self-
supervised Representation Learning on Dynamic Graphs. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management.
1814–1823.

[31] Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. 2021. Self-
Supervised Representation Learning on Dynamic Graphs (CIKM ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, 1814–1823. https:
//doi.org/10.1145/3459637.3482389

[32] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. 2022. VideoMAE: Masked
Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training.
arXiv preprint arXiv:2203.12602 (2022).

[33] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
Dyrep: Learning representations over dynamic graphs. In Proc. Int. Conf. on
Learning Representations.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems.

[35] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. Int. Conf.
Learning Representations.

[36] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Lio, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. In Proc. Int. Conf. on Learning
Representations.

[37] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In Proc. Int. Conf. on Learning Representations.

[38] Yaochen Xie, Zhao Xu, Jingtun Zhang, Zhengyang Wang, and Shuiwang Ji. 2022.
Self-Supervised Learning of Graph Neural Networks: A Unified Review. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022), 1–1.

[39] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.
2021. InfoGCL: Information-Aware Graph Contrastive Learning. In Proc. Advances
in Neural Information Processing Systems.

[40] Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. Proc. Int. Conf. on
Representation Learning (2020).

[41] Lin Yao, Luning Wang, Lv Pan, and Kai Yao. 2016. Link Prediction Based on
Common-Neighbors for Dynamic Social Network. Procedia Computer Science
(2016).

[42] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and
George Karypis. 2022. TGL: A General Framework for Temporal GNN Training
on Billion-Scale Graphs. Proc. VLDB Endow. 15, 8 (jun 2022), 1572–1580. https:
//doi.org/10.14778/3529337.3529342

A APPENDIX
A.1 Additional Results
A.1.1 Runtime and Computational Complexity. The main runtime
overhead lies in how each of the baselines processes the input
graph to predict a target edge. CaW samples 𝑀 𝐿-hop random
walks for each target edge. This is followed by an expensive set-
based anonymization scheme. To achieve good performance, CaW
can require relatively long walks (e.g., for Enron, 𝐿 = 5). On the
other hand, memory-based methods and TGAT sample a different
𝐿-hop subgraph for each target edge. DyG2Vec samples similar to

https://doi.org/10.1145/3459637.3482389
https://doi.org/10.1145/3459637.3482389
https://doi.org/10.14778/3529337.3529342
https://doi.org/10.14778/3529337.3529342

MLG 2023, August 9, 2023, Long Beach, CA Alomrani et al.

TGAT but does so within a constant window size𝑊 and without
enforcing temporal causality.

Thus, assuming we use sparse operations in Pytorch Geometric
[7] for message-passing, the encoding computational complexities
are: DyG2Vec = 𝑂 (𝐿𝑊); CaW = 𝑂 (𝐿𝑀𝑁𝑠) and TGN and variants
= 𝑂 (𝐿𝑁𝑠). Here, 𝑁𝑠 represents the maximum number of sampled
nodes in an 𝐿-hop subgraph. We can see that the main difference
is the factor𝑀 . The factor 𝑁𝑠 comes from the complexity of mes-
sage passing at each hop (assuming sparse operations). Note that
DyG2Vec is limited to 𝑂 (𝑊) nodes so it does not have this factor.

Table 7: Downstream Freeze test AP Results (after pre-
training). DDGCL pre-training and downstream training
were run with default parameters described in the work.

Model MOOC Enron UCI LastFM

DyG2Vec 93.1 96.6 95.4 93.0
DDGCL 84.3 83.0 85.3 78.8

A.1.2 Comparison to other dynamic Graph SSL Methods. As men-
tioned in Section 2, DDGCL [31] proposed a contrastive SSL method
for dynamic graphs that learns rich representations by contrasting
node embeddings across time. Though experiments show improved
performance on the future link prediction and dynamic node clas-
sification task, we believe the approach comes with several short-
comings that limit it’s advantages in real world graphs. First, it is
built on the TGAT [40] encoder which, as seen in Table 2, is a weak
encoder; particularly, for large datasets such as LastFM. Second, ex-
periments for the FLP task are limited to the Reddit and Wikipedia
datasets which are relatively easy. Lastly, the authors do not exper-
iment under the standard settings in graph SSL literature such as
the freeze and semi-supervised settings. Table 7 shows the results
for downstream future link prediction under the freeze setting. The
results show up to 10% gap compared to DyG2Vec, particularly
for datasets where the TGAT encoder under-performs (e.g. Enron,
UCI).

A.2 Implementation Details
We train our model using the Pytorch framework [23]. The dynamic
graph data and GNN encoder architecture are implemented using
Pytorch Geometric [7]. The ReLU activation function is used for
all models. The code and datasets will be made publicly available
upon acceptance.

