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ABSTRACT
Cross-domain recommendation (CDR) can help customers find
more satisfying items in different domains. Existing CDR models
mainly use common users or mapping functions as bridges between
domains but have very limited exploration in fully utilizing extra
knowledge across domains. In this paper, we propose to incorporate
the knowledge graph (KG) for CDR, which enables items in different
domains to share knowledge. To this end, we first construct a new
dataset AmazonKG4CDR from the Freebase KG and a subset (two
domain pairs: movies-music, movie-book) of Amazon Review Data.
This new dataset facilitates linking knowledge to bridge within- and
cross-domain items for CDR. Then we propose a new framework,
KG-aware Neural Collective Matrix Factorization (KG-NeuCMF),
leveraging KG to enrich item representations. It first learns item
embeddings by graph convolutional autoencoder to capture both
domain-specific and domain-general knowledge from adjacent and
higher-order neighbours in the KG. Then, we maximize the mutual
information between item embeddings learned from the KG and
user-item matrix to establish cross-domain relationships for bet-
ter CDR. Finally, we conduct extensive experiments on the newly
constructed dataset and demonstrate that our model significantly
outperforms the best-performing baselines.
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1 INTRODUCTION
Cross-domain recommendation (CDR) [8] is a promising solution
to the data sparsity problem in recommender systems. Conven-
tional single-target CDR models leverage information from a richer
(source) domain to improve the recommendation performance in
a sparser (target) domain [2, 13, 41]. To improve performance in
both domains, recent dual-target CDR models [20, 23, 45] are pro-
posed, which enables bidirectional transfer across domains with
dual-learning mechanism [10, 43].

Despite encouraging results from existing CDR models, several
key issues remain unsolved [46]. Firstly, current models, including
the dual-target ones, can not simultaneously improve the perfor-
mance in both source and target domains due to negative transfer
[25]. In general, the knowledge learned from the sparser domain
is less accurate than that learned from the richer domain. Thus,
the recommendation performance in the richer domain tends to
decline if the transfer direction is simply inverted. Secondly, cur-
rent CDR models mainly use common users [23, 45] or mapping
functions [20] to build connections between domains. In real-life
scenarios, relationships between items within or across domains
can characterize item-wise semantic relatedness to help understand
user-item interaction patterns [35]. However, current CDR models
are inadequate in capturing such useful item-item relationships.

In this paper, we aim to address this gap by leveraging knowledge
graph (KG), a natural bridge for items from different domains [36].
KGs can benefit the CDR task in multiple ways [33]. First, rich
and explicit connections among items in the KG can help improve
the recommendation performance in each domain, particularly the
sparser domain. As shown in Fig 1, a user who has watched “Harry
Potter and the Deathly Hallows” is very likely to have interest in
the movie “Fantastic Beasts and Where to Find Them” (directed by
the same director), which can be recommended with the assistance
of domain-specific knowledge in the KG. Second, domains often
share some domain-general information. For example, genre can
characterize both book and movie domains. “Lord of the Ring” (from
movies), “Harry Potter” (from books) can be closely connected in the
KG via the related genre Fantasy. KGs provide a natural bridge to
build connections between domains. Leveraging such information
can help models understand target or source items by associating
rich semantic relatedness among items from different domains and
further improve recommendation performance.

To build KG-aware CDR, three unique technical challenges arise.
(1) Though several datasets exist for KG-aware single-domain rec-
ommendation, no publicly-available dataset exists for KG-aware
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Figure 1: Knowledge graph is a natural bridge that connects items
from different domains. For example, “Lord of the Ring” in movies
can get connected with “Harry Potter” in books via related genre
Fantasy. Such inter-domain knowledge can reveal similar semantic
relations among items from different domains to further improve
cross-domain recommendation. This paper constructs a new dataset
and proposes a new model to achieve this goal.

CDR. (2) To improve CDR, item (entity) embeddings (representa-
tions) learned from the KG should contain both domain-specific
and domain-general information, which typically comes from dif-
ferent hops of neighbors in KG. The second challenge is to model
both adjacent and higher-order relations in the item representation
learning process. (3) Item embeddings learned from the KG and
those from the user-item interaction matrix should be closely re-
lated, e.g., highly correlated, so that cross-domain relationships can
be effectively established. How to ensure this is the third challenge
we need to overcome.

To address the challenges above, we construct a new dataset for
KG-aware CDR and propose a novel KG-aware Neural Collective
Matrix Factorization (KG-aware NeuCMF) model. Firstly, we con-
struct a new dataset named Amazon product Knowledge Graph for
CDR (AmazonKG4CDR) using a subset (movie, book, and music) of
the Amazon Review Data (2018) [24] and the Freebase KG [3, 5].
Then, we propose a two-step framework for KG-aware CDR. 1) We
train a shared autoencoder using a relational graph convolutional
network (RGCN) on the knowledge graph following a contrastive
learning-style [16, 29]. GCN-based encoders learn a node’s embed-
ding by aggregating information from its neighbors via non-linear
transformation and aggregation [17]. Long-range node dependen-
cies can be captured by stacking multiple GCN layers to propagate
information for multiple hops [39]. This enables capturing both
domain-specific and domain-general information from different
hops of neighbors in the KG. 2) To establish cross-domain relation-
ships, the embeddings learned from KG should be highly coherent
with those from the user-item interaction matrix. Therefore, we
incorporate the mutual information (MI) estimation [1] into the
neural collective matrix factorization (NeuCMF) framework. This
mechanism allows our model to preserve both user-item interaction
and KG information across items. Finally, we conduct extensive ex-
periments on our newly constructed datasets and demonstrate that

our model significantly outperforms the best-performing baselines,
with up to 21% (movie), 15.18% (music) improvement, in terms of
the mean absolute error (MAE) in movie-music domains recom-
mendation.

In summary, our contributions are threefold:
• We construct and leverage the knowledge graph for CDR
task. To the best of our knowledge, this is the first time to
apply KG information for CDR.

• We propose a two-step KG-aware NeuCMF framework for
KG-aware CDR, which enables learned item embeddings
can capture both user-item interactions, domain-general,
domain-specific information from the KG.

• We conduct extensive experiments on the newly constructed
datasets. Experimental results show that our proposed model
can significantly outperform most state-of-the-art CDR mod-
els.

2 RELATEDWORK
2.1 Cross-Domain Recommendation
Different from conventional single-domain recommendation, CDR
can leverage information from source domain to improve the per-
formance of target domain [2, 8], namely single-target CDR, which
is a powerful tool to deal with the data sparsity problem. These
approaches extend the single-domain recommendation models by
utilizing same contents, such as tags, reviews [7, 42], common items
or users [12, 21, 30] as the bridge between and transfer information
between domains [13, 22, 27, 28].

The single-target CDR approaches only focus on how to leverage
the source domain to help improve the recommendation accuracy
on the target one, but not vice versa. Recently, dual-target CDR
mothods [20, 23, 45] has been proposed to improve the performance
on both source and target domains simultaneously by leveraging
dual-transfer learning strategies [10, 43]. However, as referred to
as Negative Transfer [25], this idea does not work, because the
knowledge learned from the sparser domain is less accurate than
that learned from the richer domain, thus the recommendation
accuracy on the richer domain is more likely to decline by sim-
ply and directly changing the transfer direction. Therefore, dual
target CDR demands novel and effective solutions. None of the
current CDR models can indeed improve the performance on both
domains simultaneously, and they are significantly hindered by
limited information and connections between two domains.

2.2 Knowledge Graph for Recommendation
In recent years, introducing recommendations with the KG as side
information has attracted considerable interest [33, 36, 37]. A KG
is a heterogeneous graph, where nodes represent as entities, edges
represent relations between entities and a fact in KG is usually rep-
resented in the form of a triple (head entity, relation, tail entity) [36].
KGs contain rich semantic relatedness among items and incorporat-
ing KGs in RS can help explore the latent connections and provide
explanations for recommended items [9]. Currently, KG-aware RS
models are only for the single-domain RS [4, 31, 33, 36, 37, 44].While
one bottleneck for CDR is lacking of connections between domains.
since KGs can naturally connect different domains, it would be
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Figure 2: KG construction for Amazon products.

promising by incorporating KG in the user-item interaction matrix
for better cross-domain recommendation performance.