Window-based framework: As mentioned in Section 4, during
SSl pre-training, the full dynamic graph𝐺0,𝐸 is divided into a set of
intervals 𝐼 that is generated by dividing the entire time-span into
𝑀 = ⌈𝐸/𝑆⌉ − 1 intervals with stride 𝑆 and interval length𝑊 :

𝐼 =

{[
max(0, 𝑗𝑆 −𝑊), min(𝑗𝑆, 𝐸)

)
| 𝑗 ∈ {1, 2, . . . , 𝑀}

}
. (10)

Here,𝑊 defines the number of edges in an interval and 𝑆 defines
the stride. Note that we include all intervals up to but not including
[𝐸 −𝑊, 𝐸) so that the target interval contains at least one edge.

Decoder Architecture: Denote by 𝑡𝑚𝑎𝑥 the timestamp of the
latest interaction, within the provided history, incident to node 𝑢.
For future link prediction, to predict a target interaction (𝑢, 𝑣, 𝑡),

our decoder maps the sum of the two node embeddings of 𝑢 and 𝑣
and a time embedding of 𝑡 − 𝑡𝑚𝑎𝑥 to an edge probability. Following
[40], the FLP decoder is a 2-layer MLP.

For dynamic node classification, to predict the label of node𝑢 for
interaction (𝑢, 𝑣, 𝑡), the decoder maps the source node embedding
and time embedding of 𝑡 − 𝑡𝑚𝑎𝑥 to class probabilities. Following
[40], the DNC decoder is a 3-layer MLP with a dropout layer with
𝑝 = 0.1.

The time embedding is calculated using a trainable Time2Vec
module [14]. The time embedding allows the decoder to be time-
aware; hence, possibly output different predictions for the same
nodes/edges at different timestamps.

For SSL pre-training, the predictor 𝑝𝜙 is a simple 2-layer MLP
that maps node embeddings 𝑯 to node representations 𝒁 .

Distortion Pipeline: We use the common edge dropout and
edge feature dropout distortions. Both distortions are applied with
dropout probability 𝑝𝑑 = 0.3 which we have found to work best in a
validation experiment exploring the values 𝑝𝑑 ∈ {0.1, 0.15, 0.2, 0.3}.
The edge feature dropout is applied on the temporal edge encodings
introduced in Section 4.1, i.e., 𝑧𝑝 (𝑡𝑝) and 𝑐𝑝 (𝑡𝑝).

Hyper-parameters: We use a constant learning rate of 0.0001
for all datasets and tasks. DyG2Vec is trained for 100 epochs for
both downstream and SSL pre-training. The model from the last
epoch of pre-training is used for downstream training. For down-
stream evaluation, we pick the model with the best validation AP
performance. Overall, we found that DyG2Vec converges within
∼ 50 epochs.

For downstream training, We use a constant window size of 64𝐾
for all datasets except for MOOC, SocialEvolve, and Enron where
we found a smaller window size of 8𝐾 works best. The batch size
is set to 200 target edges. However, the model could be sped up
by increasing batch size at the cost of higher memory. During SSL
pre-training, we use a constant window size of 32K with stride 200.

Following previous work [26, 40], all dynamic node classification
training experiments are performed with L2-decay parameter 𝜆 =

0.00001 to alleviate over-fitting.

A.3 Baselines
Baselines: Following prior work [26, 40], all baselines are trained
with a constant learning rate of 0.0001 using the Adam optimizer
[16] on batch-size 200 for a total of 50 epochs. The early stopping
strategy is used to stop training if validation AP does not improve
for 5 epochs. For JODIE [18], DyRep [33], and TGN [26], we use
the general framework implemented by [26]. The node memory
dimension is set to 172. For the NAT baseline [20], we utilize the
results in the paper for the common datasets since the setup is the
same. We generate results for the missing datasets with the default
hyperparameters.

For TGAT, we use the default hyperparameters of 2 layer neigh-
bor sampling with 20 neighbors sampled at each hop. For the CaW
method, we tune the time decay parameter 𝛼 ∈ 𝑆 where 𝑆 =, and
length of the walks𝑚 ∈ {2, 3, 4, 5} on the validation set. The number
of heads for the walking-based attention is fixed to 8.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem formulation
	4 Methodology
	4.1 DyG2Vec Encoding Model
	4.2 DyG2Vec Downstream Training
	4.3 Self-supervised Pre-training for Dynamic Graphs

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Ablation and Sensitivity Analysis

	6 Analysis
	7 Conclusion
	References
	A Appendix
	A.1 Additional Results
	A.2 Implementation Details
	A.3 Baselines