3 KG-AWARE NEUCMF MODELS
In this section, we present the technical details of our proposed CDR
model, KG-aware Neural CMF (KG-NeuCMF) that aims to improve
the performance of CDR by leveraging the KG. This section first
introduces how to construct the knowledge graph for items. Then
we formulate the task and present our proposed framework: KG-
NeuCMF.

3.1 KG Construction for CDR
To develop a knowledge-aware CDR system, a key issue is how
to obtain rich and structured knowledge information for items.
Existing research works use side information from the original
recommender system, such as tags and reviews. We argue that the
KG information will provide additional useful information to the
CDR task, since the intra-domain relationship among items can be
captured. In this paper, we present AmazonKG4CDR V1.0, a new
dataset linking KG information for CDR, which can be useful for
researchers in the related areas to explore possible approaches with
the rich KG information.

We use the widely used dataset, Amazon Review Data (2018)
[24], covering various domains, from which we select a subset that
includes two domain pairs: movie-music, movie-book, which are
being linked together through a common user ID identifying the
same user. On the KG side, we use the well-known KG: Freebase
[3]. It stores facts by triples of the form < ℎ𝑒𝑎𝑑 >< 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ><

𝑡𝑎𝑖𝑙 >. Since Freebase shut down its services, we use its latest public
version. We map items into Freebase entities via title matching if
there is a mapping available. Fig.2 shows the whole linkage process.
Since we only have item Asins (IDs of Amazon products), we need
to get items’ titles from the Amazon Review metadata first1. These
titles are later used to get KG entity IDs from The Knowledge Graph
Search API, which are used to extract the graph information from
Freebase.

During the linkage process, we have dealt with several problems
that will affect the quality of the extract knowledge graph. First,
the correctness of the extracted KG entity IDs should be ensured.
For example, a query is “Harry Potter” (a book name), and returned
results can be both movies and books. So, we filter returned results

1https://nijianmo.github.io/amazon/index.html

by their type and name to ensure extracted IDs are correct. To
ensure the KG quality, we preprocess the extracted KG by filtering
out infrequent entities (e.g., lower than 10 in both datasets) and
retaining the relations appearing in at least 100 triplets.

3.2 Problem Statement
In this paper, we study the problem of KG-aware CDR. Formally,
we are given two domains, a source domain S (e.g., movie recom-
mendation) and a target domain T (e.g., book recommendation)
that can be represented as two user-item interaction matrices RS
and RT , where 𝑟𝑢𝑖 = 1 indicates that user 𝑢 engages with item 𝑖 ,
otherwise 𝑟𝑢𝑖 = 0. In real online shopping platforms (e.g., Amazon),
users in domain S and domain T often overlap, meaning that they
have purchased items in both domains. The set of users in both
domains are shared, denoted by U (of size𝑚 = |U|). In our setting,
there is no overlap of items between two domains and each item
only belongs to one single domain. Denote the set of items in S and
T by IS and IT with size 𝑛S = |IS |) and 𝑛T = |IT | respectively.
Additionally, we also have a knowledge graph G, a multi-relational
graph, containing rich facts about items. Each fact in the KG is
represented as a triple (head entity,relation,tail entity) ((ℎ, 𝑟, 𝑡 )) [36].
The KG can represent large-scale information from multiple do-
mains [6]. In recommendation scenarios, an item in the user-item
interaction matrix corresponds to an entity in the KG.

Given RS and RT as well as the knowledge graph G, we aim to
predict whether user 𝑢 will engage with item 𝑖 with which the user
has no interaction before. Our goal is to learn a prediction function
𝑦𝑢𝑖 = 𝑓 (𝑢, 𝑖 | Θ,RS,RT ,G), where 𝑦𝑢𝑖 denotes the probability (or
the rating score) that user 𝑢 will engage with item 𝑖 and Θ denotes
the model parameters of function 𝑓 .

3.3 Methodology
In this subsection, we present the technical details of our proposed
model, KG-aware Neural CMF (KG-NeuCMF) that aims to improve
the performance of CDR by leveraging the KG. Fig.3 shows the
overview of the proposed framework. In the first stage, we pro-
pose to learn KG-level representations by exploiting a multi-layer
RGCN [29] through the encode-decode paradigm by minimizing
the reconstruction loss that follows a contrastive learning-style con-
vention [18]. This step aims to learn item embeddings containing
both domain-specific and domain-general information from differ-
ent hops of neighbors in KG. In the second-stage, we learn item
and user embeddings by borrowing ideas from the CMF framework
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[30] and neural CF (NCF) [11]. Instead of jointly factorizing the two
user-item interaction matrices directly as in CMF, we propose to
utilize neural networks to jointly learn the two matrices by sharing
user latent representations. Finally, item representations learned
from KG and user-item interaction matrix should be highly corre-
lated. To quantify such correlation, we also exploit to maximize MI
[1] between the two types of representations.

3.3.1 Entity embedding learning. To utilize the KG in our task, we
first need to learn entity representations. We do this by training a
graph autoencoder model in the unsupervised fashion and learn
representations in an encode-decode paradigm [18, 29]. We em-
ploy RGCN [29] as our encoder that learns an entity embedding
by aggregating information from its adjacent neighbors via non-
linear transformation and aggregation dependent on the connecting
relation, which can be denoted as

𝑓𝑒𝑛 (e(𝑙)𝑖
, e(𝑙)

𝑗
) = 𝜎 (W(𝑙)

0 e(𝑙)
𝑖

+
∑︁
𝑟 ∈R

∑︁
𝑗 ∈N𝑟

𝑖

1
𝑐𝑖 𝑗

W(𝑙)
𝑟 e(𝑙)

𝑗
), (1)

where e(𝑙)
𝑖

, e(𝑙)
𝑗

are the hidden state of node 𝑖 and node 𝑗 in the 𝑙−th
layer of the encoder, 𝜎 is an activation function such as ReLU,W(𝑙)

0 ,
W(𝑙)

𝑟 are (learnable parameters) relation-specific transformation
mapping matrices depending on the type of edge, 𝑐𝑖 𝑗 is problem-
specific normalization constant that can either be learned or chosen
in advance, and N𝑟

𝑖
denotes the set of neighbors of node 𝑖 under

relation 𝑟 ∈ R. Through this operation, the local proximity structure
and related semantic information can be successfully captured and
stored in the new representation of each entity. Long-range node
dependencies can be captured by stacking multiple graph encoder
layers and this mechanism ensures that distinct domains can be
connected via the information propagation.

The decoder can be any scoring function of KG embedding meth-
ods [36] that are used to measure the plausibility of each fact (ℎ, 𝑟, 𝑡 ).
Following [29], we use DisMult [40] factorization as the scoring
function, which is well known for its simplicity and efficiency and
a triple (ℎ, 𝑟, 𝑡 ) is scored as

𝑓𝑑𝑒 (eℎ, r, e𝑡 ) = eℎR𝑟 e𝑡 , (2)
where eℎ, e𝑡 ∈ R𝑑 are encoded features vector for entity ℎ and 𝑡 ,
and each relation r is associated with a diagonal matrix R𝑟 ∈ R𝑑×𝑑 .

We train the encoder and decoder with negative sampling. We
construct an equal number of negative samples by randomly re-
placing the head entity or tail entity of each positive sample and
the overall set of samples are denoted by M. Then we minimize
the cross-entropy loss of positive and negative node pairs

L =
∑︁

(eℎ,r,e𝑡 ,𝑦) ∈M
(𝑦𝑙𝑜𝑔𝑓𝑑𝑒 (eℎ, r, e𝑡 )))+(1−𝑦)𝑙𝑜𝑔(1− 𝑓𝑑𝑒 (eℎ, r, e𝑡 )) .

(3)

3.3.2 NeuCMF module. Typically the user-item interaction matri-
ces are highly sparse and it is beneficial to learn them simultane-
ously [30]. Collective matrix factorization (CMF) jointly factorizes
two matrices by sharing the user latent factors. Motivated by neu-
ral CF (NCF) [11], we propose to utilize neural networks to jointly
learn the two matrices by sharing user latent representations as
shown in Fig. 3. The predicted scores in two domains are

𝑟S𝑢𝑖 = 𝑓0 (𝑓𝑢 (u𝑢 ), 𝑓𝑠 (iS𝑖 ), (4)

𝑟 T𝑢 𝑗 = 𝑓1 (𝑓𝑢 (u𝑢 )), 𝑓𝑡 (iT𝑗 )), (5)

where u𝑢 , iS𝑖 and iT
𝑗
are represented one-hot vectors of users, items

from domain S and domain T respectively. Only the element corre-
sponding to that index is 1 and all others are 0. 𝑓𝑢 , 𝑓𝑠 and 𝑓𝑡 can be
multi-layer perceptron (MLP) that project sparse representations
to dense vectors. The obtained embeddings are then feed into two
separate multi-layer neural architectures to map the latent vectors
to predict scores 𝑟S𝑢𝑠 , 𝑟 T𝑢𝑡 for the two domains. Given RS and RT ,
we minimize the two reconstruction losses LS and LT with the
predicted scores.

The NeuCMF module connects two domains only by the com-
mon users, and fails to capture the relations among items. The item
embedding learned from KG can capture both domain-specific and



domain-general knowledge, thus will be effective for both single-
domain and cross-domain recommendation. Intuitively, the learned
item embedding from user-item interaction matrices should be
highly correlated to the KG-level embeddings. Therefore, this mo-
tivates us to exploit to maximize MI [1] between the two types of
representations to guarantee their highly correlated relationship.
We design our neural mutual information estimator based on a
discriminator D(𝑥,𝑦) for their pairwise relationships, to provide
probability scores for sampled pairs. To be specific, we generate
positive samples as (e𝑖 ,i𝑖 ) (i can come from domain S and domain
T , half-half) and negative samples are generated by associating
sampled items with fake embeddings based on shuffling strategy
[32]. We define the loss function as:

L𝑚𝑢𝑙 = − 1
𝑁
(
𝑁𝑝𝑜𝑠∑︁
𝑖=1

𝜇 (i𝑖 , e𝑖 )𝑙𝑜𝑔𝜎 (i𝑖 , e𝑖 ) +
𝑁𝑛𝑒𝑔∑︁
𝑖=1

𝜇 (ĩ𝑖 , e𝑖 )𝑙𝑜𝑔𝜎 (ĩ𝑖 , e𝑖 )),

(6)
where 𝑁 = 𝑁𝑝𝑜𝑠 +𝑁𝑛𝑒𝑔 , 𝑁𝑝𝑜𝑠 , 𝑁𝑛𝑒𝑔 denotes the number of positive
and negative samples, 𝜇 (·) is an indicator function,∑𝑁𝑝𝑜𝑠

𝑖=1 𝜇 (i𝑖 , e𝑖 ) =
1 and

∑𝑁𝑛𝑒𝑔

𝑖=1 𝜇 (ĩ𝑖 , e𝑖 ) = 1 corresponds to positive and negative
pair samples. We aim to minimize L𝑚𝑢𝑙 , which is equivalent to
maximize the mutual information, to jointly preserve the KG-level
and user-item interaction information.

The final loss includes: the loss (LS ) of source and loss (LT ) of
target recommendation with the mutual information maximization
lossL𝑚𝑢𝑙 . The objective is to minimize the overall lossL as follows:

L = LS (ΘS) + LT (ΘT ) + L𝑚𝑢𝑙 (Θ𝑚𝑢𝑙 ) + 𝜆∥Θ∥, (7)

where Θ = ΘS ∪ ΘT ∪ ΘL𝑚𝑢𝑙
. Note that ΘS and ΘT share user

embeddings. The objective function can be optimized by stochas-
tic gradient descent (SGD) and its variants like adaptive moment
method (Adam) [15].

4 EXPERIMENT
4.1 Dataset
We use the Amazon Review Data (2018) [24] that is widely used for
product recommendation. It contains users’ rate (ranging from 1 to
5) for product from various domains.We select a subset that includes
two domain pairs: movie-music(MM), movie-book(MB), which are
being linked together through a common user ID identifying the
same user. We construct the knowledge graph for each item by
utilizing Freebase and take triplets that involve two-hop neighbor
entities of items into consideration. The basic statistics details are
presented in Table 1. The recommendation task can be formulate
as the regression (rating) or the binary classification (recommend
or not) tasks. Following [26], we evaluate the recommendation
performance based MAE, F1_score (Threshold of positive rating is
4) for the regression and classification performance, respectively.

4.2 Baselines
To validate the performance of the proposed model, we compare
the performance with five representative models, in which two
single-domain RS models (MF, NCF) and three CDR models (CMF,
CoNet, DDTCDR) using the publicly released implementations.

Table 1: Statistics of the dataset.

Domain: Music-Movie Domain: Book-Movie
Music Movie Book Movie

Users 4,196 4,196 3,977 3,977
Items 7,412 10,919 11,372 8,118
Interactions 21,986 49,027 22,214 29,245
Entities 85,612 387,178 258,999 990,141
Relations 155 340 127 295
Triples 288,731 610,314 522,814 1,787,190

• MF [19]. Matrix Factorization (MF) is a classic latent fac-
tors CF approach which learns the user and item factors via
matrix factorization in each domain separately.

• NCF [11]. Neural Collaborative Filtering (NCF) is a neural
network architecture to model latent features of users and
items using CF method. The NCF models are trained sepa-
rately for each domain without transferring any information.

• CMF [30]. Collective Matrix Factorization (CMF) jointly
factorizes matrices of each domains. In our scenarios, The
shared user factors enable knowledge transfer between cross
domains .

• CoNet [12]. Collaborative Cross Networks (CoNet) enables
dual knowledge transfer across domains by introducing cross
connections from one base network to another and vice
versa.

• DDTCDR [20]. Deep Dual Transfer Cross Domain Recom-
mendation (DDTCDR) learns latent orthogonal mappings
across domains and provides cross domain recommendations
by leveraging user preferences from all domains.

4.3 Implementation details
In the KG-pretrain step, we utilize a two-layer RGCN as the en-
coder to obtain entity embeddings. In the NeuCMF module, we
apply one-layer neural networks to project the one-hot vectors of
users, and items to low-dimensional embedding vectors and 𝑓0 and
𝑓1 are two one-layer neural networks to map the latent vectors to
predict scores. Throughout the experiments, the embedding size
is tuned in the range of [8,16,32] and we use the Adam optimizer
[15] with learning rate 0.001, L2 regularization 0.0001. For each
dataset, the ratio of training, evaluation, and test set is 6 : 2 : 2
[34]. We employ the early stopping strategy based on the validation
accuracy with a window size of 10 (we will stop training if the vali-
dation loss does not decrease for 10 consecutive epochs) and train
200 epochs at most. We report results over 20 runs with random
weight matrix initialization. For a fair comparison, we set the same
hyperparameters of the baselines as our model.

4.4 Overall Performance of CDR
We have conducted experiments on two cross domain tasks, movie-
music (MM) and movie-book (MB), and the corresponding results of
our model and baselines are shown in Table 2 and Table 3. We can
see that our proposed model can consistently obtain the best per-
formance across movie-music and movie-book recommendations



Table 2: Comparison of recommendation performance in
Movie-Music (%). The best results are in bold and the second

best ones are underlined.

Movie-Music (MM)

Methods Movie Music
MAE F1_Score MAE F1_Score

MF [19] 20.94±2.54 74.97±4.50 23.79±1.69 72.57±0.75
NCF [11] 19.01±0.09 88.93±0.05 15.25±3.23 93.05±0.43

CMF [30] 20.23±1.97 89.09±0.36 11.66±2.35 92.45±0.36
CoNET [12] 18.22±0.36 88.68±0.70 13.96±0.36 92.05±0.48
DDTCDR [45] 20.69±0.35 74.84±1.74 15.82±0.75 89.05±2.13

Ours 14.23±0.97 90.69±0.22 9.89±0.35 94.45±0.32
Improvement (%) 21.28 % 1.80 % 15.18 % 1.50%

Table 3: Comparison of recommendation performance in
Movie-Book(%). The best results are in bold and the second

best ones are underlined.

Movie-Book (MB)

Methods Movie Book
MAE F1_Score MAE F1_Score

MF [19] 24.17±1.32 73.64±0.74 23.83±1.25 69.01±2.74
NCF [11] 18.80±0.54 89.08±0.07 18.86±0.52 89.35±0.06

CMF [30] 14.53±1.51 89.32±0.04 13.22±0.78 89.07±0.22
CoNET [12] 17.46±0.61 89.59±1.45 17.18±0.59 89.22±0.77
DDTCDR [45] 20.17±0.56 82.60±2.37 17.15±0.54 90.06±0.39

Ours 13.17±0.16 90.60±0.37 13.01±0.14 90.80±0.22
Improvement (%) 9.36 % 1.12 % 1.58 % 0.57%

F1
_s

co
re
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0.88

0.90

0.92

0.94

Movie (in MM) Music (in MM) Movie (in MB) Book (in MB)

NCMF_KG NCMF_KG_T NCMF_KG_Mul

Figure 4: Different ways to incorporate KG information for
CDR.

in terms of MAE and F1_score. In particular, our model improves
over the strongest baselines𝑤.𝑟 .𝑡 . MAE by 21%, 15.18% in movie,
music (Table 2) respectively, which justifies the effectiveness of
our method in integrating items’ KG information. If we compare
between these two tasks, MM and MB, the improvement on music
in MM is more remarkable compared to the performance in MB.
Possible reasons are 1) the data is more sparse in the user-music
interaction matrix, so leveraging KG information can greatly relieve
the sparsity problem (we have verified this in the later experiments:

(a) Movie (in MM). (b) Music (in MM).

Figure 5: Comparison of different models in cold-start items
scenarios.

Comparisions for cold-start item scenarios); 2) the extracted KG
contains much useful information, especially for two closely related
domains (movie and music both belong to multi-media datasets).
Besides, CDR models (CMF,CoNet,DDTCDR) achieve better per-
formance than SDR models (MF, NCF), indicating that utilizing
extra information from other resources benefits the performance
of recommendation.

4.5 Different ways to incorporate KG
We explore different ways to combine item embeddings learned
from KG and user-item interaction matrices. NMF_KG takes KG-
level embeddings as input, then incorporates them with item em-
beddings learned from user-item interaction matrices via an ag-
gregation method, e.g., concatenation. NCMF_KG_T tries to refine
item embeddings learned from KG with a one-layer MLP and con-
catenates with embeddings learned from the user-item interaction
matrix. NCMF_KG_mul maximizes MI between the two types of
representations to guarantee the highly correlated relationship. The
results are shown in Fig. 4. Generally, refining the learned KG-level
embeddings gets better performance than direct utilization. This is
because in real-world KGs (e.g., Freebase) some noises are inevitably
introduced in the process of automatically constructing large-scale
KGs due to limited labour supervision [14, 38]. NCMF_KG_mul
gets the best performance. The possible reason is that item em-
beddings jointly learn from the user-item rating matrix and entity
embeddings from KG, which contain both domain-general and
domain-specific knowledge and the neural mutual information es-
timator can ensure their correlation. Such design is more suitable
for the cross-domain recommendation task.

4.6 Comparisons for cold-start item scenarios
The KG a natural bridge for items from different domains, which
can further alleviate the item cold-start problem in RS.

To validate this, we compare our methods with NCF, CMF under
the code-start scenario. We set up the cold-start environment by
sampling a subset of items for testing which are unseen in the
training data. Results for cold-start items on movie-music datasets
are shown in Fig. 5. NCF (the SDR model) is greatly influenced and
gets the poorest performance, especially there are a large proportion
new items. CMF (the CDR model) can leverage information from
two domains, thus it can alleviate the cold-start problem in some
extent. Our model goes further to learn representations for cold
items from the KG, offering additional information beyond user-
item interaction matrices.



5 CONCLUSION
In this paper, we constructed a new dataset AmazonKG4CDR, the
first in the filed linking KG information for cross-domain recom-
mendation. Moreover, we proposed a KG-aware NeuCMF model
to learn domain-specific and domain-general knowledge using
graph autoencoding strategy to capture both adjacent and higher-
order neighborhood information from KG. Our model unified item
embeddings learned from user-item interaction matrices and KG
with a neural collaborative filtering framework under a mutual
information-based neural estimator. Through extensive experi-
ments on real-world datasets, we demonstrated that KG-aware
NeuCMF has achieved substantial gains over state-of-the-art base-
lines. For future work, we will explore the explainability of cross-
domain recommendation.
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